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Abstract: Lymph node metastasis (LNM) is an important prognostic factor in cervical cancer (CC).
In early stages, the risk of LNM is approximately 3.7 to 21.7%, and the 5-year overall survival
decreases from 80% to 53% when metastatic disease is identified in the lymph nodes. Few reports
have analyzed the relationship between miRNA expression and the presence of LNM. The aim of this
study was to identify a subset of miRNAs related to LNM in early-stage CC patients. Formalin-fixed
paraffin-embedded tissue blocks were collected from patients with early-stage CC treated by radical
hysterectomy with lymphadenectomy. We analyzed samples from two groups of patients—one group
with LNM and the other without LNM. Global miRNA expression was identified by microarray
analysis, and cluster analysis was used to determine a subset of miRNAs associated with LNM.
Microarray expression profiling identified a subset of 36 differentially expressed miRNAs in the
two groups (fold change (FC) ≥ 1.5 and p < 0.01). We validated the expression of seven miRNAs;
miR-487b, miR-29b-2-5p, and miR-195 were underexpressed, and miR-92b-5p, miR-483-5p, miR-4534,
and miR-548ac were overexpressed according to the microarray experiments. This signature exhibited
prognostic value for identifying early-stage CC patients with LNM. These findings may help detect
LNM that cannot be observed in imaging studies.

Keywords: miRNAs; cervical carcinoma; lymph node metastasis

1. Introduction

Cervical carcinoma (CC) is one of the most common cancers in women from low-
income and middle-income countries; in Mexico, CC is the second most common tumor
and has a high mortality rate [1]. The most important factors affecting survival of patients
with early-stage CC (International Federation of Gynecology and Obstetrics (FIGO) stage
IA–IB1) are the clinical stage, tumor size, depth of tumor invasion into the stroma, lym-
phovascular space invasion (LVSI), and presence of lymph node metastasis (LNM). The
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primary treatment is radical hysterectomy (RH) with bilateral pelvic lymphadenectomy
(BPL) [2].

In early stages, the risk of LNM is approximately 3.7 to 21.7%, and the 5-year overall
survival (OS) decreases from 80% to 53% when metastatic disease is identified in the
lymph nodes (LNM+) [3–6]. Therefore, the FIGO updated their staging system in 2018 by
incorporating nodal status into stage III disease. The standard technique to identify positive
lymph nodes is based on advanced imaging methods such magnetic resonance imaging
(MRI), computed tomography (CT), or positron emission tomography–CT (PET)–CT. The
accuracy of each of these modalities ranges from 70 to 85%, and the lymph nodes must
reach a minimum size to be identified by imaging studies. Microscopic disease cannot be
detected by noninvasive methods [7–10].

MicroRNAs (miRNAs) are single-stranded RNAs comprising approximately
21–23 nucleotides and are essential in a wide variety of physiological and pathological
processes, including development, differentiation, metabolism, immunity, cell cycling, pro-
liferation, apoptosis, cell identity, and stem cell maintenance. They regulate gene expression
by inhibiting posttranscriptional events and, in some cases, they induce the degradation
of their target messenger RNA [11–13]. In cancer, miRNAs can function as oncogenes
and/or tumor suppressor genes depending on the function of their target genes. Abnormal
expression of miRNAs is linked to several features of cancer biology, including proliferation,
differentiation, apoptosis, migration, invasion, and metastatic angiogenesis [14–17].

Numerous studies have demonstrated the role of miRNAs in the development and
prognosis of CC [18–21]. Some of the miRNAs identified in CC include miR-23b, miR-143,
let-7b, let-7c, miR-196b, miR-9, miR-127, miR-133a, miR-133b, and miR-145 [13,22]. More-
over, some studies have shown that miRNAs act as prognostic markers in CC [13,23–25].
As previously mentioned, MRI, CT, and PET–CT scans cannot identify all patients with
early-stage CC and LNM, and the use of miRNAs as molecular markers for the LNM+
status in the early stages of CC remains poorly studied. The aim of this study was to
identify a subset of miRNAs related to positive LNM in early-stage CC patients.

