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An increasing number of recent studies have focused on the impact of particulate matter on human health.

As a model for atmospheric particulate inhalation, we investigated the effects of inhaled carbon black

nanoparticles (CBNP) on mice with bleomycin-induced pulmonary fibrosis. The CNBPs were generated

by a novel aerosolization process, and the mice were exposed to the aerosol for 4 hours. We found that

CBNP inhalation exacerbated lung inflammation, as evidenced by histopathology analysis and by the

expression levels of interleukin-6 protein, fibronectin, and interferon-γ mRNAs in lung tissues. Notably,

fibronectin mRNA expression showed a statistically significant increase in expression after CBNP expo-

sure. These data suggest that the concentration of CBNPs delivered (calculated to be 12.5 μg/m3) can

aggravate lung inflammation in mice. Our results also suggest that the inhalation of ultrafine particles like

PM 2.5 is an impactful environmental risk factor for humans, particularly in susceptible populations with

predisposing lung conditions.
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INTRODUCTION

Recently, concerns about the inhalation risks of ultrafine

particles have increased, given their wider chemical, elec-

tronic, and medicinal applications as well as the continued

development of new nanotechnologies. Concurrently, the

amount of ultrafine particulate matter (PM 2.5) in the atmo-

sphere is gradually rising, with the general population being

exposed more and more (1,2). Ultrafine particles are partic-

ularly concerning given their small size, which generally

equates to a larger effective surface area and higher toxicity

(1,3). Inhaled nanoparticles have been linked to a number of

biologic pathologies, including inflammation, fibrosis, geno-

toxicity, and carcinogenicity (4-6). Titanium dioxide and

carbon black are two types of ultrafine particles that have

been commonly used to evaluate the risk of nanoparticle

inhalation (7).

Carbon black is a type of ultrafine carbon particle, which

is a major component of the soot generated by incomplete

fuel combustion (5,8). It is also a core component of many

ultrafine pollutants like diesel exhaust (9). Carbon black is

used commercially as a black ink pigment, a paint, plastic,

and as a reinforcing agent for tires and other rubber goods

(10). Unfortunately, carbon black emissions into the atmo-

sphere have continued to rise, with current estimates of car-

bon black emissions in India and China reaching two to

three times higher than previously thought. Consequently,

the evaluation of the human health risks of carbon black

emissions is becoming more critical.

One method for evaluating the toxicity of inhaled pollut-

ants is a mouse model, in which pulmonary fibrosis is

induced by the glycopeptide antibiotic bleomycin (BLM).

In humans, BLM can induce severe respiratory injury,
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including lung fibrosis, while in a number of animal spe-

cies, it causes alveolar injury that triggers an alveolar repair

response (11). The model has been utilized to evaluate the

pathology of fibrosis and lung injury, also to test the effi-

cacy of potential treatments (12,13). In one study, this

model was used to investigate idiopathic pulmonary fibro-

sis (IPF), a serious, chronic, and progressive type of pulmo-

nary fibrosis for which the survival rate is only 20~30%

within 5 years of diagnosis. The average survival rate of

IPF is only 3 years from diagnosis if not treated properly

(13-15). During the terminal stage of IPF, the lungs essen-

tial cease to function due to severe fibroblastic proliferation

and accumulation of extracellular matrix (13).

Herein, we utilized the BLM-induced pulmonary fibrosis

model to evaluate the complications of respiratory conditions

caused by carbon black nanoparticles (CBNPs). CBNPs are

amorphous, spherical particles of carbon black that are poorly

water-soluble. CBNPs are thought to aggravate several respira-

tory diseases in humans, including lung inflammation and

fibrosis (5,14,16). Consequently, the mouse pulmonary fibro-

sis model studied herein is an excellent model for evaluating

the possible human health effects of ultrafine particle pollut-

ants, particularly in populations that suffer from lung disease.

