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Abstract
Objectives To compare single parameter thresholding with multivariable probabilistic classification of ischemic stroke regions in
the analysis of computed tomography perfusion (CTP) parameter maps.
Methods Patients were included from two multicenter trials and were divided into two groups based on their modified arterial
occlusive lesion grade. CTP parameter maps were generated with three methods—a commercial method (ISP), block-circulant
singular value decomposition (bSVD), and non-linear regression (NLR). Follow-up non-contrast CT defined the follow-up
infarct region. Conventional thresholds for individual parameter maps were established with a receiver operating characteristic
curve analysis. Probabilistic classification was carried out with a logistic regression model combining the available CTP param-
eters into a single probability.
Results A total of 225 CTP data sets were included, divided into a group of 166 patients with successful recanalization and 59
with persistent occlusion. The precision and recall of the CTP parameters were lower individually than when combined into a
probability. The median difference [interquartile range] in mL between the estimated and follow-up infarct volume was 29/23/23
[52/50/52] (ISP/bSVD/NLR) for conventional thresholding and was 4/6/11 [31/25/30] (ISP/bSVD/NLR) for the probabilistic
classification.
Conclusions Multivariable probability maps outperform thresholded CTP parameter maps in estimating the infarct lesion as
observed on follow-up non-contrast CT. A multivariable probabilistic approach may harmonize the classification of ischemic
stroke regions.
Key Points
• Combining CTP parameters with a logistic regression model increases the precision and recall in estimating ischemic stroke
regions.

• Volumes following from a probabilistic analysis predict follow-up infarct volumes better than volumes following from a
threshold-based analysis.

• A multivariable probabilistic approach may harmonize the classification of ischemic stroke regions.
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Abbreviations
AIF Arterial input function
bSVD Block-circulant singular value decomposition
CBF Cerebral blood flow
CBV Cerebral blood volume
CTA CT angiography
CTP Computed tomography perfusion
DUST DUtch acute STroke (study)
ISP IntelliSpace Portal
mAOL Modified arterial occlusive lesion (grade)

* Daan Peerlings
d.peerlings@umcutrecht.nl

1 Department of Radiology, University Medical Center Utrecht,
Utrecht 3584CX, The Netherlands

2 Image Sciences Institute, University Medical Center Utrecht,
Utrecht 3584CX, The Netherlands

3 Department of Radiology and Nuclear Medicine, Amsterdam
University Medical Centers, location Academic Medical Center,
Amsterdam 1105AZ, The Netherlands

European Radiology (2022) 32:6367–6375
https://doi.org/10.1007/s00330-022-08700-y

http://crossmark.crossref.org/dialog/?doi=10.1007/s00330-022-08700-y&domain=pdf
http://orcid.org/0000-0002-8134-2824
mailto:d.peerlings@umcutrecht.nl


MRCLEAN Multicenter Randomized Clinical Trial of
Endovascular Treatment for Acute Ischemic
Stroke in the Netherlands

MTT Mean transit time
NCCT Non-contrast CT
ROC Receiver operating characteristic (curve)
TTP Time to peak
VOF Venous output function

Introduction

Since endovascular treatment revolutionized acute ischemic
stroke care, baseline imaging has become ever more relevant
to select patients for treatment [1–3]. Personalized selection
criteria may be provided by computed tomography perfusion
(CTP) imaging.

For a patient with acute ischemic stroke, a CTP scan should
estimate the irreversibly damaged tissue (i.e., the infarct core)
and the salvageable tissue (i.e., the penumbra), which together
form the total hypoperfused region. To classify these regions,
the CTP scan is processed with dedicated software to produce
four perfusion maps: the cerebral blood flow (CBF), cerebral
blood volume (CBV), mean transit time (MTT), and time to
peak (TTP/Tmax). Subsequently, a predefined threshold can
be applied to outline the ischemic core and the penumbra.

However, different approaches in CTP processing software
and analysis between vendors have led to a variety of thresh-
old values for ischemia in stroke imaging (Table 1). These
different thresholds may partly contribute to the discordance
between vendors in CTP results, hampering multicenter CTP
studies. A standardized classification method could increase
harmony in CTP results between different processing
methods.

