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Abstract Mandibulofacial dysostosis with microcephaly (MFDM) is a rare genetic disorder
inherited in an autosomal dominant pattern. Major characteristics include developmental
delay, craniofacial malformations such as malar and mandibular hypoplasia, and ear anom-
alies. Here, we report a 4.5-yr-old female patient with symptoms fitting MFDM. Using
whole-genome sequencing, we identified a de novo start-codon loss (c.3G>T) in the
EFTUD2. We examined EFTUD2 expression in the patient by RNA sequencing and ob-
served a notable functional consequence of the variant on gene expression in the patient.
We identified a novel variant for the development of MFDM in humans. To the best of our
knowledge, this is the first report of a start-codon loss in EFTUD2 associated with MFDM.

INTRODUCTION

Mandibulofacial dysostosis with microcephaly (MFDM; also known as Guion-Almeida type;
MIM #610536) is a rare autosomal dominant disorder characterized by developmental delay
and several craniofacial malformations, including micrognathia, malar hypoplasia, ear anom-
alies, microcephaly, cleft palate, and facial asymmetry. In some cases, involvement of other
organs have been reported, such as thumb anomalies, heart defects, esophageal atresia,
and renal malformations (Guion-Almeida et al. 2006; Wieczorek et al. 2007; Guion-
Almeida et al. 2009;Wieczorek et al. 2009). Patientsmay also present with eye abnormalities,
including microphthalmia, microcornea, coloboma, and myopia (Deml et al. 2015).

From a total of 119 previously reported MFDM patients in the literature (Huang et al.
2016; Matsuo et al. 2017; Rengasamy Venugopalan et al. 2017; Yu et al. 2018; Lacour
et al. 2019; Silva et al. 2019; Jacob et al. 2020; Kim et al. 2020; Narumi-Kishimoto et al.
2020; Xu et al. 2021a; Li et al. 2022), 95 cases (80%) were found to harbor deleterious variants
in Elongation Factor TuGTP BindingDomain Containing 2 gene (EFTUD2; MIM #603892). In
76 cases both parents were also genotyped, and 60 (79%) were found to have de novo var-
iants. The remaining were either germline mosaic or inherited in an autosomal dominant
manner (Huang et al. 2016). The human EFTUD2 encodes the U5-116kD nuclear protein,
which plays a critical role in the pre-mRNA splicing process (Fabrizio et al. 1997). Recent
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in vivo experiments performed on mutant mice showed the effect of eftud2 knockdown on
the differential splicing of Mdm2 and activation of P53 in neural crest cells, which in turn led
to craniofacial defects (Beauchamp et al. 2021).

More than 90 pathogenic variants in EFTUD2 have been reported to date. These vary in
impact on the 29-exon gene, perturbing gene function by affecting protein interaction,
stability, conformation, localization, and/or post-translational modifications (Huang et al.
2016; Matsuo et al. 2017; Rengasamy Venugopalan et al. 2017; Yu et al. 2018; Lacour
et al. 2019; Silva et al. 2019; Jacob et al. 2020; Kim et al. 2020; Narumi-Kishimoto et al.
2020; Xu et al. 2021a; Li et al. 2022). The types of variants reported include deletions, dupli-
cations, missense, splice site, and stop-gain mutations. However, no start-loss variants have
been previously reported in human MFDM patients.

Here, we report the first case of a start-loss in EFTUD2 causing disease. We discovered
this by whole-genome sequencing (WGS), confirmed segregation in the family by Sanger
sequencing, and followed up with assessing gene expression levels to confirm functional
effect.

RESULTS

Clinical Presentation and Family History
Here, we report a 4.5-yr-old female patient of South Asian ancestry, enrolled as part of the
Qatar Mendelian Disease Program (Fakhro et al. 2019), who presented mainly with craniofa-
cial features including micrognathia, malar hypoplasia, right microtia, right hemifacial micro-
somia, cleft palate, and a limitation in mouth opening (jaw opens to the rightward). The
patient was initially diagnosed also with microphthalmia, but upon reexamination, it turns
out to be mild ptosis. Eye testing also revealed right intermittent exotropia, normal stereo
test, and right amblyopia (logmar: right = 0.3, left = 0.1) that was treated later with occlusion
therapy. Other developmental features included conductive hearing loss, auditory atresia,
congenital microcephaly with normal magnetic resonance imaging (MRI) brain, poor weight
gain, and speech delay that was being treated by speech therapy (Table 1).