2. Materials and Methods
2.1. Patients and Tumor Samples

Formalin-fixed paraffin-embedded (FFPE) tissue blocks from early-stage CC patients
treated with RH and BPL who were diagnosed between January 2006 and December 2013 at
the Instituto Nacional de Cancerología (Mexico City) were reviewed. The exclusion criteria
were patients with 2 primary tumors, primary treatments other than RH, or poor quality of
the tissue in the FFPE blocks. The FFPE blocks were stained with hematoxylin and eosin
(H&E) to identify tumor regions and verify a minimum presence of 80% of tumor cells.
Subsequently, total RNA was extracted from 5 sections (10 µm) from the selected FFPE
blocks. For the analysis, LNM+ patients were paired with a similar number of patients
without LNM (LNM-) matched by age, tumor size, and the presence of LVSI.

2.2. RNA Extraction

Total RNA was extracted using an miRNeasy FFPE Kit (QIAGEN) according to the
manufacturer’s instructions. First, 5 sections (10 µm) were deparaffinized using 320 µL of
deparaffinization solution and incubated at 56 ◦C for 3 min. Subsequently, the samples
were treated with 10 µL of Proteinase K and incubated at 56 ◦C for 15 min and at 80 ◦C for
15 min. Then, the samples were treated with 500 µL of RBC buffer to adjust the binding
conditions. Next, 500 µL of RPE buffer was added to the samples, and the mixture was
transferred to a RNeasy MinElute spin column. Finally, total RNA was eluted in 50 µL of
RNase-free water.

To verify the usefulness of the samples, RNU6B was amplified by RT-qPCR using
TaqMan miRNA probes and the TaqMan MicroRNA Reverse Transcription Kit (Applied
Biosystems, Waltham, MA, USA) according to the manufacturer’s specifications. Samples
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for which RNU6B amplification was possible and that showed an adequate amount of total
RNA (>50 ng/µL) were used to identify their global miRNA expression profile.

2.3. Global miRNA Expression Profiles

Global miRNA profiles were identified using a GeneChip miRNA 3.0 Array (Affymetrix,
Cat. 902018) following the manufacturer’s instructions. The GeneChip miRNA 3.0 Ar-
ray contains 19,724 probe sets and can quantify 1733 human mature miRNAs (miRBase
v17). Initially, 500 ng of total RNA was labeled using a FlashTag Biotin RNA Labeling
Kit (Affymetrix, Santa Clara, CA, USA). Then, a poly(A) tailing reaction was performed
at 37 ◦C for 15 min (1X reaction buffer, 750 µL of MgCl2 (25 mM), 500 µL of adenosine
triphosphate (ATP), and 500 µL of propyl aminopeptidase (PAP) enzyme). FlashTag ligation
was immediately conducted at room temperature for 30 min (2 mL of 5X FlashTag Ligation
Mix Biotin and 1 mL of T4 DNA ligase), and 1.2 mL of stop solution was added to stop the
reaction. Finally, the microarray was hybridized and washed using an Affymetrix Fluidics
Station 450 and scanned with the Affymetrix GeneChip Scanner 3000. After processing
the images, the raw data were obtained. Then, background correction and normalization
were performed by the quantiles method using the robust multiarray average (RMA) tool
in the affy package in R (3.5.1 v). To obtain the miRNA profile, the processed samples were
divided into 2 groups, LNM+ samples and LNM− samples, using the Limma package
(Linear Models for Microarray Data) in R (3.5.1 v). Differentially expressed miRNAs were
identified using a cutoff value of p < 0.01 and a fold change (FC) of 1.5. Finally, we con-
structed a heatmap with the differentially expressed miRNAs in the two groups of samples
using the heatmap.2 function in R (3.5.1 v) and the nonsquared Euclidean distances method
(Ward.D2) [26].