Probabilistic classification of ischemic stroke regions has
been proposed as an alternative to threshold-based classifica-
tion [4, 5]. Probability maps can combine parameters and can
indicate certainty of ischemia [4, 6]. Volumes obtained from
probability maps were already validated against conventional
threshold-based volumes for probability models that include a
single perfusion parameter [4]. However, the chosen perfusion

parameter may still differ between vendors and the
disregarded mapsmay contain additional—unused—informa-
tion. Also, a multivariable probabilistic classification has been
compared to single parameter thresholding, but only for dif-
ferent CTP software between the two classification methods
[7]. Probabilistic classification has not yet been compared to
threshold-based classification for a probability map that com-
bines multiple perfusion parameters readily available within
any single CTP software.

This study tests the hypothesis that a multivariable proba-
bilistic analysis of perfusion maps is superior to single vari-
able thresholding in predicting the ischemic core and total
hypoperfused region.

Methods

Acquisition of imaging data

Both the DUtch acute STroke (DUST) study, in which four-
teen stroke centers participated, and the Multicenter
Randomized Clinical Trial of Endovascular Treatment for
Acute Ischemic Stroke in the Netherlands (MRCLEAN), in
which seventeen stroke centers participated, contributed their
data to this study [8, 9]. All included DUST participants (n =
182) and included MRCLEAN participants (n = 43) gave
informed consent for the use of their clinical and imaging data.

The DUST study protocol design describes acquisition of
the admission CTP scan at 80 kVp and 150 mAs on 40- to
320-detector CT scanners (GE Healthcare, Philips, Siemens,
Toshiba) with a 2-s interval for a duration of 50 s and recon-
structed to a slice thickness of 5 mm. The advised injection
protocol was a 40 mL contrast bolus injected at a rate of 6 mL/
s followed by a saline flush of 40 mL injected at a rate of 6
mL/s. Patients eligible for treatment received intravenous
thrombolysis, intra-arterial thrombolysis, and/or mechanical
thrombectomy. For this study, the necessary follow-up imag-
ing consisted of a non-contrast CT (NCCT) as well as a CT
angiography (CTA) scan within 3 days.

In the MRCLEAN trial, centers could adhere to their own
acquisition and injection protocol. Patients eligible for

Table 1 Clinical definitions of ischemic core and penumbra that are
currently implemented in varying commercially available perfusion
software packages. CBF cerebral blood flow, CBV cerebral blood

volume, MTT mean transit time, and TTP/Tmax time to peak. Values
relative to the opposite hemisphere are indicated by an “r”

Software Ischemic core Penumbra

IntelliSpace Portal (Philips Healthcare) CBV < 2.0 mL/100g & rMTT > 150% rMTT > 150%

Syngo.via (Siemens Healthineers) CBV < 1.2 mL/100g CBF < 27.0 mL/100g/min

Vitrea (Toshiba/Canon Medical Systems) rCBV < 41% TTP > 6.8 s

RAPID (iSchemaView) rCBF < 30% Tmax > 6 s
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treatment received intravenous thrombolysis, intra-arterial
thrombolysis, and/or mechanical thrombectomy. The neces-
sary follow-up imaging again consisted of a NCCT as well as
a CTA scan and was acquired after 24 h.

Processing of imaging data

For the data from the DUST study, a radiologist with 6 years
of experience manually segmented the follow-up NCCT of
each patient to define the follow-up infarct region. In the
MRCLEAN trial, the follow-up NCCT of each patient was
segmented automatically using a convolutional neural net-
work [10]. Because our study compared two classification
methods, any inconsistencies in the follow-up infarct regions
were the same for both these methods.

The total patient population (n = 225) was divided into a
patient group with successful recanalization (REC, n = 166)
and a patient group with persistent occlusion (OCC, n = 59),
based on the modified arterial occlusive lesion (mAOL) grade
determined from the follow-up CTA (REC: mAOL grade 3;
OCC: mAOL grade 0 and 1) [11]. Subsequently, each patient
group was divided 2:1 into a REC/OCC training patient group
(n = 110/n = 39) and a REC/OCC test patient group (n = 56/n
= 20).