The patient was first referred to the ophthalmology clinic for eye consultation, which
includes the examination of the anterior segment, pupil, dilation and refraction, and optic
nerve and fundus. The genetic testing was requested upon the initial diagnosis with mi-
crophthalmia. She was then referred to the pediatrician to screen for allergies and to
the ear, nose, and throat (ENT) clinic for physical tests. Audiology evaluation by otoscopy
and tympanometry was also performed. The patient was then referred to a speech thera-
pist for oral motor assessment. Upon these multiclinic assessments, the patient and her
family (parents and unaffected sister) were enrolled for WGS to identify the genetic etiol-
ogy underlying her syndromic presentation. The absence of family history of disease
and the lack of parental consanguinity suggested that a de novo variant caused this
condition.

Genomic Analyses
We first applied our optimized laboratory processing pipelines that look for recessive mu-
tations (Al-Kurbi et al. 2022) and structural variants (E Aliyev, A Visconti, N Syed, et al.,
unpubl.), but we did not find any candidate variants that could be linked to the presented
disease phenotype. We then used a combinatorial approach for de novo mutation calling
that leverages three separate underlying approaches to identify 92 high genotype quality
de novo variants. Focusing on protein-altering variants that were predicted damaging, we
discovered one variant of particular interest in the EFTUD2 (ClinVar accession number
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Table 1. Clinical features of the patient in our study, compared to the spectrum of findings in all reported
cases of MFDM

Features This study All reported casesa Estimated prevalence (%)

Craniofacial

Micrognathia Yes 93/95 98

Small or dysplastic pinna(e) Yes 90/93 97

Malar hypoplasia Yes 84/90 93

Hearing loss Yes 75/89 84

Conductive Yes 33/55 60

Mixed No 15/55 27

Sensorineural No 7/55 13

Auditory atresia/stenosis Yes 50/78 64

Vestibular system abnormalitiesb NR 16/28 57

Ossicular abnormalitiesb NR 11/19 58

Microphthalmiab No 10/32 31

Facial asymmetry Yes 29/52 56

Preauricular tag(s) No 46/91 51

Cleft palate Yes 45/94 48

Choanal atresia No 27/89 30

Neonatal resuscitation No 14/48 29

Tracheostomy No 11/54 20

Limitation of mouth opening Yes 9/86 10

Extracranial

Thumb anomalies No 25/83 30

Heart defects No 29/95 31

Esophageal atresia No 24/91 26

Renal malformation No 9/87 10

Development

Developmental delay Yes 89/89 100

Microcephaly Yes 84/95 88

Congenital Yes 36/57 63

Postnatal No 21/57 37

Epileptic seizures No 23/83 28

aObtained from Deml et al. (2015; PMID: 26118977), Huang et al. (2016; PMID: 26507355), Yu et al. (2018; PMID:
29381487), Narumi-Kishimoto et al. (2020; PMID: 32541334), Jacob et al. (2020; PMID: 32943010), and this study.
bThese features were not reported in several studies, and thus the prevalence estimates are not accurate.

Table 2. The identified de novo variant in the patient

Gene
Chromosome

(hg19)
HGVS DNA
reference

HGVS
protein

reference
Variant
type

Predicted
effect Zygosity

EFTUD2 17:42971887 c.3G>T p.(Met1?) Substitution Start loss Heterozygous
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SCV002499764), previously implicated in MFDM clinical phenotypes (Table 2). This pa-
tient’s variant was predicted to cause a loss of function because of removal of the start co-
don of EFTUD2 (c.3G>T, p.Met1?) (Fig. 1). Sanger sequencing was performed and
confirmed that none of the family members, except for the patient, carried this variant
(Fig. 2). Further, the variant was novel against all public databases, including the
Genome Aggregation Database (Karczewski et al. 2021), GenomeAsia 100K Project
(GenomeAsia 2019), 1000 Genomes Project (Fairley et al. 2020), Trans-Omics for
Precision Medicine program (Taliun et al. 2021), Greater Middle East Variome Project
(Scott et al. 2016), Gutenberg Heart Study (Zeller et al. 2010), and the Qatar Genome
Program (Mbarek et al. 2021).