2.4. Validation of the miRNA Profiles by RT-qPCR

Ten miRNAs were selected to validate the data obtained through the microarray
experiments in the same cohort of patients (n = 20, 10 LNM+ samples and 10 LNM−
samples) using miRNA-specific stem-loop primers and a TaqMan MicroRNA Reverse
Transcription Kit. First, cDNA was synthesized using specific primers for each miRNA
according to the manufacturer’s specifications. Subsequently, the quantification reaction
consisted of 10 µL of 2X TaqMan Fast Universal PCR Master Mix No AmpErase UNG,
1 µL of 0.2 µM TaqMan probe, and 1.33 µL of cDNA. All reactions were performed in
triplicate using a GeneAmp PCR system 9700 thermal cycler (Applied Biosystems) with the
following thermocycling program: 16 ◦C for 30 min, 42 ◦C for 30 min, and 85 ◦C for 5 min.
RNU6B (assay ID: 001093) was used as an endogenous control to normalize the miRNA
expression level. The mean Ct values in each qPCR were used to calculate miRNA relative
expression. Finally, 2−∆∆Ct values were plotted [27].

2.5. Prediction of miRNA Target Genes and Pathways

To identify which genes and signaling pathways were regulated by the validated
miRNA signature associated with LNM+ samples, we used the miRWalk 3.0 and DAVID
6.8 bioinformatics tools [28,29]. miRWalk 3.0 is a bioinformatics tool that allows the pre-
diction of target genes through the miRNA–target gene interaction using the TarPmiR
algorithm [30]. This approach allowed us to predict interactions between 5′-untranslated
region (UTR), coding sequence (CDS), and 3′-UTR and the seed region of the miRNA candi-
date. In addition, miRWalk 3.0 uses the datasets of 2 prediction platforms (TargetScan and
miRDB) and the experimentally validated interaction information from miRTarBase. First,
we selected miRNAs with expression validated by RT-qPCR and those that showed clinical
significance to search for their target genes using the miRWalk 3.0 tool. Then, with the list
of genes obtained, we performed Gene Ontology (GO) enrichment and Kyoto Encyclopedia
of Genes and Genomes (KEGG) analyses to determine the functions of associated genes
and pathways [31,32]. Finally, the interaction network between target genes and selected
miRNAs was visualized with Cytoscape and CyTargetLinker bioinformatic tools [33,34].
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2.6. Statistical Analysis

Quantitative data are expressed as the mean ± standard deviation (SD). miRNA
expression levels were compared between the 2 groups by an unpaired t test. The chi-
square test or Fisher’s exact test was performed to assess the relationships between miRNA
expression and clinical features. To determine the clinical correlation between the LNM+
status and the miRNA profile, logistic regression was performed between the expression
values of miRNAs and lymph node status to calculate the odds ratio (OR). A p value less
than 0.05 was considered statistically significant. Statistical analyses were performed using
SPSS, version 23 (IBM Corp., Armonk, NY, USA). This study was approved by the local
institutional review boards, with approval reference (INCAN/CI/248/15).

3. Results
3.1. Patients and Samples

A total of 25 samples were selected. Twelve samples were selected from LNM+
patients, and 13 samples were selected from LNM− patients. The clinical and histopatho-
logical characteristics are summarized in Table 1. A significant difference was found for the
type of adjuvant treatment (p = 0.02) and depth of invasion (p = 0.04).