MATERIALS AND METHODS

Animal protocols. All experiments were approved by

the Institutional Animal Care and Use Committee and were

conducted in accordance with international guidelines

established by the Association for Assessment and Accredi-

tation of Laboratory Animal Care. Male 7-week-old C57BL/6

mice were purchased from Orient Bio Inc. (Seongnam,

Korea) and were housed in a pathogen-free environment

maintained at 19~26oC and 50 ± 10% relative humidity

with a 12 hr light-dark cycle. The mice were provided with

rodent chow (PMI Lab Diet, USA) and UV-irradiated tap

water ad libitum and were acclimatized for at least one

week prior to beginning the study.

Generation of carbon black nanoparticles. Carbon

black nanoparticles (CBNPs) were generated by an electric

arc discharge system using a carbon generator (GFG-1000,

Palas GmbH, Germany). The carbon generator utilized an

electrical discharge between two graphite electrodes to gen-

erate ultrafine carbon black particles. To minimize carbon

oxidation during the generation process, an argon stream

was focused through a narrow slit into the space between

the electrodes. The carbon evaporated by the electrical spark

is then transported by the argon flow into a condenser that

yields primarily ultrafine particles that can coagulate to

larger agglomerates, depending on their concentration. The

conditions used herein to generate generation carbon black

nanoparticles included a flame frequency of 100 s−1 with

argon gas and dried clean airflow at 1.0 bar.

Monitoring and characterization of carbon black
nanoparticles. The size distribution of the CBNPs was

measured in real-time using a scanning nanoparticle spec-

trometer with a detection range of 0~107 particles/cm3

(SNPS, HCT). The total CBNP concentration (number of

particles per cm3) and size distribution (dN/dLogDp) ranged

from 7.9 to 300 nm throughout the time during which mice

were exposed. The mass concentration of CBNPs was also

repeatedly measured using a gravitational method. Specifi-

cally, CBNPs were collected onto a microglass fiber filter

coated with fluorocarbon (25 mm ø, Pallflex) for 2 hrs with

a 1 L/min flow rate using a sampling pump (XR5000, SKC).

Once collected, the mass concentration of CBNPs (μg/m3)

was determined by weighing. Before and after weighing,

each filter was equilibrated in a desiccator for at least 24 hrs

at a stabilized temperature (22~23oC) and relative humidity

(45~50%).

Experimental design. BLM was purchased from Nip-

pon Kayaku (Tokyo, Japan). Eight-week-old mice were

divided into 3 groups of 6 mice as follows: vehicle control

group (saline + clean air), BLM-treated control group (BLM+

clean air), and BLM-treated and CBNP-exposed group. On

day 1, all mice were anesthetized with isoflurane and

administered a 50-ml intratracheal dose of saline (group 1)

or BLM 1 mg/kg (groups 2 and 3). Beginning on day 5,

mice were exposed to either clean air or CBNPs for 4 hrs.

On day 7, mice were sacrificed, and lung samples and bron-

chioalveolar lavage (BAL) fluid were collected. Through-

out the study, clinical symptoms and mortality were recorded

daily. Body weights were recorded at the time of purchase,

on the day of grouping, before intratracheal instillation, before

inhalation exposure, and before necropsy.

Collection and total cell count of BAL fluid. To col-

lect BAL fluid, mice were anesthetized with isoflurane, the

trachea was cannulated, and the lung lavage was obtained

by washing 3 times with 1 ml of sterile 0.9% saline. Sam-

ples were centrifuged at 3,000 rpm for 10 min, and the pel-

lets were resuspended in sterile 0.9% saline, after which the

total cell count was determined with an automated cell via-

bility analyzer (Vi-CELLTM, Beckman Coulter). The resus-

pended pellets were then centrifuged using a Shandon

Cytospin 4 (Thermo, USA). Differential cell counts were

evaluated at a magnification of ×1000 by light microscopy

(BX51, Olympus, Tokyo, Japan) by counting 300 cells

stained with Wright-Giemsa.

