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Compared with vitamin K antagonists, the direct oral anticoagulants (DOACs) are simpler 
to administer and are associated with less intracranial bleeding. Nonetheless, even with 
the DOACs, bleeding still occurs and many patients with atrial fibrillation fail to receive 
anticoagulant thromboprophylaxis because of the fear of bleeding. Therefore, there is 
an urgent need for safer anticoagulants. Recent investigations into the biochemistry of 
hemostasis and thrombosis have identified new targets for development of novel anti-
coagulants. Using data from complementary sources, including epidemiological studies 
and investigations in various animal models, the contact pathway has emerged as a 
potential mediator of thrombosis that plays a minor part in hemostasis. Consequently, 
factor (F) XII of the contact system and FXI in the intrinsic pathway have been identified 
as potentially safer targets of anticoagulation than thrombin or FXa. However, further 
studies are needed to identify which is the better target for the appropriate indication. 
This review highlights the evidence for focusing on FXI and FXII and examines the novel 
approaches directed at these new targets. These emerging strategies should address 
current unmet medical needs and provide new avenues by which to improve anticoagu-
lant therapy by reducing the risk of bleeding.
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iNTRODUCTiON

The goal of anticoagulation therapy is to attenuate thrombosis without perturbing hemostasis. 
Although the direct oral anticoagulants (DOACs) come closer to this goal than vitamin K antago-
nists, bleeding is not eliminated with the DOACs. Thus, even with the DOACs, the annual rate of 
major bleeding in patients with atrial fibrillation is 2–3%, while the annual rate of intracranial bleed-
ing is 0.3–0.5% (1). Consequently, because of the fear of bleeding, over one-third of patients with 
atrial fibrillation fail to receive any anticoagulant prophylaxis and among those given anticoagulation 
therapy, up to 50% are inappropriately treated with lower doses of the DOACs (2, 3). Therefore, there 
remains a need for safer anticoagulants.

The DOACs inhibit factor (F) Xa or thrombin, downstream enzymes in the coagulation cascade. 
Interest in FXII and FXI, which are upstream to FXa and thrombin, stems from basic and epidemio-
logical studies that suggest that these factors are important in thrombosis (4–6). This makes them 
promising targets for development of safer anticoagulants because FXII and FXI have little or no role 
in hemostasis. This paper describes the rationale and approaches to targeting FXII and FXI.
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FiGURe 1 | Overview of the coagulation system. Coagulation is initiated by the extrinsic pathway when tissue factor (TF) exposed at sites of vascular injury 
binds and activates factor (F) VII. The activated FVII (FVIIa)–TF complex activates FX in the common pathway to generate prothrombinase, which generates 
thrombin. Additional activation of coagulation occurs when thrombin-activated platelets release polyphosphate (polyP) and activated neutrophils extrude DNA and 
histones to form neutrophil extracellular traps (NETs). NETs and polyP activate the contact pathway, where FXII and prekallikrein (PK) reciprocally activate each other 
to generate FXIIa and kallikrein, respectively. The resultant FXIIa activates FXI to FXIa which leads to additional thrombin generation via the common pathway. PolyP 
amplifies this pathway by promoting thrombin-mediated activation of FXI.

2

Weitz and Fredenburgh FXI- and FXII-Directed Anticoagulants

Frontiers in Medicine | www.frontiersin.org February 2017 | Volume 4 | Article 19

ROLe OF THe CONTACT SYSTeM  
iN THROMBOSiS

Although it is dispensable for hemostasis, the contact system is 
essential for thrombus stabilization and growth because thrombi 
formed at sites of arterial or venous injury in mice deficient 
in FXII or FXI are small, unstable, and prone to embolization 
(7, 8). The contact system is composed of two zymogens, FXII 
and prekallikrein (PK), and a cofactor, high molecular weight 
kininogen (HK) (Figure 1) (6, 9). The system is initiated upon 
exposure of polyanionic compounds originating from injured 
cells or pathogens. These compounds bind FXII and HK, com-
mencing a reciprocal activation system. Thus, FXII is activated to 
FXIIa through an autocatalytic reaction involving Zn2+, whereas 
HK bridges FXI and PK together to bring them into proximity 
of FXII. In this cyclic system, FXIIa activates HK-bound PK, 
and the resultant kallikrein activates additional FXII. FXIIa also 
activates FXI in a HK-dependent fashion, and the subsequent 
FXIa then feeds into the intrinsic pathway by activating FIX, 
leading to thrombin generation. A more recent discovery 
provided a missing link in regulation of the coagulation. Thus, 
Gailani and Broze observed that thrombin activates FXI in a 
positive feedback reaction (10). Although this appeared to obvi-
ate the role of the contact system by providing an alternative 
means of activating FXI, it nevertheless identified new levels of 
regulation of coagulation. Therefore, because the pathways for 
its activation are bidirectional, FXI is important for maximizing 
thrombin generation, thereby revealing an important role for 
the contact system.