Patients were divided into a REC and OCC patient group
because the segmentation on the follow-up NCCT should re-
semble the infarct core at the time of admission imaging for
the REC patient group (since the recanalization should have
saved the penumbra) whereas the segmentation on the follow-
up NCCT should resemble the total hypoperfused region at
the time of admission imaging for the OCC patient group
(since the occlusion should have infarcted the penumbra).
Hence, the REC patient group was used to train and test the
classification of the infarct core, whereas the OCC patient
group was used to train and test the classification of the total
hypoperfused region.

To assess the robustness and universality of our method,
perfusion maps were generated with three perfusion

processing methods, all providing a CBF, CBV, MTT, and
TTP map. The first is a commercial method in which the CTP
scan was analyzed with the arrival-time-sensitive algorithm in
IntelliSpace Portal (ISP; Brain Perfusion, IntelliSpace Portal
10.1, Philips Healthcare). The second is an in-house devel-
oped method, which uses a block-circulant singular value de-
composition (bSVD) [12] algorithm. The third is an in-house
model-based non-linear regression (NLR) method [13].

Prior to perfusion analysis, the CTP scans were processed
the same way for both in-house methods (bSVD and NLR), as
described previously [14]. For ISP, the IntelliSpace Portal
Brain Perfusion application was used to filter the CTP image
data as well as to automatically select the arterial input func-
tion (AIF) and venous output function (VOF). All further data
processing and analysis were carried out with MATLAB
(MATLAB, R2019b: The Mathworks Inc.).

Determining thresholds

To determine thresholds, we followed (and refer to) the pro-
cedure on which the current clinical thresholds of ISP are
based [15]. To summarize, a receiver operating characteristic
(ROC) curve is produced for each perfusion parameter. The
perfusion parameter yielding the largest AUC of its ROC
curve is chosen as the parameter to define either the ischemic
core (for the REC training patient group) or the total
hypoperfused region (for the OCC training patient group).
The threshold value for this perfusion parameter is then found
by maximizing the Youden index [16].

Determining probability models

To determine the probability models, we performed logistic
regression by maximum likelihood estimation on all four per-
fusion parameters with follow-up tissue outcome as a response
variable. This resulted in a logistic model for the ischemic core
(from the REC training patient group) and for the total
hypoperfused region (from the OCC training patient group):

P COREð Þ ¼ 1= 1þ e CINT; RECþCCBF;REC�CBFþCCBV;REC�CBVþCMTT;REC�MTTþCTTP;REC�TTPð Þ� �
;

P HYPOPERFUSEDð Þ ¼ 1= 1þ e CINT;OCCþCCBF;OCC�CBFþCCBV;OCC�CBVþCMTT;OCC�MTTþCTTP;OCC�TTPð Þ� �
:

Once the coefficients for the intercept (CINT), the
CBF (CCBF), the CBV (CCBV), the MTT (CMTT), and
the TTP (CTTP) were determined from the training pa-
tient groups, the CBF, CBV, MTT, and TTP of a voxel
gave the probability P(CORE) that this voxel belonged
to the ischemic core (based on the REC training patient

group) and the probability P(HYPOPERFUSED) that
this voxel belonged to the total hypoperfused region
(based on the OCC training patient group). Calculating
these probabilities for all voxels resulted in a probability
map for the ischemic core and a probability map for the
total hypoperfused region.
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Training data set

The training data set was prepared the same way for both the
ROC curve analysis and the logistic regression analysis.
Because the ROC curve can show bias towards the majority
class in imbalanced data (in our case the class of healthy
voxels against the class of ischemic voxels) [17], the training
data set was limited to the collection of parenchymal voxels in
the ischemic hemisphere of slices with a segmentation of the
follow-up infarct region. To minimize the impact of high le-
verage voxels on logistic regression (in our case voxels with
normal perfusion in the segmented region on the ground truth
map and voxels with reduced perfusion outside this region)
[18], voxels with an outlier in one of the perfusion parameters
were removed. An outlier was defined as a data point more
than 1.5 times the interquartile range below the first quartile or
above the third quartile [19].

Determining volumes

A threshold-based volume followed from a summary map by
summing the voxel volumes of all voxels in a classified re-
gion. Before determining a volume, the summary map was
morphologically opened and then morphologically closed,
both with a spherical structure element of 5 mm in diameter,
to reduce noise artefacts.

