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Abstract In adult dentate gyrus neurogenesis, the link between maturation of newborn neurons

and their function, such as behavioral pattern separation, has remained puzzling. By analyzing a

theoretical model, we show that the switch from excitation to inhibition of the GABAergic input

onto maturing newborn cells is crucial for their proper functional integration. When the GABAergic

input is excitatory, cooperativity drives the growth of synapses such that newborn cells become

sensitive to stimuli similar to those that activate mature cells. When GABAergic input switches to

inhibitory, competition pushes the configuration of synapses onto newborn cells toward stimuli that

are different from previously stored ones. This enables the maturing newborn cells to code for

concepts that are novel, yet similar to familiar ones. Our theory of newborn cell maturation explains

both how adult-born dentate granule cells integrate into the preexisting network and why they

promote separation of similar but not distinct patterns.

Introduction
In the adult mammalian brain, neurogenesis, the production of new neurons, is restricted to a few

brain areas, such as the olfactory bulb and the dentate gyrus (Deng et al., 2010). The dentate gyrus

is a major entry point of input from cortex, primarily entorhinal cortex (EC), to the hippocampus

(Amaral et al., 2007), which is believed to be a substrate of learning and memory (Jarrard, 1993).

Adult-born cells in dentate gyrus mostly develop into dentate granule cells (DGCs), the main excit-

atory cells that project to area CA3 of hippocampus (Deng et al., 2010).

The properties of rodent adult-born DGCs change as a function of their maturation stage, until

they become indistinguishable from other mature DGCs at approximately 8 weeks (Deng et al.,

2010; Johnston et al., 2016; Figure 1a). Many of them die before they fully mature (Dayer et al.,

2003). Their survival is experience dependent and relies on NMDA receptor activation

(Tashiro et al., 2006). Initially, newborn DGCs have enhanced excitability (Schmidt-Hieber et al.,

2004; Li et al., 2017) and stronger synaptic plasticity than mature DGCs, reflected by a larger long-

term potentiation (LTP) amplitude and a lower threshold for induction of LTP (Wang et al., 2000;

Schmidt-Hieber et al., 2004; Ge et al., 2007). Furthermore, after 4 weeks of maturation adult-born

DGCs have only weak connections to interneurons, while at 7 weeks of age, their activity causes indi-

rect inhibition of mature DGCs (Temprana et al., 2015).

Newborn DGCs receive no direct connections from mature DGCs (Deshpande et al., 2013;

Alvarez et al., 2016) (yet see Vivar et al., 2012), but are indirectly activated via interneurons

(Alvarez et al., 2016; Heigele et al., 2016). At about 3 weeks after birth, the g-aminobutyric acid

(GABAergic) input from interneurons to adult-born DGCs switches from excitatory in the early phase

to inhibitory in the late phase of maturation (Ge et al., 2006; Deng et al., 2010) (‘GABA-switch’,

Figure 1a). Analogous to a similar transition during embryonic and early postnatal stages
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(Wang and Kriegstein, 2011), the GABA-switch is caused by a change in the expression profile of

chloride cotransporters. In the early phase of maturation, newborn cells express the Na
þ�K

þ�2Cl
�

cotransporter NKCC1, which leads to a high intracellular chloride concentration. Hence, the GABA

reversal potential is higher than the resting potential (Ge et al., 2006; Heigele et al., 2016), and

GABAergic inputs lead to Cl� ions outflow through the GABAA ionic receptors, which results in

depolarization of the newborn cell (Ben-Ari, 2002; Owens and Kriegstein, 2002). In the late phase

of maturation, expression of the K
þ�Cl

�-coupled cotransporter KCC2 kicks in, which lowers the

intracellular chloride concentration of the newborn cell to levels similar to those of mature cells,

leading to a hyperpolarization of the cell membrane due to Cl� inflow upon GABAergic stimulation

(Ben-Ari, 2002; Owens and Kriegstein, 2002). The transition from depolarizing (excitatory) to

hyperpolarizing (inhibitory) effects of GABA is referred to as the ‘GABA-switch’. It has been shown

that GABAergic inputs are crucial for the integration of newborn DGCs into the preexisting circuit

(Ge et al., 2006; Chancey et al., 2013; Alvarez et al., 2016; Heigele et al., 2016).

The mammalian dentate gyrus contains – just like hippocampus in general – a myriad of inhibitory

cell types (Freund and Buzsáki, 1996; Somogyi and Klausberger, 2005; Klausberger and Somo-

gyi, 2008), including basket cells, chandelier cells, and hilar cells (Figure 1—figure supplement 1).

Basket cells can be subdivided in two categories: some express cholecystokinin (CCK) and vasoactive

intestinal polypeptide (VIP), while the others express parvalbumin (PV) and are fast-spiking

(Freund and Buzsáki, 1996; Amaral et al., 2007). Chandelier cells also express PV (Freund and

Buzsáki, 1996). Overall, it has been estimated that PV is expressed in 15–21% of all dentate

GABAergic cells (Freund and Buzsáki, 1996) and in 20–25% of the GABAergic neurons in the gran-

ule cell layer (Houser, 2007). Amongst the GABAergic hilar cells, 55% express somatostatin (SST)

(Houser, 2007) and somatostatin-positive interneurons (SST-INs) represent about 16% of the

GABAergic neurons in the dentate gyrus as a whole (Freund and Buzsáki, 1996). While axons of

Figure 1. Network model and pretraining. (a) Integration of an adult-born DGC (blue) as a function of time: GABAergic synaptic input (red) switches

from excitatory (+) to inhibitory (�); strong connections to interneurons develop only later; glutamatergic synaptic input (black), interneuron (red). (b)

Network structure. EC neurons (black, rate xj) are fully connected with weights wij to DGCs (blue, rate ni). The feedforward weight vector ~wi onto neuron

i is depicted in black. DGCs and interneurons (red, rate nIk ) are mutually connected with probability pIE and pEI and weights wIE
ki and wEI

ik , respectively.