3.2. miRNA Profile Associated with LNM+ Patients

Microarray expression profiling identified a subset of 36 differentially expressed
miRNAs between the 2 groups (FC ≥ 1.5 and p < 0.01). A heatmap of the differentially
expressed miRNAs showed that the samples were grouped with respect to lymph node
status (Figure 1 and Supplementary File S1). Among the identified miRNAs, 17 were
overexpressed, and 19 were underexpressed. Among the main dysregulated miRNAs,
miR-487b (FC = −3.2, p = 0.0003), miR-194 (FC = −2.8, p = 0.006), miR-34c-5p (FC = −2.46,
p = 0.007), miR-29b-2-5p (FC = −2.3, p = 0.007), and miR-195 (FC = −2.07, p = 0.001) were
underexpressed, while miR-548ac (FC = 2.74, p = 0.0003), miR-4534 (FC = 2.47, p = 0.001),
miR-483-5p (FC = 2.21, p = 0.002), miR-564 (FC = 2.01, p = 0.006), and miR-92b-5p (FC = 1.82,
p = 0.005) were overexpressed. This molecular signature correctly classified 91.6% (11/12)
of the LNM+ samples and 92.3% (12/13) of the LNM− samples.

3.3. Validation of miRNAs by RT-qPCR

To validate the data obtained through the microarray experiments, we selected
10 miRNAs based on their expression levels and p values. We were able to validate the
expression of 7 of the 10 selected miRNAs by RT-qPCR experiments (Figure 2); miR-487b,
miR-29b-2-5p, and miR-195 were underexpressed, and miR-92b-5p, miR-483-5p, miR-4534,
and miR-548ac were overexpressed according to the microarray experiments. The remain-
ing three miRNAs showed positive correlations in the microarray experiments but did not
show statistically significant differences (miR-194, miR-34c-5p, and miR-564).

Table 1. Clinical and histopathological characteristics of the patients with cervical carcinoma analyzed
in this study.

N (%) With Lymph Node Involvement
12 (48)

Without Lymph Node Involvement
13 (52) p

Age + 54.92 ± 8.89 54.85 ± 10.80 0.98

Clinical Stage ˆ
Ia2
Ib1
IIa1

0 (0.0)
12 (100.0)

0 (0.0)

1 (7.7)
10 (76.9)
2 (15.4)

BMI + 28.82 ± 2.69 30.36 ± 4.23 0.34
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Table 1. Cont.

N (%) With Lymph Node Involvement
12 (48)

Without Lymph Node Involvement
13 (52) p

BMI2 ˆ
≤25

25.1–30
>30

3 (25.00)
4 (33.33)
5 (41.67)

3 (23.08)
2 (15.38)
8 (61.54)

0.67

Type of adjuvant treatment ˆ
None

EBR or BT
CT/EBR+BT

0 (0.00)
4 (33.33)
8 (66.67)

4 (30.77)
7 (53.84)
2 (15.38)

0.02

Type of recurrence ˆ
None
Local

Regional
Distant

10 (83.33)
1 (8.33)
0 (0.0)

1 (8.33)

13 (100)
0 (0.0)
0 (0.0)
0 (0.0)

0.22

Histology ˆ
SCC

Adenocarcinoma
ASCC

8 (66.67)
3 (25.00)
1 (8.33)

10 (76.92)
1 (7.69)

2 (15.38)

0.57

Grade ˆ
1
2
3

0 (0.0)
7 (58.33)
5 (41.67)

1 (7.69)
7 (53.85)
5 (38.46)

0.90

LVSI ˆ 11 (91.67) 10 (76.92) 0.33

Invasion depth in mm * 15 (10.5–17) 10 (7–11) 0.04

Thirds ˆ
1/3
2/3
3/3

1 (8.33)
2 (16.67)
9 (75.00)

3 (23.08)
2 (15.38)
8 (61.54)

0.83

TZ in mm + 30.75 ± 9.55 25.23 ± 12.07 0.22

Positive margins ˆ 3 (25.00) 3 (23.08) 0.90

Parametrial involvement ˆ 4 (33.33) 1 (7.69) 0.16

Lymph nodes count ˆ 20 (17.5–29) 19 (12–28) 0.46

Abbreviations: BMI: body mass index; EBR: external beam radiotherapy; BT: brachytherapy; CT/EBRT concurrent
chemotherapy and external beam radiotherapy; SCC: squamous cell carcinoma; ASCC: adenosquamous cell
carcinoma; LVSI: lymphovascular space invasion; TZ: tumor size; + mean ± standard deviation; ˆ absolute value
(%); * median (interquartile range).