As the patient has multiple features that fit MFDM (Table 1), we sought to examine the
potential consequence of the variant on the expression of EFTUD2. Taking into consider-
ation the relatively easier clinical accessibility to whole blood than other tissues, and that
EFTUD2 is well-expressed in this tissue (GTEx Consortium 2013), we used white blood
cells to extract RNA and perform total RNA sequencing (RNA-seq) for each individual with-
in the family. The data was normalized against RNA-seq profiles collected in our laborato-
ry. The results indeed supported a decrease of EFTUD2 expression in the proband,
compared to all controls, including both parents and unaffected sibling (Fig. 3). These re-
sults support the pathogenicity of this variant causing a loss-of-function allele, and thus a
drastic reduction in the expression of EFTUD2 in vivo, leading to this syndromic
phenotype.

Figure 1. Integrative Genomics Viewer (IGV) visualization of the EFTUD2 variant. The variant allele (A; light
green bands) occurs in a heterozygous state and replaces the wild-type C nucleotide.
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Figure 3. RNA-seq analysis of the EFTUD2. The boxplot shows FPKM (fragments per kilobase of transcript per
million fragments)-normalized gene expression of EFTUD2 in patient versus healthy controls. Red dots indicate
the sample of the patient (right) and her family (left).

Figure 2. Sanger sequencing validation of the variant. The variant allele appears only in the proband. The M
represents A or C, according to the IUPAC nucleotide codes.
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DISCUSSION

Advancements in next-generation sequencing are paving the way to diagnose many previ-
ously idiopathic genetic conditions. Although prioritization and interpretation of the massive
amounts of sequencing data is considered a challenge, the availability of public databases
enhances the analysis of variations with regard to their putative role, functional impact,
and contribution to human disease.

Here, we report a de novo variant in the start codon of the EFTUD2, which was predicted
as damaging (CADD=26.3) and occurs in a highly conserved region (GERP=5.24).
According to the American College of Medical Genetics and Genomics (ACMG) guidelines
for the interpretation of sequence variants (Richards et al. 2015), multiple evidence lines sup-
port the pathogenicity of this variant. These include being a start-codon variant (PVS1), a de
novo variant with confirmed paternity and maternity (PS2), and absent from controls in
exome and genome databases (PM2). In addition, this variant affects a known dominant dis-
ease gene, EFTUD2, which plays a role in MFDM, further supporting this variant’s pathoge-
nicity in this patient.

The AUG start codon encodes the amino acid methionine and is responsible for the
translation initiation, and therefore critical for production of a functional protein. A substitu-
tion affecting the putative start codon is predicted to cause a loss-of-function allele, which
ETUFD2 is predicted not to tolerate (probability of loss-of-function intolerance [pLI] > 0.99).

Evidence from the literature illustrated the important role of start-codon mutations in the
development of different disease phenotypes (Ounap et al. 2012; Carrera et al. 2019; Lu
et al. 2021; Xu et al. 2021b; Yang et al. 2021). However, it has also been proposed that
the existence of close alternative start sites may enable protein translation and mitigate
the effect of start-codon mutations (Abad-Navarro et al. 2018). To investigate this, we
have examined the sequence downstream to the wild-type start codon and found an AUG
triplet 14 bp away from the main start site. However, this site is missing a Kozak sequence
and would cause a frameshift (Kozak 1986; Abad-Navarro et al. 2018), whereas the next clos-
est alternative start site with a possible Kozak sequence occurs 922 bp away, within the fol-
lowing intron.