Connections with a triangular (round) end are glutamatergic (GABAergic). (c) Given presynaptic activity xj>0, the weight update Dwij is shown as a

function of the firing rate ni of the postsynaptic DGC with LTD for ni<� and LTP for �<ni<n̂i. (d) Center of mass for three ensembles of patterns from the

MNIST data set, visualized as 12 � 12 pixel patterns. The two-dimensional arrangements and colors are for visualization only. (e) One hundred receptive

fields, each defined as the set of feedforward weights, are represented in a two-dimensional organization. After pretraining with patterns from MNIST

digits 3 and 4, 79 DGCs have receptive fields corresponding to threes and fours of different writing styles, while 21 remain unselective (highlighted by

red frames).

The online version of this article includes the following figure supplement(s) for figure 1:

Figure supplement 1. Dentate gyrus network.
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hilar interneurons stay in the hilus and provide perisomatic inhibition onto dentate GABAergic cells,

axons of hilar-perforant-path-associated interneurons (HIPP) extend to the molecular layer and pro-

vide dendritic inhibition onto both DGCs and interneurons (Yuan et al., 2017). HIPP axons generate

lots of synaptic terminals and extend as far as 3.5 mm along the septotemporal axis of the dentate

gyrus (Amaral et al., 2007). PV-expressing interneurons (PV-INs) and SST-INs both target adult-born

DGCs early (after 2–3 weeks) in their maturation (Groisman et al., 2020). PV-INs provide both feed-

forward inhibition and feedback inhibition (also called lateral inhibition) to the DGCs

(Groisman et al., 2020). In general, SST-INs provide lateral, but not feedforward, inhibition onto

DGCs (Stefanelli et al., 2016; Groisman et al., 2020; Figure 1—figure supplement 1).

Adult-born DGCs are preferentially reactivated by stimuli similar to the ones they experienced

during their early phase of maturation, up to 3 weeks after cell birth (Tashiro et al., 2007). Even

though the amount of newly generated cells per month is rather low (3–6% of the total DGCs popu-

lation [van Praag et al., 1999; Cameron and McKay, 2001]), adult-born DGCs are critical for behav-

ioral pattern separation (Clelland et al., 2009; Sahay et al., 2011a; Jessberger et al., 2009), in

particular in tasks where similar stimuli or contexts have to be discriminated (Clelland et al., 2009;

Sahay et al., 2011a). However, the functional role of adult-born DGCs is controversial (Sahay et al.,

2011b; Aimone et al., 2011). One view is that newborn DGCs contribute to pattern separation

through a modulatory role (Sahay et al., 2011b). Another view suggests that newborn DGCs act as

encoding units that become sensitive to features of the environment which they encounter during a

critical window of maturation (Kee et al., 2007; Tashiro et al., 2007). Some authors have even chal-

lenged the role of newborn DGCs in pattern separation in the classical sense and have proposed a

pattern integration effect instead (Aimone et al., 2011), while others suggest a dynamical

(Aljadeff et al., 2015; Shani-Narkiss et al., 2020) or forgetting (Akers et al., 2014) role for new-

born DGCs. Within that broader controversy, we ask two specific questions: First, why are GABAer-

gic inputs crucial for the integration of newborn DGCs into the preexisting circuit? And second, why

are newborn DGCs particularly important in tasks where similar stimuli or contexts have to be

discriminated?

To address these questions, we present a model of how newborn DGCs integrate into the preex-

isting circuit. In contrast to earlier models where synaptic input connections onto newborn cells were

assumed to be strong enough to drive them (Chambers et al., 2004; Becker, 2005; Crick and Mir-

anker, 2006; Wiskott et al., 2006; Chambers and Conroy, 2007; Aimone et al., 2009;

Appleby and Wiskott, 2009; Weisz and Argibay, 2009; Temprana et al., 2015; Finnegan and

Becker, 2015; DeCostanzo et al., 2018), our model uses an unsupervised biologically plausible

Hebbian learning rule that makes synaptic connections between EC and newborn DGCs either disap-

pear or grow from small values at birth to values that eventually enable feedforward input from EC

to drive DGCs. Contrary to previous modeling studies, our plasticity model does not require an arti-

ficial renormalization of synaptic connection weights since model weights are naturally bounded by

the synaptic plasticity rule. We show that learning with a biologically plausible plasticity rule is possi-

ble thanks to the GABA-switch, which has been overlooked in previous modeling studies. Specifi-

cally, the growth of synaptic weights from small values is supported in our model by the excitatory

action of GABA, whereas, after the switch, specialization of newborn cells arises from competition

between DGCs, triggered by the inhibitory action of GABA. Furthermore, our theory of adult-born

DGCs integration yields a transparent explanation of why newborn cells favor pattern separation of

similar stimuli, but do not impact pattern separation of distinct stimuli.

Results
We model a small patch of cells within dentate gyrus as a recurrent network of 100 DGCs and 25

GABAergic interneurons, omitting the Mossy cells for the sake of simplicity (Figure 1b). The mod-

eled interneurons correspond to SST-INs from the HIPP category, as they are the providers of feed-

back inhibition to DGCs through dendritic projections (Stefanelli et al., 2016; Yuan et al., 2017;

Groisman et al., 2020; Figure 1—figure supplement 1). The activity of a DGC with index i and an

interneuron with index k is described by their continuous firing rates ni and nIk, respectively. Firing

rates are modeled by neuronal frequency–current curves that vanish for weak input and increase if

the total input into a neuron is larger than a firing threshold. Since newborn DGCs exhibit enhanced

excitability early in maturation (Schmidt-Hieber et al., 2004; Li et al., 2017), the firing threshold of
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model neurons increases during maturation from a lower to a higher value (Materials and methods).

Connectivity in a localized patch of dentate neurons is high: DGCs densely project to GABAergic

interneurons (Acsády et al., 1998), and SST-INs heavily project to cells in their neighborhood

(Amaral et al., 2007). Hence, in the recurrent network model, each model DGC projects to, and

receives input from, a given interneuron with probability 0.9. The exact percentage of GABAergic

neurons (or SST-INs) in the dentate gyrus as a whole is not known, but has been estimated at about

10% and only a fraction of these are SST-INs (Freund and Buzsáki, 1996). The number of inhibitory

neurons in our model network might therefore seem too high. However, our results are robust to

substantial changes in the number of inhibitory neurons (Supplementary file 2).