Another reason why the contact system was overlooked 
for decades was that the only known activators of the contact 
system were artificial surfaces, such as kaolin and ellagic acid, 
and catheters or extracorporeal circuits, such as those used for 
cardiopulmonary bypass or hemodialysis (11, 12). Although 

physiological activators, including heparin, collagen, and dena-
tured proteins, were known, their involvement in thrombotic 
disease was inconclusive (13). Renewed interest in the contact 
system occurred with the recent demonstration that naturally 
occurring polyphosphates serve as potent activators (14, 15). 
These polyphosphates include DNA and RNA released from 
injured or dying cells, inorganic polyphosphates released from 
activated platelets, and intact or degraded neutrophil extracel-
lular traps (16, 17). Therefore, exposure of these activators at sites 
of vascular injury provides a stimulus for coagulation distinct 
from tissue factor (TF), identifying a potential role for the contact 
system in thrombosis, but relinquishing involvement in routine 
maintenance of blood fluidity or hemostasis (5, 18).

Coincident with description of novel physiological activators, 
population studies also pointed to involvement of the contact 
system in thrombosis. Epidemiological data support the role for 
FXI in thrombosis more than those for FXII. Thus, patients with 
congenital FXI deficiency are protected from venous thrombo-
embolism (VTE) and ischemic stroke, subjects with higher levels 
of FXI are at greater risk for VTE and ischemic stroke than those 
with lower levels, and the levels of FXI correlate with stroke risk 
in women taking oral contraceptives (19, 20). The role of FXI in 
myocardial infarction is less clear; some studies suggest that it 
is important while others do not (21, 22). This discrepancy may 
reflect differences in study design or the contribution of FXI to 
thrombosis in the coronary circulation may be distinct from that 
in other vascular beds.

By contrast, epidemiological evidence for a role of FXII in 
thrombosis is not strong, but data are limited because FXII defi-
ciency is rare (20). Patients with congenital FXII deficiency do not 
appear to be at lower risk for VTE, ischemic stroke, or myocardial 
infarction, and no differences in VTE are noted across the range 
of FXII levels (21). In fact, some studies suggest that such patients 
are at higher risk for thrombotic events. Finally, patients with 
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TABLe 1 | Relative advantages and disadvantages of factor (F) Xii or FXi 
as targets for new anticoagulants.

FXii FXi

Epidemiological data Weak Strong

Risk of bleeding None Low

Level of evidence for role in 
thrombosis

Preclinical Phase 
2

Potential for bypassing inhibition Thrombin-mediated back activation 
of FXI could bypass FXII inhibition

None

Potential for off-target effects May modulate inflammation by 
inhibiting bradykinin generation

Low
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hereditary angioedema as a consequence of impaired regulation 
of FXIIa and kallikrein due to reduced levels of C1 inhibitor or 
gain-of-function mutations in FXII are not prone to thrombosis. 
Therefore, there is little evidence of a link between FXII and 
thrombosis in humans.

Animal models provide a different emphasis on the roles of 
the contact factors since FXII-deficient mice are protected from 
ischemic stroke and form smaller thrombi after venous flow 
restriction (23). Likewise, in a rabbit model, FXII knockdown with 
an antisense oligonucleotide (ASO) reduced catheter thrombosis 
to a similar extent as FXI knockdown (24). Furthermore, mice 
deficient in FXII or FXI exhibit equally attenuated thrombosis 
at sites of arterial or venous injury, and the thrombi formed in 
such mice are unstable under flow conditions and undergo rapid 
fragmentation (7, 8). Even deficiency of PK or HK confers resist-
ance to thrombosis in mouse injury models (21).