3.4. Identification of miRNA Target Genes and Signaling Pathways

To identify gene targets and signaling pathways associated with the LNM+ status, we
selected the seven miRNAs that were validated by RT-qPCR and showed clinical significance.

After bioinformatic analysis using miRWalk 3.0, we found 468 target genes (putative
and validated) for this 7-miRNA molecular signature. Next, we performed KEGG and
GO functional enrichment analyses using DAVID 6.8. The biological process terms were
markedly enriched for regulation of transcription, regulation of cell migration, protein
ubiquitination, epithelial cell–cell adhesion, and regulation of NF-kappa B transcription
(Table 2). For the GO cellular component terms, the target genes were concentrated in the
nucleus, cytosol, extracellular exosome, membrane, and rough endoplasmic reticulum,
among others. The molecular function terms were enriched for protein binding, transcrip-
tion factor binding, and beta-catenin binding. The KEGG pathways were predominantly
enriched for cancer pathways, viral carcinogenesis, and the MAPK, ErbB, and GnRH sig-
naling pathways (Supplementary File S1). In addition, interaction networks between target
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genes and the 7-miRNA signature were visualized with Cytoscape and CyTargetLinker
(Figure 3 and Supplementary File S1) [33,35].Curr. Oncol. 2021, 28 6 
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Figure 2. The seven miRNAs validated by RT-qPCR experiments. We were able to validate the
expression of 7 of the 10 selected miRNAs by RT-qPCR experiments. miR-548ac, miR-4534, miR-
483-5p, and miR-92b-5p were overexpressed, whereas miR-487b, miR-195, and miR-29b-2-5p were
underexpressed. LNM+: patients with lymph node metastasis, LNM−: patients without lymph
node metastasis. miRNAs underexpressed in the microarray that were subjected to validation. The
miRNAs miR-487b, miR-29b, and miR-195 were validated by RT-qPCR. LM: patients with lymph
node metastasis, NLM: patients without lymph node metastasis.
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3.5. Clinical Significance of the Identified miRNAs

We calculated the estimated ORs in the LNM+ samples. Among the RT-qPCR-
validated miRNAs, statistically significant associations were found for the overexpressed
miR-548ac (OR 3.29 95% confidence interval (CI) 1.33–8.12, p = 0.010), miR-4534 (OR 3.41
95% CI 1.20–9.63, p = 0.021), and miR-92b-5p (OR 3.44 95% CI 1.10–10.80, p = 0.034). In
addition, statistically significant associations were identified for the underexpressed miR-
NAs, including miR-487b (OR 0.25 95% CI 0.09–0.67, p = 0.005), miR-195 (OR 0.13 95% CI
0.03–0.59, p = 0.008), and miR-29b-2 (OR 0.34 95% CI 0.14–0.82, p = 0.016) (Table 3).

Table 2. Biological processes enriched in target genes.

GO Term Count p Value Genes

Transcription from RNA polymerase II
promoter 19 9.3 × 10−5

DDX21, FOSL1, GABPA, IKZF3, MAFK, MNT, MLLT1,
PLAGL2, CLOCK, CCNT1, CCNT2, FOXC1, FOXJ2,

GTF2H5, HIVEP3, MBD1, NFIC, NFIX, SRF.

Regulation of transcription,
DNA-templated 35 6.1 × 10−4

KANK1, LRRFIP2, MACC1, MLLT1, MLLT6, POM121C,
SMAD3, THAP1, TMEM189-UBE2V1, BZW1, CALR,

CLOCK, CPNE1, FOXC1, GTF2H5, KAT6A, KDM2A, MKX,
PTPN14, RNF20, SRSF10, TCF3, UBE2V1, VHL, ZBTB10,
ZBTB34, ZBTB8A, ZNF276, ZNF391, ZNF426, ZNF429,

ZNF585B, ZNF662, ZNF747, ZNF813.