Each of the 100 model DGCs receives input from a set of 144 model EC cells (Figure 1b). In the

rat, the number of DGCs has been estimated to be about 106, while the number of EC input cells is

estimated to be about 2 � 105 (Andersen et al., 2007), yielding an expansion factor from EC to den-

tate gyrus of about 5. Theoretical analysis suggests that the expansion of the number of neurons

enhances decorrelation of the representation of input patterns (Marr, 1969; Albus, 1971;

Marr, 1971; Rolls and Treves, 1998) and promotes pattern separation (Babadi and Sompolinsky,

2014). Our standard network model does not reflect this expansion because we want to highlight

the particular ability of adult neurogenesis in combination with the GABA-switch to decorrelate input

patterns independently of specific choices of the network architecture. However, we show later that

an enlarged network with an expansion from 144 model EC cells to 700 model DGCs (similar to the

anatomical expansion factor) yields similar results.

At birth, a DGC with index i does not receive synaptic glutamatergic input yet. Hence, the con-

nection from any model EC cell with index j is initialized at wij ¼ 0. The growth or decay of the syn-

aptic strength wij of the connection from j to i is controlled by a Hebbian plasticity rule (Figure 1c):

Dwij ¼ hfgxjni½ni � ��þ �axjni½�� ni�þ �bwij½ni� ��þn3i g (1)

where xj is the firing rate of the presynaptic EC neuron, h (‘learning rate’) is the susceptibility of a

cell to synaptic plasticity, and a;b;g are positive parameters (Materials and methods, Table 1). The

first term on the right-hand side of Equation (1) describes LTP whenever the presynaptic neuron is

active (xj>0Þ and the postsynaptic firing ni is above a threshold q; the second term on the right-

hand side of Equation (1) describes long-term depression (LTD) whenever the presynaptic neuron is

active and the postsynaptic firing rate is positive but below the threshold q; LTD stops if the synaptic

weight is zero. Such a combination of LTP and LTD is consistent with experimental data

(Artola et al., 1990; Sjöström et al., 2001) as shown in earlier rate-based (Bienenstock et al.,

1982) or spike-based (Pfister and Gerstner, 2006) plasticity models. The third term on the right-

hand side of Equation (1) implements heterosynaptic plasticity (Chistiakova et al., 2014;

Table 1. Parameters for the simulations.

Biologically plausible network Simplified network

Network NEC ¼ 144 NI ¼ 25 NEC ¼ 128 NDGC ¼ 3

NDGC ¼ 100 (Figures 1–4)

NDGC ¼ 700 (Figure 4—figure
supplement 1–2)

Connectivity wIE ¼ 1 wEI ¼ � 1

pEINI
wrec ¼ �1:2

pIE ¼ 0:9 pEI ¼ 0:9

Dynamics t m ¼ 20 ms t inh ¼ 2 ms t m ¼ 20 ms

L ¼ 0:5 p� ¼ 0:1

Plasticity a0 ¼ 0:05 b ¼ 1 a0 ¼ 0:03 b ¼ 1

g0 ¼ 10 � ¼ 0:15 g0 ¼ 1:65 � ¼ 0:15

n0 ¼ 0:2 g ¼ 9:85 g ¼ 1:5

Numerical simulations Dt ¼ 0:1 ms h ¼ 0:01 Dt ¼ 1 ms h ¼ 0:01

hb ¼ 0:01
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Zenke and Gerstner, 2017): whenever strong presynaptic input arriving at synapses k 6¼ j drives the

firing of postsynaptic neuron i at a rate above q, the weight of a synapse j is downregulated if syn-

apse j does not receive any input, while the weights of synapses k 6¼ j are simultaneously increased

due to the first term (Lynch et al., 1977). Importantly, the threshold condition for the third term

(postsynaptic rate above q) is the same as that for induction of LTP in the first term so that if some

synapses are potentiated, silent synapses are depressed. In the model, heterosynaptic interaction

between synapses is induced since information about postsynaptic activity is shared across synapses.

This could be achieved in biological neurons via backpropagating action potentials or similar depo-

larization of the postsynaptic membrane potential at several synaptic locations; alternatively, hetero-

synaptic crosstalk could be implemented by signaling molecules. Note that since our neuron model

is a point neuron, all synapses are neighbors of each other. In our model, the ‘heterosynaptic’ term

has a negative sign which ensures that the weights cannot grow without bounds (Materials and

methods). In this sense, the third term has a ‘homeostatic’ function (Zenke and Gerstner, 2017), yet

acts on a time scale faster than experimentally observed homeostatic synaptic plasticity

(Turrigiano et al., 1998).

We ask whether such a biologically plausible plasticity rule enables adult-born DGCs to be inte-

grated in an existing network of mature cells. To address this question, we exploit two observations

(Figure 1a): first, the effect of interneurons onto newborn DGCs exhibits a GABA-switch from excit-

atory to inhibitory after about three weeks of maturation (Ge et al., 2006; Deng et al., 2010) and,

second, newborn DGCs receive input from interneurons early in their maturation (before the third

week), but project back to interneurons only later (Temprana et al., 2015). For simplicity, no plastic-

ity rule was implemented within the dentate gyrus: connections between newborn DGCs and inhibi-

tory cells are either absent or present with a fixed value (see below). However, before integration of

adult-born DGCs can be addressed, an adult-stage network where mature cells already store some

memories has to be constructed.

Mature neurons represent prototypical input patterns
In an adult-stage network, some mature cells already have a functional role. Hence, we start with a

network that already has strong random EC-to-DGC connection weights (Materials and methods).

We then pretrain our network of 100 DGCs using the same learning rule (Equation (1), with identical

learning rate h for all DGCs) that we will use later for the integration of newborn cells. For the stimu-

lation of EC cells, we apply patterns representing thousands of handwritten digits in different writing

styles from MNIST, a standard data set in artificial intelligence (Lecun et al., 1998). Even though we

do not expect EC neurons to show a two-dimensional arrangement, the use of two-dimensional pat-

terns provides a simple way to visualize the activity of all 144 EC neurons in our model (Figure 1d).

We implicitly model feedforward inhibition from PV-INs (Groisman et al., 2020; Figure 1—figure

supplement 1) by normalizing input patterns so that all inputs have the same amplitude (Materials

and methods). Below, we present results for a representative combination of three digits (digits 3, 4,

and 5), but other combinations of digits have also been tested (Supplementary file 1).