Measurement of cytokine level in BAL fluid. The

presence of inflammatory mediators in the BAL fluid was

analyzed by enzyme-linked immunosorbent assay (ELISA).

The levels of interleukin-6 (IL-6) were measured using

commercially available ELISA kits (R&D Systems, USA)

according to the manufacturer’s protocol.
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Isolation of RNA. A portion of the lung samples was

homogenized in Trizol reagent (Invitrogen, Carlsbad, CA,

USA), and the isolated total RNA was repurified using an

RNeasy mini kit (Qiagen, Valencia, CA, USA) according to

the manufacturer’s protocol. Total RNA was quantified

using a NanoDrop spectrophotometer (NanoDrop Technol-

ogies, Montchanin, DE, USA), and the quality of RNA was

evaluated using a 2100 Bioanalyzer (Agilent Technologies,

Palo Alto, CA, USA) prior to DNA chip analyses.

Quantitative real-time reverse transcription-PCR.
Gene transcripts were detected and quantified using SYBR

Green (QuantiTect SYBR Green PCR Master Mix; Qiagen)

according to the manufacturer’s instructions on a Rotor-Gene

6000 real-time rotary analyzer (Corbett Research, Sydney,

Australia). Primers were designed using the Primer3 soft-

ware (http://frodo.wi.mit.edu/). A melting curve analysis

was performed on all amplified products to ensure the spec-

ificity and integrity of the PCR products. The transcript

level of the beta-actin gene was used as an internal stan-

dard, and fold changes were calculated according to the

2−ΔΔCT method (9).

Histological examination. After sacrifice, mouse lungs

were inflated with 10% neutral buffered formalin, after

which the trachea was tied off. The lungs were then har-

vested, fixed with 10% neutral buffered formalin for 1

week, and embedded in paraffin. Sections 3~4-μm thick
were cut and stained with hematoxylin and eosin (H&E) for

histological examination and with Masson’s trichrome for

examination of fibrotic changes in adjacent sections. The

stained sections of each tissue specimen were evaluated at a

magnification of ×100 by light microscopy (BX51, Olym-

pus, Tokyo, Japan). For inflammatory cell count, the tissue

specimen (n = 3 per group) were evaluated for macrophage,

neutrophil, eosinophil, lymphocyte at a magnification of

×400 by light microscopy (BX51, Olympus, Tokyo, Japan).

Statistics. Statistical analyses were performed using

GraphPad Prism 3.0 (San Diego, California, USA). All results

are expressed as a mean ± standard error (SE). An analysis of

variance (ANOVA) test was used to evaluate the significance

of any differences between test groups. Dunnett’s multiple

comparison test was used to compare the control group (VC)

with experimental groups, and Bonferroni’s multiple compari-

son test was used to compare the BLM-treated, CBNP-

exposed group (BLM + CBNPs) to the BLM-treated control

group (BC). The level of significance was set at p < 0.05.

RESULTS

Carbon nanoparticle generation and particle char-
acterization. The geometric mean diameter (GMD), geo-

metric standard deviation (GSD), and total number concen-

tration of the CBNPs were measured. dN/dLog(Dp) is particle

concentration present according to aerosol diameter (log).

Particle distribution in Fig. 1A showed that CBNPs gener-

ated is below 100 nm following normal distribution. The

mass concentration measured by filter collection was 12.5

mg/m3. The CBNPs was stably generated overtime with

total concentration, GMD, and GSD were 1.25 × 105 parti-

cles/cm3, 53 nm, and 1.57 (Fig. 1B and Fig. 1C).

Fig. 1. (A) Size distribution of carbon black nanoparticles, log-
linear scale. Variation in total number concentration, GMD, GSD
of carbon black nanoparticles with time; (B) total number con-
centration, (C) geometric mean diameter, and (D) geometric
standard deviation.
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Body weight. Animal body weight was recorded. BLM

instilled mice showed decrease in body weight gain com-

pared to control group (Fig. 2). After inhalation of clean air

in control group and BLM control group, also carbon black

inhalation in BLM instilled mice, all groups showed body

weight decrease.