Negative regulation of cell migration 7 1.3 × 10−3 BCL2, KANK1, ARHGDIA, SRGAP1, RNF20, SRF, VCL.

Protein ubiquitination 13 2.1 × 10−3 DCAF17, CDC42, CUL3, CAND1, MIB1, PARK2, RNF138,
RNF168, SOCS5, SOCS7, UBE2Q1, VHL, ZYG11B.

Positive regulation of transcription
from RNA polymerase II promoter 24 3.1 × 10−3

FOSL1, GABPA, IKZF3, MAFK, PAGR1, PLAGL2, SMAD3,
APP, CLOCK, CCNT1, CCNT2, FGF2, FOXC1, FOXJ2,

MAVS, MAPK3, NFIC, NFIX, PARK2, RPRD1B, SRF, TCF3,
TBL1XR1, TGFB1.

Nucleotide-binding oligomerization
domain-containing signaling pathway 4 3.7 × 10−3 CYLD, TAB3, TMEM189-UBE2V1, UBE2V1

Epithelial cell–cell adhesion 3 5.4 × 10−3 CDC42, SRF, VCL.

Positive regulation of transcription,
DNA-templated 15 5.9 × 10−3

SMAD3, TMEM189-UBE2V1, CLOCK, FGF2, FOXC1, FOXJ2,
HIVEP3, KAT6A, MAPK3, RNF20, TCF3, TBL1XR1, TGFB1,

UBE2V1, VHL.

Positive regulation of NF-kappa B
transcription factor activity 8 7.6 × 10−3 KRAS, TAB3, TMEM189-UBE2V1, CAMK2A, CLOCK,

TGFB1, UBE2V1.

Transcription, DNA-templated 38 9.3 × 10−5

HIC2, KANK1, MACC1, MAFK, NAB2, PAGR1, POLR3A,
SMYD1, SMAD3, THAP1, BZW1, CLOCK, CPNE1, CCNT,
CCNT2, KAT6A, KDM2A, MAPK3, NFIC, NFIX, PARK2,
PTPN14, PTMA, PURB, TXNIP, TCF3, TBL1XR1, TLE4,
ZBTB10, ZBTB34, ZBTB8A, ZNF276, ZNF391, ZNF426,

ZNF429, ZNF585B, ZNF662, ZNF813.

Protein polyubiquitination 8 8.9 × 10−3 BCL2, TMEM189-UBE2V1, CUL3, KLHL42, PARK2,
RNF138, RNF20, UBE2V1

Table 3. Bivariate analysis of miRNAs associated with lymph node involvement in patients with
early-stage cervical cancer treated with radical hysterectomy and bilateral pelvic lymphadenectomy.

microRNA
With Lymph Node

Involvement
12 (48%)

Without Lymph Node
Involvement

13 (52%)
OR (95% CI) p

Overexpressed miRNAs
miR-548ac 5.1 (4.8–5.5) † 3.5 (3.1–3.9) † 3.29(1.33–8.12) 0.010
miR-4534 5.0 (4.6–4.61) † 4.1 (3.4–4.6) † 3.41 (1.20–9.63) 0.021

miR-483-5p 5.5 (4.6–5.8) † 4.4 (4.1–5.1) † 2.40 (0.98–5.83) 0.053
miR-92b-5p 6.9 (6.5–7.2) † 5.9 (5.5–6.6) † 3.44 (1.10–10.80) 0.034

Underexpressed miRNAs

miR-487b 4.0 (3.5–4.6) † 5.8 (5.3–6.4) † 0.25 (0.09–0.67) 0.005

miR-195 9.8 (9.3–10.0) † 10.8 (10.2–11.2) † 0.13 (0.03–0.59) 0.008

miR-29b-2-5p 3.9 (2.8–4.9) † 5.1 (4.6–5.6) † 0.34 (0.14–0.82) 0.016

Abbreviations: OR: odds ratio, miR: microRNA, CI: confidence interval. † Median (interquartile range).
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Abbreviations: OR: odds ratio, miR: microRNA, CI: confidence interval. † Median (interquartile range). 