After pretraining with patterns from digits 3 and 4 in a variety of writing styles, we examine the

receptive field of each DGC. Each receptive field, consisting of the connections from all 144 EC neu-

rons onto one DGC, is characterized by its spatial structure (i.e. the pattern of connection weights)

and its total strength (i.e. the efficiency of the optimal stimulus to drive the cell). We observe that

out of the 100 DGCs, some have developed spatial receptive fields that correspond to different writ-

ing styles of digit 3, others receptive fields that correspond to variants of digit 4 (Figure 1e).

Behavioral discrimination has been shown to be correlated with classification accuracy based on

DGC population activity (Woods et al., 2020). Hence, to quantify the representation quality, we

compute classification performance by a linear classifier that is driven by the activity of our 100 DGC

model cells (Materials and methods). At the end of pretraining, the classification performance for

patterns of digits 3 and 4 from a distinct test set not used during pretraining is high: 99.25% (classifi-

cation performance on digit 3: 98.71%; digit 4: 99.80%), indicating that nearly all input patterns of

the two digits are well represented by the network of mature DGCs. The median classification per-

formance for 10 random combinations of two groups of pretrained digits is 98.54%, the

25th percentile 97.26%, and the 75th percentile 99.5% (Supplementary file 1).

A detailed mathematical analysis (Materials and methods) shows that heterosynaptic plasticity in

Equation (1) ensures that the total strength of the receptive field of each selective DGC converges

Gozel and Gerstner. eLife 2021;10:e66463. DOI: https://doi.org/10.7554/eLife.66463 5 of 37

Research article Computational and Systems Biology Neuroscience

https://doi.org/10.7554/eLife.66463


Figure 2. Newborn DGCs become selective for novel patterns during maturation. (a) Unselective neurons are replaced by newborn DGCs, which learn

their feedforward weights while patterns from digits 3, 4, and 5 are presented. At the end of the early phase of maturation, the receptive fields of all

newborn DGCs (red frames) show mixed selectivity. (b) At the end of the late phase of maturation, newborn DGCs are selective for patterns from the

novel digit 5, with different writing styles. (c, d) Distribution of the percentage of model DGCs (mean with 10th and 90th percentiles) in each firing rate

Figure 2 continued on next page
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to a stable value which is similar for selective DGCs confirming the homeostatic function of heterosy-

naptic plasticity (Zenke and Gerstner, 2017). As a consequence, synaptic weights are intrinsically

bounded without the need to impose hard bounds on the weight dynamics. Moreover, we find that

the spatial structure of the receptive field represents the weighted average of all those input

Figure 2 continued

bin at the end of the early (c) and late (d) phase of maturation. Statistics calculated across MNIST patterns (‘3’s, ‘4’s, ‘5’s). Percentages are per

subpopulation (mature and newborn). Note that neurons with firing rate < 1 Hz for one pattern may fire at medium or high rate for another pattern. (e)

The L2-norm of the feedforward weight vector onto newborn DGCs (mean ± SEM) increases as a function of maturation indicating growth of synapses

and receptive field strength. Horizontal axis: time = 1 indicates end of early (top) or late (bottom) phase (two epochs per phase, h ¼ 0:0005). (f)

Percentage of newborn DGCs activated (firing rate > 1 Hz) by a stimulus averaged over test patterns of digits 3, 4, and 5 as a function of maturation. (g)

At the end of the late phase of maturation, three different patterns of digit 5 applied to EC neurons (top) cause different firing rate patterns of the 100

DGCs arranged in a matrix of 10-by-10 cells (middle). DGCs with a receptive field (see b) similar to a presented EC activation pattern respond more

strongly than the others. Bottom: Firing rates of the DGCs with indices sorted from highest to lowest firing rate in response to the first pattern. All three

patterns shown come from the testing set, and are correctly classified using our readout network.

The online version of this article includes the following figure supplement(s) for figure 2:

Figure supplement 1. Activity of 100 model DGCs in response to different patterns.

Figure supplement 2. Receptive fields of DGCs.

Figure 3. The GABA-switch guides learning of novel representations. (a) Pretraining on digits 3, 4, and 5 simultaneously without neurogenesis (control

1). Patterns from digits 3, 4, and 5 are presented to the network while all DGCs learn their feedforward weights. After pretraining, 79 DGCs have

receptive fields corresponding to the three learned digits, while 21 remain unselective (as in Figure 1e). (b) Sequential training without neurogenesis

(control 2). After pretraining as in Figure 1e, the unresponsive neurons stay plastic, but they fail to become selective for digit 5 when patterns from

digits 3, 4, and 5 are presented in random order. (c) Sequential training without neurogenesis but all DGCs stay plastic (control 3). Some of the DGCs

previously responding to patterns from digits 3 or 4 become selective for digit 5. (d–f) Confusion matrices. Classification performance in percent (using

a linear classifier as readout network) for control 1 (d) and for the main model at the end of the early (e) and late (f) phase; Figure 2a,b.
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Figure 4. Novel patterns expand the representation into a previously empty subspace. (a) Left: The DGC activity responses at the end of the early

phase of maturation of newborn DGCs are projected on discriminatory axes. Each point corresponds to the representation of one input pattern. Color

indicates digit 3 (blue), 4 (green), and 5 (red). Right: Firing rate profiles of three example patterns (highlighted by crosses on the left) are sorted from

high to low for the pattern represented by the orange cross (inset: zoom of firing rates of DGCs with low activity). (b) Same as (a), but at the end of the

Figure 4 continued on next page
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patterns for which that DGC is responsive. The mathematical analysis also shows that those DGCs

that do not develop selectivity have weak synaptic connections and a very low total strength of the

receptive field.

After convergence of synaptic weights during pretraining, selective DGCs are considered mature

cells. Mature cells are less plastic than newborn cells (Schmidt-Hieber et al., 2004; Ge et al., 2007).

So in the following, unless specified otherwise, we set h ¼ 0 in Equation (1) for mature cells (feedfor-

ward connection weights from EC to mature cells remain therefore fixed). A scenario where mature

cells retain synaptic plasticity is also investigated (see Robustness of the model and

Supplementary file 4). Some DGCs did not develop any strong weight patterns during pretraining

and exhibit unselective receptive fields (highlighted in red in Figure 1e). We classify these as unre-

sponsive units.