The results in non-human primates for FXI are similar. Thus, 
FXI knockdown with an ASO reduced thrombosis in a baboon 
arterio-venous shunt model in a concentration-dependent 
manner once FXI levels were below 50% of normal (25). The 
results for FXII are different because antibodies against FXI 
appear to attenuate platelet and fibrin deposition in the same 
model more than those directed against FXII (26, 27). Therefore, 
FXI appears to be a more important driver of thrombosis than 
FXII in non-human primate models, possibly revealing differ-
ences in regulation of FXI activation in primates versus lower 
mammals.

TARGeTiNG THe CONTACT PATHwAY

Experimental and epidemiological data suggest that FXI and FXII 
are the preferred targets in the contact pathway for development 
of novel anticoagulants. Targeting FXI may be associated with 
bleeding, particularly mucosal bleeding, which can occur in 
patients with severe congenital FXI deficiency (28). Conversely, 
because the bleeding diathesis with FXI deficiency is usually mild 
and variable even with the same levels of FXI, it is possible that 
unidentified genetic or biological factors may modulate bleeding. 
If so, it may be possible to compensate for them.

Factor XII is attractive as a target because of safety. Because it 
has no role in hemostasis and deficiency is asymptomatic, strate-
gies targeting FXII will not induce bleeding (Table 1). A potential 
limitation of FXII as a target is that its role in thrombosis is less 

certain than that of FXI, based on epidemiological data (29–35). 
In addition, targeting FXII may be of limited benefit when throm-
bosis is initiated by TF because thrombin generated via extrinsic 
tenase has the potential to activate FXI, thereby bypassing FXII 
inhibition (10). Therefore, despite the potential for mild bleeding, 
FXI may be a better target than FXII for most indications.

An exception to targeting FXI may be clotting induced by 
medical devices or extracorporeal circuits because thrombosis on 
artificial surfaces is triggered by FXII activation (12). Thus, coat-
ing catheters with the potent FXIIa-directed corn trypsin inhibi-
tor allow them to remain patent longer than uncoated catheters 
when inserted in the jugular veins of rabbits (36). Likewise, FXII 
knockdown in rabbits prolongs the time to occlusion of uncoated 
catheters by over twofold (24), and an FXIIa-directed antibody 
is as effective as heparin at preventing clotting in an extracor-
poreal membrane oxygenation circuit in rabbits, but produces 
less bleeding (37). Although FXII triggers clotting on artificial 
surfaces, FXI also is important. FXI knockdown is as effective 
as FXII knockdown at preventing catheter occlusion in rabbits 
(24). Furthermore, although FXII depletion reduced thrombin 
generation induced by components of mechanical heart valves 
to background levels, FXI depletion abolishes it (38). Therefore, 
although strategies targeting FXI may be as or more effective 
than those targeting FXII for prevention of clotting on artificial 
surfaces, targeting FXII may provide a safety benefit because of 
its limited role in hemostasis.

STRATeGieS TO iNHiBiT FXii AND FXi

With the passive roles of FXI and FXII in hemostasis, novel 
anticoagulant approaches with minimal risk of bleeding are being 
explored (4). Strategies to target FXII and FXI include (a) ASOs 
that reduce hepatic synthesis of the clotting proteins (24, 25, 39), 
(b) monoclonal antibodies that block activation or activity (24, 
25, 39, 40), (c) aptamers (41), and (d) small molecules that block 
the active site (42–44) or induce allosteric modulation (45, 46), or 
agents that neutralize nucleic acids or polyphosphate as contact 
pathway activators (47–49). Each strategy differs not only in 
terms of mechanism of action, but also in mode of administra-
tion (4). Thus, ASOs, antibodies, and aptamers require parenteral 
administration, whereas small molecule active site inhibitors 
have the potential for parenteral or oral delivery. The pharmaco-
logical characteristics also vary. The 3–4 weeks of ASO treatment 
required to lower FXII or FXI levels into the therapeutic range 
limits their utility for initial treatment of established thrombosis 
or for immediate thromboprophylaxis (24, 25, 39). The prolonged 
half-life of FXI-directed antibodies or ASOs could be problem-
atic if there is bleeding with trauma or surgery. Therefore, each 
strategy has strengths and weaknesses for clinical development.