 
Figure 3. Interaction networks between target genes and the seven-miRNA signature. Target genes and the seven-miRNA 
signature were visualized with Cytoscape and CyTargetLinker. miRNAs are marked in yellow, while target genes are 
color-coded according to their regulatory miRNAs. 

4. Discussion 
The analysis of global miRNA expression revealed a profile of 36 differentially ex-

pressed miRNAs in the two sample groups. Of note, this miRNA profile was able to cor-
rectly classify 91.6% of the LNM+ samples. We found statistically significant differences 
in the expression (over- or underexpression) of the seven miRNAs between patients with 
early-stage CC with or without LNM. 

In 2018, Chen Q et al. analyzed the differential expression of 422 miRNAs in 145 pa-
tients diagnosed with early-stage CC (including 32 LNM+ patients and 113 LNM− pa-
tients) in The Cancer Genome Atlas (TCGA) database. They found that 75 miRNAs were 
differentially expressed between the 2 sample groups [36]. Interestingly, our results are 
consistent for five miRNAs (miR-548, miR-379, miR-337, miR-487b, and miR-376c) and 
several gene targets associated with lymph node involvement. The identification of the 
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Figure 3. Interaction networks between target genes and the seven-miRNA signature. Target genes
and the seven-miRNA signature were visualized with Cytoscape and CyTargetLinker. miRNAs are
marked in yellow, while target genes are color-coded according to their regulatory miRNAs.

4. Discussion

The analysis of global miRNA expression revealed a profile of 36 differentially ex-
pressed miRNAs in the two sample groups. Of note, this miRNA profile was able to
correctly classify 91.6% of the LNM+ samples. We found statistically significant differences
in the expression (over- or underexpression) of the seven miRNAs between patients with
early-stage CC with or without LNM.

In 2018, Chen Q et al. analyzed the differential expression of 422 miRNAs in 145 patients
diagnosed with early-stage CC (including 32 LNM+ patients and 113 LNM− patients) in
The Cancer Genome Atlas (TCGA) database. They found that 75 miRNAs were differen-
tially expressed between the 2 sample groups [36]. Interestingly, our results are consistent
for five miRNAs (miR-548, miR-379, miR-337, miR-487b, and miR-376c) and several gene
targets associated with lymph node involvement. The identification of the miRNA profile
associated with the LNM+ status in patients with early-stage CC represents a diagnostic
tool with relevant clinical application because it allows not only a better understanding of
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the biology of this disease but also the timely identification of patients who will require
more aggressive treatment, closer monitoring, and possible detection of early relapse.