A probabilistic volume follows from a probability map by
summing the probabilities, multiplied by the voxel volume, of
the left and right hemisphere separately and taking the abso-
lute difference between these two sums. Noise artefacts are
automatically accounted for in the comparison between the
two hemispheres.

Classification performance

The classification performance of both methods was assessed
on the level of voxels as well as on the level of patients. On the
level of voxels, a precision-recall curve was produced for each
perfusion parameter and for the probability. These curves
show the precision and the recall for different thresholds of a
perfusion parameter or of the probability. On the level of pa-
tients, the predicted threshold-based volume and the predicted
probabilistic volume were compared to the follow-up infarct
volume for each patient. Both assessments were carried out on
the total ischemic hemisphere.

A precision-recall curve was used to visualize classification
performance because of considerable class imbalance between
the ischemic and healthy tissue in the total ischemic hemi-
sphere [17]. In the context of classifying ischemic regions,
the precision is the percentage of the classified region that is
truly ischemic core or hypoperfused and the recall is the per-
centage of the true ischemic core or hypoperfused region that
is correctly classified.

The predicted volume was compared to the follow-up in-
farct volume because the final infarct volume is a principal
predictor of functional outcome [20–22]. The volume differ-
ence between the predicted volume and the ground truth vol-
ume was defined as the predicted volume minus the ground
truth volume. A boxplot of the volume difference was made
for each patient group (i.e., REC and OCC), each CTP pro-
cessing method (i.e., ISP, bSVD, and NLR), and each classi-
fication method (i.e., threshold-based and probabilistic). The
mean volume differences of the threshold-based classification
and probabilistic classification were compared with a paired t-
test for each patient group and for each CTP processing meth-
od. The level of significance was defined as a two-tailed p <
0.05.

Results

Threshold-based classification of ischemic regions

Based on the REC training patient group (to acquire the opti-
mal threshold for the ischemic core), the CBF was the param-
eter with the highest AUC of its ROC curve for each process-
ing method (Table 2). Based on the OCC training patient
group (to acquire the optimal threshold for the total
hypoperfused region), the MTT had the highest AUC of its
ROC curve for the ISP processing method and the TTP had
the highest AUC of its ROC curve for both in-house process-
ing methods (Table 2). For these parameters, the threshold
value was determined by maximizing the Youden index.
Figure 1 shows an example summary map.

Probabilistic classification of ischemic regions

Table 3 shows the coefficients from a logistic regression anal-
ysis to acquire probability maps. The positive model coeffi-
cients for the CBF and CBV reflect that the CBF and CBV
decrease in an ischemic region. The negative model coeffi-
cients for the MTT and TTP reflect that the MTT and TTP
increase in an ischemic region. For the CBF and CBV, the
coefficient from the REC patient group is higher than the
coefficient from the OCC patient group for each of the three
processing methods. For the MTT and TTP, the coefficient
from the OCC patient group is lower than the coefficient from
the REC patient group for each of the three processing
methods. This implies that the CBF and CBV were more
important for predicting the ischemic core, whereas the
MTT and TTP were more important for predicting the total
hypoperfused region. Figure 1 shows an example probability
map in case of successful recanalization, and in case of per-
sistent occlusion.
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Classification performance

The precision-recall curve of the probability generally lies
above the precision-recall curves of the perfusion parameters
(Fig. 2), indicating a better classification performance. For
ISP, low values of the CBF and CBV may have a higher
precision in predicting the total hypoperfused region (i.e., in
the OCC patient group) than the probability at the same (low)
level of recall. Clinically, however, these low values of the
CBF and CBV are not so relevant for predicting the total
hypoperfused region because of the low recall.

For ISP, the curve for the CBF was calculated for 1 to 40
mL/100g/min in steps of 2 mL/100g/min, the curve for the

CBV for 0.1 to 4.0 mL/100g in steps of 0.2 mL/100g, the
curve for the MTT for 25 to 5 s in steps of 1 s, the curve for
the TTP for 15 to 5 s in steps of 1 s, and the curve for the
probability for 95 to 5% in steps of 5%. For the in-house
processing methods, the curve for the CBF was calculated
for 1 to 20 mL/100g/min in steps of 1 mL/100g/min, the curve
for the CBV for 0.1 to 2.0 mL/100g in steps of 0.1 mL/100g,
the curve for theMTT for 25 to 5 s in steps of 1 s, the curve for
the TTP for 15 to 5 s in steps of 0.5 s, and the curve for the
probability for 95 to 5% in steps of 5%.