Newborn neurons become selective for novel patterns during
maturation
In our main neurogenesis model, we replace unresponsive model units by plastic newborn DGCs

(h>0 in Equation (1)), which receive lateral GABAergic input but do not receive feedforward input

yet (all weights from EC are set to zero). The replacement of unresponsive neurons reflects the fact

that unresponsive units have weak synaptic connections and, experimentally, a lack of NMDA recep-

tor activation has been shown to be deleterious for the survival of newborn DGCs (Tashiro et al.,

2006). To mimic exposure of an animal to a novel set of stimuli, we now add input patterns from

digit 5 to the set of presented stimuli, which was previously limited to patterns of digits 3 and 4. The

novel patterns from digit 5 are randomly interspersed into the sequence of patterns from digits 3

and 4; in other words, the presentation sequence was not optimized with a specific goal in mind.

We postulate that functional integration of newborn DGCs requires the two-step maturation pro-

cess caused by the GABA-switch from excitation to inhibition. Since excitatory GABAergic input

potentially increases correlated activity within the dentate gyrus network, we predict that newborn

DGCs respond to familiar stimuli during the early phase of maturation, but not during the late phase,

when inhibitory GABAergic input leads to competition.

To test this hypothesis, our model newborn DGCs go through two maturation phases (Materials

and methods). The early phase of maturation is cooperative because, for each pattern presentation,

activated mature DGCs indirectly excite the newborn DGCs via GABAergic interneurons. We assume

that in natural settings, the activation of GABAA receptors is low enough that the mean membrane

potential remains below the chloride reversal potential at which shunting inhibition would be

induced (Heigele et al., 2016). In this regime, the net effect of synaptic activity is hence excitatory.

This lateral activation of newborn DGCs drives the growth of their receptive fields in a direction simi-

lar to those of the currently active mature DGCs. Consistent with our hypothesis we find that, at the

end of the early phase of maturation, newborn DGCs show a receptive field corresponding to a mix-

ture of several input patterns (Figure 2a).

In the late phase of maturation, model newborn DGCs receive inhibitory GABAergic input from

interneurons, similar to the input received by mature DGCs. Given that at the end of the early phase,

newborn DGCs have receptive fields similar to those of mature DGCs, lateral inhibition induces com-

petition with mature DGCs for activation during presentation of patterns from the novel digit.

Because model newborn DGCs start their late phase of maturation with a higher excitability (lower

threshold) compared to mature DGCs, consistent with observed enhanced excitability of newborn

cells (Schmidt-Hieber et al., 2004; Li et al., 2017), the activation of newborn DGCs is facilitated for

those input patterns for which no mature DGC has preexisting selectivity. Therefore, in the late

Figure 4 continued

late phase of maturation of newborn DGCs. Note that the red dots around the orange cross have moved into a different subspace. (c) Example

patterns of digit 5 corresponding to the symbols in (a) and (b). All three are accurately classified by our readout network. (d) Evolution of the mean (±

SEM) of the projection of the activity upon presentation of all test patterns of digit 5.

The online version of this article includes the following figure supplement(s) for figure 4:

Figure supplement 1. Receptive fields of the DGCs in a larger network with NDGC ¼ 700 (all other parameters unchanged).

Figure supplement 2. Receptive fields of the DGCs in a larger network with NDGC ¼ 700 (all other parameters unchanged), when only a fraction of
unresponsive units are replaced by newborn DGCs.
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phase of maturation, competition drives the synaptic weights of most newborn DGCs

toward receptive fields corresponding to different subcategories of the ensemble of input patterns

of the novel digit 5 (Figure 2b).

The total strength of the receptive field of a given DGC can be characterized by the sum of the

squared synaptic weights of all feedfoward projections onto the cell (i.e. the square of the L2-norm).

During maturation, the L2-norm of the feedforward weights onto newborn DGCs increases

(Figure 2e) indicating an increase in total glutamatergic innervation, e.g., through an increase in the

number and size of spines (Zhao et al., 2006). Nevertheless, the distribution of firing rates of new-

born DGCs is shifted to lower values at the end of the late phase compared to the end of the early

phase of maturation (Figure 2c,d), consistent with in vivo calcium imaging recordings showing that

newborn DGCs are more active than mature DGCs (Danielson et al., 2016).

We emphasize that upon presentation of a pattern of a given digit, only those DGCs with a

receptive field similar to the specific writing style of the presented pattern become strongly active,

others fire at a medium firing rate, yet others at a low rate (Figure 2g). As a consequence, the firing

rate of a particular newborn DGC at the end of its maturation to a pattern from digit 5 is strongly

modulated by the specific choice of stimulation pattern within the class of ‘5’s. Analogous results are

obtained for patterns from pretrained digits 3 and 4 (Figure 2—figure supplement 1). Hence, the

ensemble of DGCs is effectively performing pattern separation within each digit class as opposed to

a simple ternary classification task. The selectivity of newborn DGCs develops during maturation.

Indeed, during the late, competitive, phase, the percentage of active newborn DGCs decreases,

both upon presentation of familiar patterns (digits 3 and 4), as well as upon presentation of novel

patterns (digit 5) (Figure 2f). This reflects the development of the selectivity of our model newborn

DGCs from broad to narrow tuning, consistent with experimental observations (Marı́n-Burgin et al.,

2012; Danielson et al., 2016).

If two novel ensembles of digits (instead of a single one) are introduced during maturation of

newborn DGCs, we observe that some newborn DGCs become selective for one of the novel digits,

while others become selective for the other novel digit (Figure 2—figure supplement 2). This was

expected, since we have found earlier that DGCs are becoming selective for different prototype

writing styles even within a digit category; hence introducing several additional digit categories of

novel patterns simply increases the prototype diversity. Therefore, newborn DGCs can ultimately

promote separation of several novel overarching categories of patterns, no matter if they are

learned simultaneously or sequentially (Figure 2—figure supplement 2).

Adult-born neurons promote better discrimination
As above, we compute classification performance of our model network as a surrogate for behav-

ioral discrimination (Woods et al., 2020). At the end of the late phase of maturation of newborn

DGCs, we obtain an overall classification performance of 94.56% for the three ensembles of digits

(classification performance for digit 3: 90.50%; digit 4: 98.17%; digit 5: 95.18%). Confusion matrices

show that although novel patterns are not well classified at the end of the early phase of maturation

(Figure 3e), they are as well classified as pretrained patterns at the end of the late phase of matura-

tion (Figure 3f).

