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In this issue of Blood Advances, Nead et al1 provides critical insights into the relationship between
cancer therapy and clonal hematopoiesis (CH). CH, also known as CHIP (CH of indeterminate
potential) in the setting of clonal expansion driven by acquired somatic mutations, is associated with
increased risk of myeloid malignancy, cardiovascular risks, and all-cause mortality.2-5 Although
increasing age is the strongest risk factor for CH, emerging evidence highlights the role of genotoxic
cancer therapies such as cytotoxic chemotherapy and radiation therapy as other key risk factors.6-8

Importantly, the initiation and progression of CH after therapy have been inadequately studied,
primarily because of the challenges of obtaining serial blood samples before and after treatment, and
the need for advanced sequencing technologies to detect small clone sizes.

Nead et al investigated the origin and growth of CH after cancer therapy and its impact on clinical
outcomes. The team analyzed 87 blood samples from 29 patients with esophageal or lung cancer.
Blood samples were collected at multiple time points: before the initiation of treatment, midway through
chemoradiation therapy, at the conclusion of treatment, and at subsequent follow-up visits. The median
time from the start of chemoradiation therapy to the first blood sample was 5 months and the last
analyzed blood sample was 17 months (range, 7-37 months). The study used error-corrected duplex
DNA sequencing to detect very small CH clone sizes with low variant allele fractions (VAFs) <2%,
sometimes termed “micro-CH.” This highly accurate sequencing method resulted in an average
sequencing depth of >15 000× and a median VAF of 0.4%. The baseline CH mutations were
consistent with prior studies, with DNMT3A, TET2, and ASXL1 as the most mutated genes. A signif-
icant finding from the study was that TP53 mutations doubled in number after chemoradiation therapy
(46 before treatment vs 95 after treatment). These changes were unique to TP53, as other commonly
mutated genes such as DNMT3A, TET2, and ASXL1 did not show significant changes in incidence or
VAF before and after chemoradiation therapy. Additionally, 38% of patients who carried TP53 muta-
tions had an increase in CH clone size. Most importantly, individuals who had more TP53 mutations
after therapy were correlated with shorter overall survival (hazard ratio, 7.07; P = .014).

The strength of the study is the prospective and longitudinal collection of blood samples from patients
at multiple stages of cancer treatment. Previous studies on CH in patients with solid tumors have been
hampered by a lack of serial blood samples obtained before and after cancer therapy. An interesting
and reassuring finding from the longitudinal aspect of the study is that few CH emerged after che-
moradiation therapy, at least within the time frame that was evaluated. The overall number of CH
mutations was stable in 27 of the 29 genes assayed. There was no major trend in CH VAF before and
after therapy, and no patient developed therapy-related myeloid malignancy. These findings are
corroborated by a longitudinal study of CH in 380 patients with breast cancer that found a few CH
mutations that emerged after chemotherapy treatment.9 The relatively low risk of de novo CH mutations
suggests that cancer therapy, compared with age, may not be a strong modifier of CH risk in the short-
to-intermediate term (6-18 months) after cancer therapy. We do not know how soon after cancer
therapy CH mutations develop. To fully assess the risk of therapy-induced CH, we will need to examine
blood samples over a longer follow-up period.

This study reaffirmed the role of chemoradiation in selecting mutations in the DNA damage response
(DDR) pathway genes. In addition to TP53, the authors found that RAD21 showed an increase in
incidence after chemoradiation therapy. The predilection for CH mutations involved in the DDR pathway
is a hallmark of cancer therapy–associated CH. Coombs et al reported a higher prevalence of PPM1D
and TP53 mutations after chemotherapy and their association with shorter patient survival.7 Bolton et al
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found that prior cancer therapy significantly increased the likeli-
hood of carrying CH mutations in DDR genes such as TP53,
PPM1D, and CHEK2.6 The effect is most pronounced after radi-
ation therapy, platinum chemotherapy, and topoisomerase II inhib-
itors. PPM1D and CHEK2 were not assessed in the limited CH
panel used by Nead et al, a limitation that should be carefully
considered in future studies.

The findings of the study have significant clinical implications. At
present, TP53 CH mutations are frequently detected as an inci-
dental finding in routine clinical care through liquid biopsies or
tumor/normal sequencing. The association between increased
TP53 mutations and shorter overall survival highlights the potential
role of incorporating CH monitoring into risk stratification for
patients with cancer undergoing therapy. Monitoring CH mutations
could provide early indicators of adverse prognosis and tailor
treatment strategies.

The study also needs to be interpreted with caution and replicated
in other settings, including larger prospective clinical trials. Notably,
the study did not have genomic data from primary tumors; there-
fore, we cannot exclude the possibility that TP53 mutations were
derived from circulating tumor DNA. In addition, the exact cause of
death in patients was not examined; therefore, the etiology by
which acquired TP53 mutations contribute to worse survival needs
to be further investigated.

In conclusion, the study by Nead et al provides compelling evi-
dence of the impact of cancer therapy on CH mutations, particu-
larly TP53, and their association with adverse clinical outcomes.
The findings underscore the importance of monitoring CH muta-
tions in patients with cancer undergoing therapy and highlight the
potential of TP53 as a critical biomarker for predicting prognosis
and guiding treatment strategies.
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