Threshold-based classification led to an overall overestima-
tion of the follow-up infarct volume within the test patient
groups. For the REC and OCC test patient groups combined,

Table 2 Thresholds following from a receiver operating characteristic
(ROC) curve analysis for three processing methods (ISP, bSVD, NLR)
based on a training patient group with successful recanalization (REC)

and a training patient group with persistent occlusion (OCC). CBF
cerebral blood flow, MTT mean transit time, TTP time to peak, and
AUC area under the curve

Method Training patient group Threshold AUC of ROC curve Youden’s index

ISP REC CBF < 14.0 mL/100g/min 0.68 0.29

OCC MTT > 11.0 s 0.75 0.44

bSVD REC CBF < 9.0 mL/100g/min 0.74 0.38

OCC TTP > 6.0 s 0.79 0.49

NLR REC CBF < 10.0 mL/100g/min 0.78 0.41

OCC TTP > 6.5 s 0.82 0.54

Fig. 1 The ground truth map (i.e., manual segmentation from a follow-up
non-contrast CT scan, in this case from the REC patient group), summary
map (obtained from thresholding according to Table 2, in this case for the
bSVD processing method), the probability map P(CORE) in case of
successful recanalization (REC; obtained from the logistic model in
Table 3, in this case for the bSVD processing method), the probability

map P(HYPOPERFUSED) in case of persistent occlusion (OCC;
obtained from the logistic model in Table 3, in this case for the bSVD
processing method), and the perfusion maps. The cerebral blood flow
(CBF) is in mL/100g/min, the cerebral blood volume (CBV) is in mL/
100g, the mean transit time (MTT) is in seconds, and the time to peak
(TTP) is in seconds
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the median volume difference [Q1, Q3] in mL was 29 [4, 56]/
23 [3, 53]/23 [4, 56] (ISP/bSVD/NLR) for threshold-based
classification and was 4 [−10, 21]/6 [−7, 18]/11 [0, 30] (ISP/
bSVD/NLR) for probabilistic classification. For each test pa-
tient group separately, the volume difference following the
probabilistic classification was lower than from the
threshold-based classification (Fig. 3).

Between threshold-based classification and probabilistic
classification, the mean ischemic core volume difference dif-
fered significantly for each processing method (p < 0.001).

The mean hypoperfused region volume difference differed
significantly for bSVD (p = 0.003) as well as for NLR (p =
0.002) but not for ISP (p = 0.24). A scatter plot of the volumes
and a Bland-Altman plot of the volumes can be found in the
Supplementary Material.

Discussion

Our results show that combining perfusion parameters in a
logistic model improved the precision-recall curve and that
probabilistic volumes were significantly more accurate than
threshold-based volumes in estimating the infarct volume on
follow-up non-contrast CT obtained within 3 days. This study
suggests that multivariable probability maps classify ischemic
stroke regions more accurately than CTP summary maps.

Fixed single parameter thresholds do not use the available
information to its full potential, because of their limitation to
incorporate multiple (perfusion) parameters as well as their
limitation to show the certainty of predicted ischemia; a voxel
is classified as either completely healthy or not, regardless of its
proximity to the defined threshold or the value of the other
perfusion parameters [4, 6, 23]. Moreover, the existence of a
universal pathophysiological cutoff value to determine the final
tissue state is questionable due to oversimplification [4, 5].