Among the miRNAs identified, miR-195 had an OR of 0.13 (p = 0.008) and was
underexpressed in LNM+ patients. Overexpression of miR-195 is associated with cell
migration, proliferation, and invasion in CC [37]. DU et al. found that miR-195 is involved
in the cell cycle in the G1 to S transition, downregulating the expression of CCND2 and
inhibiting cell proliferation; likewise, miR-195 decreases the expression of the transcription
factor MYB, which is related to cell migration and invasion [37]. Li et al. showed that
miRNA-195 is underexpressed in HeLa and SiHa CC cell lines (p < 0.0001) and is involved
in the D1 signaling pathway; miRNA-195 underexpression also promotes cell proliferation
and invasion [38]. These data corroborate those of the present study, according to which
miR-195 underexpression was found in occult LNM+ patients. Likewise, Zhou et al. found
that miR-195 was associated with LNM+ status (p = 0.009), an advanced clinical stage
(p = 0.011), and greater cervical stroma involvement (p = 0.03) in patients with CC due
to an association with Smad3 protein regulation, which is related to the migration and
proliferation of malignant cells in CC as well as in other cancers such as esophageal and
prostate cancer [39]. The underexpression of miR-487b was also strongly associated (OR
0.25, p = 0.005) with the LNM+ status in this study. Underexpression of miR-487b has
been shown to be related to CC in some studies; however, the literature on this subject is
limited, although studies have detected a relationship with the progression of tumors of
the digestive tract and brain and of adenocarcinomas of the prostate and lung [40–43]. In
a study by Hata et al., miRNA-487b was described as a negative regulator of metastasis
by regulating the KRAS gene in colorectal cancer [44]. miR-29b-2-5p was found to be
underexpressed in LNM+ patients (OR 0.34, p = 0.016). Kinoshita et al. described that the
miR-29 family of miRNAs, including miR-29a, miR-29b, and miR-29c, was significantly
underexpressed in tumor tissues compared to nontumorous tissues [45]. A meta-analysis
by Qi et al. indicated that underexpression of the miRNA-29 family is associated with OS
(hazard ratio (HR) 1.57 95% CI 1.18–2.08) and the disease-free period (HR 1.51, 95% CI
0.99–2.30) [46]. Additionally, the miRNA-29b family has been associated with the induction
of apoptosis through the Mcl-1, Bcl-2, AKT-2, and p53 signaling pathways as well as with
the inhibition of metastasis by the Mcl-1, MMP-2, SOCs-2, and GATA-3 pathways, among
others [47]. Regarding its relationship with CC, miR-29b underexpression was directly
associated with the expression of the E6 and E7 proteins in human papillomavirus (HPV)-
infected patients, resulting in a modification of the cell cycle via the CDK6 pathway, which
triggers malignant epithelial cells [48].

Regarding the overexpressed miRNAs, miR-483-5p was overexpressed in LNM+
patients (OR 2.40, p = 0.053). Nagamitsu et al. found that miRNA 483-5p was overexpressed
in patients with CC compared to those without CC, with FC > 3.0 (p = 0.01) [49]. In the
present study, miR-483-5p was overexpressed by 2.21-fold (p = 0.001) in metastatic lymph
nodes. Likewise, Nishi also found that serum miR-483-5p was significantly overexpressed
in 40 patients with CC compared to 20 controls [50]. miR-4534 overexpression was strongly
associated with LNM in patients with CC (OR 3.41, p = 0.021). No studies on the relationship
between this miRNA and CC have been published; however, a relationship with prostate
cancer was found. A study by Nip et al. reported that miRNA-4534 was overexpressed in a
group of patients with prostate cancer. Likewise, the expression of this miRNA exerts an
oncogenic effect by downregulating the PTEN suppressor gene. PTEN is a critical tumor
suppressor gene related to survival, proliferation, cell migration, and angiogenesis through
the PI3/Akt pathway [51]. Finally, another overexpressed miRNA associated with LNM+
status was miR-548ac, which was overexpressed in LNM+ patients (OR 3.29, p = 0.010).

The strengths of this study are that our findings were validated by RT-qPCR and were
based on optimal results. A weakness of this study is that it was performed on a small
number of samples; thus, further validation is required. Some of the miRNAs found in our
study are associated with the development, proliferation, and migration of malignant cells
in CC as well as other malignant cancers. Prospective studies with a greater number of
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individuals are essential to evaluate this profile as a possible biomarker related to early-
stage occult LNM. The results could help identify individuals at high risk of nodal disease
who are candidates for chemotherapy (CT)/radiotherapy (RT) instead of surgery, which
carries a high risk of being incomplete because of nodal disease.

5. Conclusions

A seven-miRNA signature associated with LNM+ status was determined in patients
with early-stage CC who were treated with RH and BPL. This signature exhibited prognostic
value for identifying early-stage CC patients with LNM+ status. These findings may help
detect lymph node micrometastases that cannot be observed in imaging studies.
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