Histopathological determination of lung fibrosis symp-
toms after treatment. The impact of CBNPs on BLM-

induced lung fibrosis was assessed by histopathological evalu-

ation (Fig. 3 and Table 1). Significant inflammatory cell

infiltration and epithelial cell hyperplasia were observed in

lung samples from both the BLM control group (BC) and

Fig. 2. Body weight changes by treatment group.

Fig. 3. Histopathologic changes in lung sections from mice treated with BLM and carbon nanoparticles. All samples were stained
with H&E and are shown at ×100 magnification. (A) VC (saline + clean air), (B) BC (BLM + clean air), (C) BLM exposed (BLM + CBNPs).
The black arrow highlights inflammatory cell infiltration, and the blue arrow highlights epithelial cell hyperplasia.

Table 1. Results of histopathologic examinations of lung sections

Group
Observation

Animal I II III IV V

Control group (VC)
Inflammatory cell infiltration - - - - -

Epithelial cell hyperplasia - - - - -

BLM control group (BC)
Inflammatory cell infiltration 1 1 1 2 1

Epithelial cell hyperplasia 1 1 1 2 1

BLM exposed group (BLM+CBNPs)
Inflammatory cell infiltration 2 3 2 2 3

Epithelial cell hyperplasia 1 2 2 2 3

−: examined but not observed, 1: minimal, 2: mild, 3: moderate.

the BLM CBNP-exposed group (BLM+CBNPs). Significant

infiltration of neutrophil, macrophage, and mononuclear

cells was observed around the bronchiole and in perivenu-

lar and alveolar spaces. Overall, the extent of inflammation

and hyperplasia was minimal to moderate, but the extent of

the symptoms was significantly higher in the BLM exposed

group compared to the BLM control group.

Determination of total cell counts from BAL fluid and
differential cell count from histopathology. The total

cell counts in BAL samples were 0.262 × 106 cells/ml,

0.954 × 106 cells/ml, and 0.977 × 106 cells/ml for the con-

trol group, the BLM control, and the BLM exposed group,

respectively (Fig. 4). Thus, BLM treatment and with or with-

out CBNP exposure significantly increased the BAL cell count

compared to the control group. Inflammatory cell count is

showed in Fig. 6. Macrophage and neutrophil number were

significantly increased after CBNP exposure in BLM model,

while lymphocyte and eosinophil number were not signifi-

cantly different compared to BLM control group.

Measurement of protein and mRNA expression levels
in the lungs. To evaluate whether CBNP exposure induced

an inflammatory response, we evaluated proinflammatory
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cytokine levels in lung tissue homogenates. We found that

the expression of IL-6 was significantly increased in the

BLM control and BLM exposed groups compared to the

control group (Fig. 4). There did not appear to be a signifi-

cant difference in cytokine expression between the BLM

control and BLM exposed groups (Fig. 5).

The expression of mRNAs coding for genes related to

fibrosis and inflammation was also assessed in lung homo-

genates. We found that the level of fibronectin (FN) tran-

scripts was significantly increased in the BLM control and

in the BLM exposed group compared to the control (VC)

group. Importantly, FN expression was significantly higher

in the lungs from BLM-treated, CBNP-exposed group com-

pared to the BLM control group (Fig. 6A). We also found

that the expression of interferon-γ (IFN-γ) transcripts was
significantly reduced in animals from the BLM control

group and the BLM exposed group compared to the control

group (Fig. 6B).

DISCUSSION

Particulate matter in the air is a mixture of components

like nitrates, sulfates, organic chemicals, metals, soil, and

dust particles. Carbon makes up roughly 60% of particulate

matter in the air, mainly in the form of organic carbon spe-

cies and elemental carbon (17). Elemental carbon, some-

times referred to as black carbon or carbon black, is a

primary pollutant formed in the combustion process (18). In

Table 2. Total cell counts in BAL fluid

Group (Total cells/ml) × 106

Control group (VC) 0.262 ± 0.059

BLM control group (BC) 0.954 ± 0.187

BLM exposed group (BLM + CBNPs) 0.977 ± 0.075

Fig. 4. IL-6 levels in lung tissue. The cytokine levels were ana-
lyzed by ELISA and expressed as pg/lung homogenate. Values
are the mean ± SE, n = 5. * p < 0.05 and ** p < 0.01, compared to
the VC group.