Table 3 Coefficients following from a logistic regression analysis for
three processing methods (ISP, bSVD, NLR) based on a training patient
group with successful recanalization (REC) and a training patient group
with persistent occlusion (OCC). The coefficient for the CBF (CCBF) is in
(mL/100g/min)−1, the coefficient for the CBV (CCBV) is in (mL/100g)−1,
the coefficient for the MTT (CMTT) is in (seconds)−1, and the coefficient
for the TTP (CTTP) is in (seconds)

−1

Method Patient group CINT CCBF CCBV CMTT CTTP

ISP REC 2.31 0.06 0.26 −0.09 −0.08
OCC 3.98 0.04 0.12 −0.21 −0.17

bSVD REC 2.58 0.13 0.57 −0.14 −0.32
OCC 3.09 0.08 0.30 −0.16 −0.38

NLR REC 3.45 0.14 0.66 −0.15 −0.39
OCC 4.16 0.09 0.28 −0.17 −0.48

Fig. 2 Precision-recall curves of the perfusion and probability maps for
three processingmethods (ISP, bSVD,NLR) following from a test patient
group with successful recanalization (REC) and a test patient group with

persistent occlusion (OCC). CBF stands for cerebral blood flow, CBV for
cerebral blood volume, MTT for mean transit time, TTP for time to peak,
and Prob for the probability (corresponding to the patient group)
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For a logistic model with four perfusion parameters, we
showed that the precision and recall of the probability map
are better than that of the individual perfusion maps. The
precision-recall curve of a probability map that follows from
a logistic model with a single perfusion parameter is identical
to the precision-recall curve of the perfusion parameter itself.
Therefore, the inclusion of multiple perfusion parameters in a
logistic model improved the model. However, we have not
compared the probabilistic volumes following from our mul-
tivariable logistic model with probabilistic volumes following
from single variable logistic models. Instead, we have tested
the multivariable logistic model against single variable
thresholding because in the current clinical setting, thresholds
are typically applied to single perfusion maps.

A strength of our study is that data was used from two
different multicenter trials with multiple CT vendors and
was divided into a training and test patient group, which gives
generalizable results. The data also included small and large
follow-up infarct volumes. Our analysis has strengths as well.
First, the validation with three CTP processing methods dem-
onstrated the translatability of our method of probabilistic
classification. Second, we compared the predicted volumes
of both methods next to a voxel-wise comparison—as repre-
sented by the precision-recall curve—because the final infarct
volume is characterized as pivotal in determining functional
outcome [20, 21, 24].

Several limitations to our study should be noted. First,
NCCT was used as follow-up imaging method since better
methods such as diffusion-weighted MR imaging was not
generally available for our data. For patients from the
MRCLEAN trial, the infarct was sometimes poorly visible
on the follow-up NCCT after 24 h. Additionally, the centers
in the MRCLEAN trial could adhere to their own acquisition
and injection protocol, which introduces variability to the CTP
results [25–27]. For the REC patient group, the ischemic core
may have grown between the time of admission imaging and
recanalization, especially for patients who received

intravenous thrombolytic therapy. As a result, the ground truth
maps for the REC patient group may cover substantial parts of
the penumbra at the time of imaging. The resulting probability
maps should therefore be interpreted as an estimation of the
ischemic core at the time of reperfusion [6]. Also, for all pa-
tients, the ground truth map could be influenced by brain shift
due to edema.

There are weaknesses to our analysis as well. First, class
imbalance, although minimized by the choice of our sample
space, can lead to low predictive accuracy for the class of
ischemic voxels in both classification methods [17]. Second,
regarding probabilistic classification in specific, the decision
to include all four perfusion maps may not be optimal for
logistic regression because of the correlation between the per-
fusion parameters. Third, we interpreted the probabilities as
volume fractions and estimated the ischemic core and total
hypoperfused region volumes by taking the difference be-
tween both hemispheres, but this approach may leave room
for improvement. Fourth, relative values of the perfusion pa-
rameters were not studied both because relative perfusion pa-
rameter maps could not be exported from ISP and because no
clear definition of relative values exists.

Conclusion

Multivariable probability maps outperform conventional CTP
summary maps in estimating the follow-up infarct lesion, as
observed on follow-up non-contrast CT obtained within 3
days. Clinically, an improved classification benefits the selec-
tion to treat acute ischemic stroke patients. Probability maps
may provide an improved and standardized classification of
ischemic regions in CTP stroke imaging.

Supplementary Information The online version contains supplementary
material available at https://doi.org/10.1007/s00330-022-08700-y.

Fig. 3 Boxplots of the volume difference between the ground truth
volume and the predicted volume (either threshold-based or
probabilistic) for three processing methods (ISP, bSVD, NLR)

following from a test patient group with successful recanalization
(REC) and a test patient group with persistent occlusion (OCC)
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