We compare this performance with that of a network where all three digit ensembles are directly

simultaneously pretrained starting from random weights (Figure 3a, control 1). In this case, the over-

all classification performance is 92.09% (classification performance for digit 3: 86.83%; digit 4:

98.78%; digit 5: 90.70%). The confusion matrix shows that all three digits are decently classified, but

with an overall lower performance (Figure 3d). Across 10 simulation experiments, classification per-

formance is significantly higher when a novel ensemble of patterns is learned sequentially by new-

born DGCs (P2; Supplementary file 1), than if all patterns are learned simultaneously (P1;

Supplementary file 1). Indeed, the distribution of P2 � P1 for the 10 simulation experiments has a

mean which is significantly different from zero (Wilcoxon signed rank test: p-val = 0.0020, Wilcoxon

signed rank = 55; one-way t-test: p-val = 0.0269, t-stat = 2.6401, df = 9; Supplementary file 1).

The GABA-switch guides learning of novel representations
To assess whether maturation of newborn DGCs promotes learning of a novel ensemble of digit pat-

terns, we compare our results with two control models without neurogenesis (controls 2 and 3).
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In control 2, similar to the neurogenesis case, the feedforward weights and thresholds of mature

DGCs are fixed (learning rate h ¼ 0) after pretraining with patterns from digits 3 and 4, while the

thresholds and weights of all unresponsive neurons remain plastic (h>0) upon introduction of pat-

terns from the novel digit 5. The only differences to the model with neurogenesis are that unrespon-

sive neurons: (1) keep their feedforward weights (i.e. no reinitialization to zero values) and (2) keep

the same connections from and to inhibitory neurons. In this case, we find that the previously unre-

sponsive DGCs do not become selective for the novel digit 5, no matter during how many epochs

patterns are presented (we went up to 100 epochs) (Figure 3b, control 2). Therefore, if patterns

from digit 5 are presented to the network, the model fails to discriminate them from the previously

learned digits 3 and 4: the overall classification performance is 81.69% (classification performance

for digit 3: 85.94%; digit 4: 97.56%; digit 5: 59.42%). This result suggests that integration of newborn

DGCs is beneficial for sequential learning of novel patterns.

In control 3, all DGCs keep plastic feedforward weights (learning rate h>0) after pretraining and

introduction of the novel digit 5, no matter if they became selective or not for the pretrained digits

3 and 4. We observe that in the case where all neurons are plastic, learning of the novel digit induces

a change in selectivity of mature neurons. Several DGCs switch their selectivity to become sensitive

to the novel digit (Figure 3c), while none of the previously unresponsive units becomes selective for

presented patterns (compare with Figure 1e). In contrast to the model with neurogenesis, we

observe a drop in classification performance to 90.92% (classification performance for digit 3:

85.45%; digit 4: 98.37%; digit 5: 88.90%). We find that the classification performance for digit 3 is

the one which decreases the most. This is due to the fact that many DGCs previously selective for

digit 3 modified their weights to become selective for digit 5. Importantly, the more novel patterns

are introduced, the more overwriting of previously stored memories occurs. Hence, if all DGCs

remain plastic, discrimination between a novel pattern and a familiar pattern stored long ago is

impaired.

Maturation of newborn neurons shapes the representation of novel
patterns
Since each input pattern stimulates slightly different, yet overlapping, subsets of the 100 model

DGCs in a sparse code such that about 20 DGCs respond to each pattern (Figure 2g), there is no

simple one-to-one assignment between neurons and patterns. In order to visualize the activity pat-

terns of the ensemble of DGCs, we perform dimensionality reduction. We construct a two-dimen-

sional space using the activity patterns of the network at the end of the late phase of maturation of

newborn DGCs trained with ‘3’s, ‘4’s and ‘5’s. One axis connects the center of mass (in the 100-

dimensional activity space) of all DGC responses to ‘3’s with all responses to ‘5’s (arbitrarily called

‘axis 1’) and the other axis those from ‘4’s to ‘5’s (arbitrarily called ‘axis 2’). We then project the

activity of the 100 model DGCs upon presentation of MNIST testing patterns onto those two axes,

both at the end of the early and late phase of maturation of newborn DGCs (Materials and meth-

ods). Each two-dimensional projection is illustrated by a dot whose color corresponds to the digit

class of the presented input pattern (blue for digit 3, green for digit 4, red for digit 5). Different

input patterns within the same digit class cause different activation patterns of the DGCs, as

depicted by extended clouds of dots of the same color (Figure 4a,b). Interestingly, an example pat-

tern of a ‘5’ that is visually similar to a ‘4’ (characterized by the green cross) yields a DGC representa-

tion that lies closer to other ‘4’s (green cloud of dots) than to typical ‘5’s (red cloud of dots)

(Figure 4b). Noteworthy the separation of the representation of ‘5’s from ‘3’s and ‘4’s is better at

end of the late phase (Figure 4b) when compared to the end of the early phase of maturation

(Figure 4a). For instance, even though the pattern ‘5’ corresponding to the orange cross is repre-

sented close to representations of ‘4’s at the end of the early phase of maturation (green cloud of

dots, Figure 4a), it is represented far from any ‘3’s and ‘4’s at the end of maturation (Figure 4b).

The expansion of the representation of ‘5’s into a previously empty subspace evolves as a function

of time during the late phase of maturation (Figure 4d).

Robustness of the model
Our results are robust to changes in network architecture. As mentioned earlier, neither the exact

number of GABAergic neurons (Supplementary file 2), nor that of DGCs is critical. Indeed, a larger
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network with 700 DGCs, thus mimicking the anatomically observed expansion factor of about 5

between EC and dentate gyrus (all other parameters unchanged), yields similar results

(Supplementary file 3).

In the network with 700 DGCs, 275 cells remain unresponsive after pretraining with digits 3 and

4. In line with our earlier approach in the network with 100 DGCs, we can algoritmically replace all

unresponsive neurons with newborn DGCs before patterns of digit 5 are added. Upon maturation,

newborn DGC receptive fields provide a detailed representation of the prototypes of the novel digit

5 (Figure 4—figure supplement 1) and good classification performance is obtained

(Supplementary file 3). Interestingly, due to the randomness of the recurrent connections, some

newborn DGCs become selective for particular prototypes of the familiar (pretrained) digits 3 and 4

that are not already extensively represented by the network (see newborn DGCs selective for digit 4

highlighted by magenta squares in Figure 4—figure supplement 1).