CLiNiCAL TRiALS

The first agent to target the contact pathway and be tested in 
humans is the FXI-directed ASO IONIS-416858, which is given 
subcutaneously and reduces FXI antigen and activity levels 
in a concentration-dependent manner. In a phase II study in 
patients undergoing elective knee replacement, 300 patients were 
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TABLe 2 | Potential indications for factor (F) Xii- or FXi-directed 
strategies.

indication Rationale

Primary VTE prophylaxis Long-acting strategies such as antisense 
oligonucleotides or antibodies permit simple 
and safe single-dose regimens for extended 
thromboprophylaxis in medically ill patients or 
after major orthopedic surgery

Extended VTE treatment May be safer than current therapies for extended 
VTE treatment in patients with unprovoked or 
cancer-associated VTE

Prevention of recurrent 
ischemia after acute 
coronary syndrome in 
patients with or without atrial 
fibrillation

May provide a safer anticoagulant platform on top 
of single or dual antiplatelet therapy

End-stage renal disease May be safe and effective for reducing 
cardiovascular death, myocardial infarction, and 
stroke in patients on hemodialysis

High-risk atrial fibrillation 
patients

May be safer than current therapies for stroke 
prevention in atrial fibrillation patients at high risk 
for bleeding such as those with a history of major 
bleeding or with end-stage renal disease

Medical devices May be more effective and safer than current 
therapies to prevent clotting on mechanical heart 
valves, left ventricular assist devices, small caliber 
grafts, or central venous catheters

Extracorporeal circuits May be more effective and safer than heparin 
to prevent clotting on extracorporeal membrane 
oxygenator or cardiopulmonary bypass circuits

VTE, venous thromboembolism.
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randomized to receive subcutaneous IONIS-416858 at doses of 
200 or 300 mg starting 35 days prior to surgery, or to enoxaparin 
at a dose of 40  mg once daily starting after surgery (50). Both 
treatments were continued for at least 10  days at which point 
patients underwent bilateral venography. The primary efficacy 
outcome was VTE, which included the composite of asymp-
tomatic deep-vein thrombosis (DVT), symptomatic DVT or 
pulmonary embolism, and VTE-related mortality, while the prin-
cipal safety outcome was the composite of major and clinically 
relevant non-major bleeding. In the IONIS-416858 treatment 
groups, mean FXI levels were reduced to 38 and 28% of baseline 
values in those receiving the 200 and 300 mg, respectively (50). 
The primary efficacy outcome occurred in 36 of 134 patients 
(27%) and in 3 of 71 patients (4%) who received the 200 and 
300 mg doses of IONIS-416858, respectively, as compared with 
21 of 69 patients (30%) who received enoxaparin. The 200 mg 
IONIS-416858 regimen was non-inferior and the 300 mg ASO 
regimen was superior to enoxaparin (P < 0.001). The rates of the 
composite of bleeding were 3% in both IONIS-416858 groups and 
8% in the enoxaparin groups; differences that were not statisti-
cally significant. Therefore, lowering FXI levels reduces the risk 
of postoperative VTE to a greater extent than enoxaparin without 
significantly increasing the risk of bleeding.

In addition to providing proof of principle for targeting the 
contact pathway, the findings of this study change our thinking 
about the pathogenesis of postoperative venous thrombosis. 
There is little doubt that thrombin generation is increased at the 
surgical site as a result of TF exposure. However, the origin of 
this thrombin appears to also involve upstream factors. Thus, 
TF-induced thrombin generation may amplify coagulation by 
feedback activation of FXI. In addition, surgery may trigger the 
release of DNA and RNA from damaged cells and polyphosphate 
from activated platelets that directly activate FXII. These possibili-
ties illustrate the mechanistic differences of targeting FXI versus 
FXII. Knockdown of FXI prevents propagation of coagulation 
by either pathway, whereas strategies that target FXII only block 
contact activation. We now need to widen the search for potential 
clinical indications and identify the optimal target for FXI- or 
FXII-directed strategies (Table 2).