Fig. 5. Expression levels of (A) fibronectin and (B) IFN-γ mRNAs
in lung homogenates. Values are the mean ± SE, n = 6. ** p <
0.01 and *** p < 0.001, compared to the VC group. # p < 0.05,
compared to BC group.

Fig. 6. Total (A) and differential (B) inflammatory cell count of
macrophage, neutrophil, lymphocyte, and eosinophil. Values are
the mean ± SE, n = 3. * p < 0.05 and *** p < 0.001 compared to the
VC group. # p < 0.001 and ## p < 0.01, compared to BC group.
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general, the surface area of inhaled particulates is more

determinative of their toxicity than their size, and smaller

particles tend to have a larger relative surface area. Accord-

ingly, it is known that nanoparticles can penetrate deep into

the respiratory tract during breathing and thereby cause sig-

nificant respiratory pathologies.

As a model for understanding the inhalation toxicity of

ultrafine particles, we evaluated the effect of aerosolized

carbon black nanoparticles (CBNPs) in a BLM-induced

pulmonary fibrosis model in mice. Thus far, the pulmonary

effects of nanoparticles have primarily been investigated by

intratracheal administration. Herein, we utilized a novel

aerosolization method to deliver nanoparticles via inhala-

tion exposure through the nose, which more closely simu-

lates human nanoparticle exposure. BLM induced model in

this study is an established model from our previous study

which showed pulmonary inflammatory response with 1 mg/

kg of bleomycin as an optimum dose (19).

BLM instilled mice showed decrease in body weight

compared to control group. All groups also showed body

weight decrease after inhalation of clean air or CBNP,

which showed no test material-related change in this result.

This body weight decrease is related to holding-induced

stress. Changes in body weight after stress are well docu-

mented (20), restraint stress also have shown food intake

decrease and body weight gain suppression (21). IL-6 has

been shown to modulate chemokine expression, activate

neutrophil, and stimulate B cell after bleomycin challenge

(22). We observed increasing trend in IL-6 after CBNP

exposure in BLM model compared to BLM control group.

This increase of IL-6 level showed that CBNP aggravate

inflammation occurred in BLM model. Fibronectin expres-

sion after CBNP exposure was also significantly elevated

compared to BLM control group. Fibronectin is a pro-

fibrotic marker (23), which accumulates in alveolar tissue

during early inflammatory phase of the BLM-induced lung

injury (24). Furthermore, fibronectin has been shown to be

increased in the presence of TGF-β, the key factor involved
in BLM-induced pulmonary fibrosis (25,26). In BLM model,

fibrosis is occurred after repair of severe inflammation.

With the increase of fibronectin observed after CBNP expo-

sure in BLM model, we estimates severe inflammation has

happened. IFN-γ has been shown as an inhibitory modula-
tor that limits fibroblasts proliferation, differentiation and

collagen synthesis by inhibiting TGF-β expression and activ-
ity (27). Expression of IFN-γ, a Th1 cytokine, has been
observed to be decreased in bleomycin-induced pulmonary

fibrosis in mice (28). This was also observed in cystic fibro-

sis (CF) patients with deficiency in IFN-γ mRNA expres-
sion (29). We also observed decreasing trend of IFN-γ after
CBNP exposure in BLM model compared to BLM control

group, which support our data that CBNP exposure aggravate

inflammation leading to fibrosis occurred in BLM model.

The number of total cells in BAL fluid tended to increase

after CBNP exposure in BLM model, but no significance.