As an alternative to replacing all unresponsive cells simultaneously, we can also replace only a

fraction of them by newborn cells so as to simulate a continuous turn-over of cells. For example, if

119 of the 275 unresponsive cells are replaced by newborn DGCs before the start of presentations

of digit 5, then these 119 cells become selective for different writing styles and generic features of

the novel digit 5 (Figure 4—figure supplement 2) and allow a good classification performance of all

three digits. On the other hand, replacing only 35 of the 275 unresponsive cells is not sufficient

(Supplementary file 3). In an even bigger network with more than 144 EC cells and more than 700

DGCs, we could choose to replace 1% of the total DGC population per week by newborn cells, con-

sistent with biology (van Praag et al., 1999; Cameron and McKay, 2001). Importantly, if only a

small fraction of unresponsive cells are replaced at a given moment, other unresponsive cells remain

available to be replaced later by newborn DGCs that are then ready to learn new stimuli.

Interestingly, the timing of the introduction of the novel stimulus is important. In our main neuro-

genesis model with 100 DGCs, we introduce the novel digit 5 at the beginning of the early phase of

maturation, which consists of one epoch of MNIST training patterns (all patterns are presented

once). If the novel digit is only introduced in the middle of the early phase (half epoch), it cannot be

properly learned (classification performance for digit 5: 46.52%). However, if introduced after three-

eights or one-quarter of the early phase, the novel digit can be picked out (classification perfor-

mance for digit 5: 93.61% and 94.17%, respectively). We thus observe an increase in performance

the earlier the novel digit is introduced after cell birth (classification performance for digit 5 was

95.18% when introduced at the beginning of the early phase of maturation). Therefore, our model

predicts that a novel stimulus has to be introduced early enough with respect to newborn DGC mat-

uration to be well discriminated and that the accuracy of discrimination is better the earlier it is

introduced.

This could lead to an online scenario of our model, where adult-born DGCs are produced every

day and different classes of novel patterns are introduced at different timepoints. To understand

whether newborn DGCs in their early and late phase of maturation would interfere, two aspects

should be kept in mind. First, since model newborn DGCs in the early phase of maturation do not

project to other neurons yet, they do not influence the circuit and thus do not affect maturation of

other newborn DGCs. Second, since model newborn DGCs in the late phase of maturation project

to GABAergic neurons in the dentate gyrus, they will, just like mature cells, indirectly activate new-

born DGCs that are in their early phase of maturation. As a result, early phase newborn DGCs will

develop receptive fields that represent an average of all the stimuli that excite the mature and late

phase newborn DGCs, which indirectly activate them. The ultimate selectivity of newborn DGCs is

determined after the GABA-switch, when competition sets in, which makes those cells that have

recently switched most sensitive to aspects of the input patterns that are not yet well represented

by other cells. Therefore, in an online scenario, different model newborn DGCs would become selec-

tive for different novel patterns according to both their maturation stage with respect to presenta-

tion of the novel patterns, and the selectivity of mature and late phase newborn DGCs which

indirectly activate them.

Finally, in our neurogenesis model, we have set the learning rate of mature DGCs to zero despite

the observation that mature DGCs retain some plasticity (Schmidt-Hieber et al., 2004; Ge et al.,

2007). We therefore studied a variant of the model in which mature DGCs also exhibit plasticity.

First, we used our main model with 100 DGCs and 21 newborn DGCs. The implementation was iden-

tical, except that the learning rate of the mature DGCs was kept at a nonzero value during the
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maturation of the 21 newborn DGCs. We do not observe a large change in classification perfor-

mance, even if the learning rate of the mature cells is the same as that of newborn cells

(Supplementary file 4). Second, we used our extended network with 700 DGCs to be able to inves-

tigate the effect of plastic mature DGCs while having a proportion of newborn cells matching experi-

ments. We find that with 35 newborn DGCs (corresponding to the experimentally reported fraction

of about 5%), plastic mature DGCs (with a learning rate half of that of newborn cells) improve classi-

fication performance (Supplementary file 4). This is due to the fact that several of the mature DGCs

(that were previously selective for ‘3’s or ‘4’s) become selective for prototypes of the novel digit 5.

Consequently, more than the 35 newborn DGCs specialize for digit 5, so that digit 5 is eventually

represented better by the network with mature cell plasticity than the standard network where plas-

ticity is limited to newborn cells. Note that those mature DGCs that had earlier specialized on writ-

ing styles of digit 3 or 4 similar to a digit 5 are most likely to retune their selectivity. If the novel

inputs were very distinct from the pretrained familiar inputs, mature DGCs would be unlikely to

develop selectivity for the novel inputs.

Newborn DGCs become selective for similar novel patterns
To investigate whether our theory for integration of newborn DGCs can explain why adult dentate

gyrus neurogenesis promotes discrimination of similar stimuli, but does not affect discrimination of

distinct patterns (Clelland et al., 2009; Sahay et al., 2011a), we use a simplified competitive win-

ner-take-all network (Materials and methods). It contains only as many DGCs as trained clusters, and

the GABAergic inhibitory neurons are implicitly modeled through direct DGC-to-DGC inhibitory con-

nections. DGCs are either silent or active (binary activity state, while in the detailed network DGCs

had continuous firing rates). The synaptic plasticity rule is however the same as for the detailed net-

work, with different parameter values (Materials and methods). We also construct an artificial data

set (Figure 5a,b) that allows us to control the similarity s of pairs of clusters (Materials and methods).

The MNIST data set is not appropriate to distinguish similar from dissimilar patterns, because all

digit clusters are similar and highly overlapping, reflected by a high within cluster dispersion (e.g.

across the set of all ‘3’) compared to the separation between clusters (e.g. typical ‘3’ versus typical

‘5’).