POTeNTiAL iNDiCATiONS FOR FXii- OR 
FXi-DiReCTeD THeRAPieS

Until the question of whether FXII or FXI monotherapy is suf-
ficient for treatment of established venous or arterial thrombosis 
is answered, it may be better to focus on prevention of arterial or 
venous thrombosis. FXII- or FXI-directed ASOs are best suited 
for chronic indications because of their slow onset of action. 
These might include prevention of cardiovascular events in 
patients with chronic kidney disease, and stroke prevention in 
atrial fibrillation patients at high risk for bleeding, such as those 
with end-stage renal disease who are on hemodialysis. Extended 
anticoagulation therapy in patients with unprovoked VTE is 
another potential indication because such patients have risk of 
recurrent thrombosis (~10% at 1  year and ~30% at 5  years) if 
anticoagulant therapy is stopped (51). Although many of them 
are maintained on DOACs, even when used at reduced doses, 

there is a risk of bleeding (52). FXII- or FXI-directed strategies 
may not only be safer, but adherence may also be better with once 
or twice monthly injections of ASOs or antibodies than with oral 
medications that must be taken once or twice daily. These pos-
sibilities need to be tested.

Stroke prevention in patients with atrial fibrillation and 
severe kidney disease represents an additional unmet medical 
need because the DOACs have not been tested in this setting, 
and because there is uncertainty as to whether the harms of 
warfarin outweigh its benefits. As to which is the better target 
for this indication, FXI overshadows FXII because FXI inhibi-
tion will prevent thrombus stabilization and growth regardless of 
whether the stimulus for clotting at sites of plaque disruption or 
in the left atrial appendage is driven by TF or by FXII activation 
by polyphosphates. Inhibition of FXI may also better attenuate 
clotting on the hemodialysis circuit, thereby obviating the need 
for heparin and further lowering the risk of bleeding. Even 
without atrial fibrillation, patients on hemodialysis are at risk of 
cardiovascular events and such events are responsible for at least 
50% of the mortality. Therefore, a FXI-directed strategy may be 
beneficial to safely prevent such events in hemodialysis patients 
with or without atrial fibrillation.

Additional indications for patients requiring medical devices 
are evident. FXII- or FXI-directed therapies may be safer than 
heparin for prevention of clotting on extracorporeal membrane 
oxygenation circuits, and safer than warfarin for prevention of 
thromboembolic events in patients with left ventricular assist 
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devices. In patients with mechanical heart valves (53), FXI-
directed strategies may be very effective in this setting because 
FXI depletion abolished mechanical valve-induced thrombin 
generation in vitro (38). It is notable that dabigatran failed against 
warfarin (53); a finding that prompted black box warnings against 
the use of DOACs in such patients.

Factor XI-directed strategies may also provide a better alterna-
tive in acute coronary syndrome patients requiring anticoagulant 
therapy on top of single or dual antiplatelet therapy (Table  2). 
Thus, even though rivaroxaban reduced the risk of recurrent 
ischemic events and stent thrombosis when added to dual anti-
platelet therapy in such patients, these beneficial effects came at 
a cost of increased bleeding, including intracranial bleeding (54). 
FXI-directed strategies are likely to be safer than rivaroxaban and 
should not only block contact activation on stents, but should also 
prevent FXI-mediated thrombus stabilization and growth. Thus, 
there are numerous potential indications for targeting FXI and 
FXII that require investigation.

CONCLUSiON AND FUTURe DiReCTiONS

Recent advances in our understanding of the biochemistry of 
coagulation have revealed novel targets beyond those involved in 
the terminal reactions of the coagulation pathway. With evidence 
that the contact system is important for thrombus stabilization 

and growth, FXI and FXII have emerged as promising targets for 
new anticoagulants that may prove to be safer than those that 
inhibit FXa or thrombin. ASOs, antibodies, and small molecules 
are expanding the armamentarium of agents, and it will be neces-
sary to determine whether FXI or FXII is the better target and to 
compare the efficacy and safety of these new strategies with cur-
rent standards of care for prevention or treatment of thrombosis. 
The first priority should be selection of indications that focus on 
unmet medical needs, particularly those where current therapies 
are limited in both efficacy and safety. The clinical potential of 
FXII- and FXI-directed anticoagulant strategies represent an 
exciting new era in anticoagulation that should reduce the risk 
bleeding without compromising efficacy.
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