We also observed increased of inflammation and hyperpla-

sia by CBNP exposure, supported by elevation of macroph-

age and neutrophil number. Macrophage and neutrophil

chemotactic activity has been shown to be significantly ele-

vated in animal post-bleomycin injury (30).

The literature data describing the effects of carbon black

inhalation exposure in animals is variable. Niwa et al. eval-

uated the effects of 4 weeks of carbon black exposure in

rats and found that the exposure increased the expression of

monocytes chemotactic protein-1, IL-6, and C-reactive pro-

tein, which are indicative of inflammation (31). They did not,

however, observe alveolar inflammation or fibrosis. Based

on that finding, we speculate the inflammatory response to

carbon black in the lungs in their study was relatively mild.

Adamson and Prieditis reported that CBNPs administered 4

days after BLM instillation remained in the lungs for an

extended period of time (32). Even so, the BLM-induced

fibrosis was not worsened by CBNP exposure. Still another

study reported that intratracheal instillation of BLM caused

inflammation and fibrosis, but co-administration of carbon

did not worsen inflammation or fibrosis (12). In a contrasting

study, carbon black was shown to be an accelerator and/or

cofactor of BLM in respiratory disease or in abnormal lungs

(12,32). Specifically, Inoue et al. showed that 56 nm CBNPs

aggravated porcine pancreatic elastase-induced pulmonary

emphysema in mice, with evidence of increased IL-6 and

interferon-γ expression and clear histopathological symptoms.
This inconsistency of the literature with respect to whether

CBNPs exacerbate lung disease may reflect differences

among animal strains and/or species, pathological condi-

tions, or the methods of CBNP exposure (route, dose, tim-

ing, duration, and/or end-point) (33,34). The fact that we

did not observe a significant pathologic change after coad-

ministration of bleomycin and CBNPs may be due to the

low CBNP concentration or short exposure time. It will

therefore be important for future studies to determine

whether increased concentrations or exposure times leads to

more marked pathological differences.

Nanoparticle exposure via inhalation is known to be an

important environmental risk factor for multiple lung

inflammatory diseases like COPD, asthma, and allergy. It is

useful to consider the human equivalence of the exposures

delivered in our study. An estimate of the total dose deliv-

ered by inhalation can be derived from the following for-

mula (35):

Delivered dose 

Based on this formula, we can extrapolate that the 4-hr

mg

kg
--------
⎝ ⎠
⎛ ⎞

= 

Respiratory Minute Volume L/min( ) duration min( )×
× mass concentration mg/L( )

Body weight kg( )
------------------------------------------------------------------------------------------------------------------------------------
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CBNP dose delivered to mice (12.5 μg/m3) is roughly equiva-

lent to ~130 μg/m3 exposure of the same duration in humans.

Atmospheric carbon black emissions are quantified as a

quantity of particles of ≤ 2.5 microns (PM 2.5). There have

been reported incidents wherein PM 2.5 concentrations

reached 328 μg/m3 (36). A recent study in Korea also

revealed that the average PM 2.5 level is 27.2 μg/m
3 (37),

and a broadcast of Korea reported that PM 2.5 levels were

above 100 μg/m3 in early 2014. In addition, a well-designed

multi-city study reported that the increase of daily mortal-

ity due to PM 2.5 was 3 times greater than that due to PM

10 (38). That study also reported a trend of increased health

problems even when PM 2.5 levels were below 15 μg/m3,

although the difference was not statistically significant.

Thus, it is now thought that even lower PM 2.5 exposure

levels can be problematic and merit further evaluation.

Herein, a brief and acute exposure study identified some

signals that CBNPs aggravate lung inflammation in BLM-

induced pulmonary fibrosis in mice. The results suggest that

ultrafine particle could worsen lung inflammation in humans,

particularly in susceptible persons with chronic lung dis-

eases including fibrosis. It is likely that the effect would be

even more significant when the particle exposure is chronic.

These results underscore the need for more thorough and

continued evaluation of the impact of ultrafine particle

exposure on respiratory health.
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