Mutations in the start codon render the ribosomes to search for alternative start sites for
mRNA translation. These alternate start codons can be out of frame and may lead to a pre-
mature termination, which in turn leads to the degradation of the transcript by nonsense-me-
diated decay (Peccarelli and Kebaara 2014). Indeed, we performed RNA sequencing and
measured the expression of EFTUD2, which confirmed the relatively decreasedmRNA levels
of EFTUD2 in the patient, compared to the rest of the family and other controls, consistent
with predicted loss-of-function impact of the start-codon variant on the gene expression.

In conclusion, we report a pediatric case with symptoms resembling MFDM, with a start-
codon-loss mutation in the EFTUD2. To the best of our knowledge, this is the first study to
report a start-codon loss in EFTUD2 associated with MFDM, and it also expands the pheno-
typic spectrum of EFTUD2.

METHODS

Whole-Genome DNA and RNA Sequencing
Whole-blood samples were collected and total genomic DNAwas extracted from each sam-
ple using DNeasy Blood & Tissue Kit (QIAGEN). Whole-genome libraries were prepared us-
ing TruSeq DNA Nano kit (Illumina), and samples were sequenced to an average depth of
30× using Illumina HiSeq X to produce 150-bp-length reads. For RNA sequencing, total

EFTUD2 de novo mutations in MFDM

C O L D S P R I N G H A R B O R

Molecular Case Studies

Kohailan et al. 2022 Cold Spring Harb Mol Case Stud 8: a006206 6 of 10



RNA extraction was carried out for each sample using the RNeasy Mini Kit (QIAGEN). After
library preparation, samples were sequenced using Illumina HiSeq X.

Bioinformatic Analysis
After DNA sequencing, raw reads were aligned to GRCh37 reference genome using the
standard settings of BWA kit v0.7.15 (Li and Durbin 2009). Pre- and postalignment genotype
quality checks were performed to ensure high sample quality. For variant calling, we devel-
oped a combinatorial approach (M Kohailan WAamer, N Syed, et al., unpubl.) to filter for de
novo variants. Briefly, we used FreeBayes v1.1.0 (Garrison and Marth 2012), VarScan v2.3.9
(Koboldt et al. 2012), and RUFUS v1.0 (Farrell 2014) for the initial variant calling. Then, we
combined the variants from all tools and applied more stringent filtration thresholds for var-
iants unique to each tool. As a final step, we annotated variants using SnpEff 4.3T (Cingolani
et al. 2012) and filtered out variants with an allele frequency of >0.1% in different databases
(Zeller et al. 2010; Scott et al. 2016; GenomeAsia 2019; Fairley et al. 2020; Karczewski et al.
2021; Mbarek et al. 2021; Taliun et al. 2021). Raw reads were visualized with IGV software
v2.9.4 (Robinson et al. 2011). For RNA sequencing, the differential gene expression analysis
was performed using the R package DESeq2 v1.24 (Love et al. 2014).

Sanger Sequencing
The isolated DNA samples were used to amplify a 113-bp DNA sequence flanking the var-
iant site using the Hot StarTaq Master Mix Kit (QIAGEN). Primer sequences were as follows:
forward (5′-TCAGAATCAAGCTCTGGTCCAA-3′) and reverse (5′-AGGCCTTGATTACCT
TGTCAGA-3′). After polymerase chain reaction (PCR) product purification with ExoSAP
(Applied Biosystems), chain-termination and labeling reactions were performed using
BigDye v3.1 Cycle sequencing kit (Life Technologies). Another product purification step
was done using DyeEx plates (QIAGEN). Reactions were then loaded into the ABI 3500xl ge-
netic analyzer (Life Technologies) to read the amplicon sequence.

ADDITIONAL INFORMATION

Data Deposition and Access
The variant was deposited in ClinVar (https://www.ncbi.nlm.nih.gov/clinvar/) under the ac-
cession number SCV002499764. The genomic sequence data we examined cannot be
deposited because of institutional review board (IRB) restrictions and patient privacy.
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