After a pretraining period, a first mature DGC responds to patterns of cluster 1 and a second

mature DGC to those of cluster 2 (Figure 5e,f). We then fix the feedforward weights of those two

DGCs and introduce a newborn DGC in the network. Thereafter, we present patterns from three

clusters (the two pretrained ones, as well as a novel one), while the plastic feedforward weights of

the newborn DGC are the only ones that are updated. We observe that the newborn DGC ultimately

becomes selective for the novel cluster if it is similar (s ¼ 0:8) to the two pretrained clusters

(Figure 5i), but not if it is distinct (s ¼ 0:2, Figure 5j). The selectivity develops in two phases. In the

early phase of maturation of the newborn model cell, a pattern from the novel cluster that is similar

to one of the pretrained clusters activates the mature DGC that has a receptive field closest to the

novel pattern. The activated mature DGC drives the newborn DGC via lateral excitatory GABAergic

connections to a firing rate where LTP is triggered at active synapses onto the newborn DGC. LTP

also happens when a pattern from one of the pretrained clusters is presented. Thus, synaptic plastic-

ity leads to a receptive field that reflects the average of all stimuli from all three clusters (Figure 5g).

To summarize our findings in a more mathematical language, we characterize the receptive field

of the newborn cell by the vector of its feedforward weights. Analogous to the notion of a firing rate

vector that represents the set of firing rates of an ensemble of neurons, the feedforward weight vec-

tor represents the set of weights of all synapses projecting onto a given neuron (Figure 1b). In the

early phase of maturation, for similar clusters, the feedforward weight vector onto the newborn

DGC grows in the direction of the center of mass of all three clusters (the two pretrained ones and

the novel one), because for each pattern presentation, be it a novel pattern or a familiar one, one of

the mature DGCs becomes active and stimulates the newborn cell (compare Figure 5g and

Figure 5k). However, if the novel cluster has a low similarity to pretrained clusters, patterns from the

novel cluster do not activate any of the mature DGCs. Therefore, the receptive field of the newborn

cell reflects the average of stimuli from the two pretrained clusters only (compare Figure 5h and

Figure 5l).

As a result of the different orientation of the feedforward weight vector onto the newborn DGC

at the end of the early phase of maturation, two different situations arise in the late phase of
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maturation, when lateral GABAergic connections are inhibitory. If the novel cluster is similar to the

pretrained clusters, the weight vector onto the newborn DGC at the end of the early phase of matu-

ration lies at the center of mass of all the patterns across the three clusters. Thus, it is closer to the

novel cluster than the weight vector onto either of the mature DGCs (Figure 5g). So if a novel pat-

tern is presented, the newborn DGC wins the competition between the three DGCs, and its feedfor-

ward weight vector moves toward the center of mass of the novel cluster (Figure 5i). By contrast, if

the novel cluster is distinct, the weight vector onto the newborn DGC at the end of the early phase

of maturation is located at the center of mass of the two pretrained clusters (Figure 5h). If a novel

pattern is presented, no output unit is activated since their receptive fields are not similar enough to

the input pattern. Therefore, the newborn DGC always stays silent and does not update its feedfor-

ward weights (Figure 5j). These results are consistent with studies that have suggested that dentate

gyrus is only involved in the discrimination of similar stimuli, but not distinct stimuli (Gilbert et al.,

2001; Hunsaker and Kesner, 2008). For discrimination of distinct stimuli, another pathway might be

used, such as the direct EC to CA3 connection (Yeckel and Berger, 1990; Fyhn et al., 2007).

In conclusion, our model suggests that adult dentate gyrus neurogenesis promotes discrimination

of similar patterns because newborn DGCs can ultimately become selective for novel stimuli, which

are similar to already learned stimuli. On the other hand, newborn DGCs fail to represent novel dis-

tinct stimuli, precisely because they are too distinct from other stimuli already represented by the

Figure 5. A newborn DGC becomes selective for similar but not distinct novel stimuli. (a) Center of mass of clusters k and l of an artificial data set (~Pk

and ~Pl, respectively, separated by angle W) are represented by arrows that point to the surface of a hypersphere. Dots represent individual patterns. (b)

Center of mass of three clusters of the artificial data set, visualized as 16 � 8 pixel patterns. The two-dimensional arrangements and colors are for

visualization only. (c, d) Example input patterns (activity of 16 � 8 input neurons) from clusters 1 and 2 for similar clusters (c, s ¼ 0:8), and distinct clusters

(d, s ¼ 0:2). Below: dots correspond to patterns, crosses indicate the input patterns shown (schematic). (e, f) After pretraining with patterns from two

clusters, the receptive fields (set of synaptic weights onto neurons 1 and 2) exhibit the center of mass of each cluster of input patterns (blue and green

crosses). (g, h) Novel stimuli from cluster 3 (orange dots) are added. If the clusters are similar, the receptive field of the newborn DGC (red cross) moves

toward the center of mass of the three clusters during its early phase of maturation (g), and if the clusters are distinct toward the center of mass of the

two pretrained clusters (h). (i, j) Receptive field after the late phase of maturation for the case of similar (i) or distinct (j) clusters. (k, l) For comparison,

the center of mass of all patterns of the blue and green clusters (left column) and of the blue, green, and orange clusters (right column) for the case of

similar (k) or distinct (l) clusters. Color scale: input firing rate~x or weight ~wi normalized to jj~wijj ¼ 1 ¼ jj~xjj.
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network. Presentation of novel distinct stimuli in the late phase of maturation therefore does not

induce synaptic plasticity of the newborn DGC feedforward weight vector toward the novel stimuli.

In the simplified network, the transition between similar and distinct can be determined analytically

(Materials and methods). This analysis clarifies the importance of the switch from cooperative dynam-

ics (excitatory interactions) in the early phase to competitive dynamics (inhibitory interactions) in the

late phase of maturation.

Upon successful integration the receptive field of a newborn DGC
represents an average of novel stimuli
With the simplified model network, it is possible to analytically compute the maximal strength of the

DGC receptive field via the L2-norm of the feedforward weight vector onto the newborn DGC

(Materials and methods). In addition, the angle between the center of mass of the novel patterns

and the feedforward weight vector onto the adult-born DGC can also be analytically computed

(Materials and methods). To illustrate the analytical results and characterize the evolution of the

receptive field of the newborn DGC, we thus examine the angle j of the feedforward weight vector

with the center of mass of the novel cluster (i.e. the average of the novel stimuli), as a function of

maturation time (Figure 6b,c, Figure 6—figure supplement 1).

In the early phase of maturation, the feedforward weight vector onto the newborn DGC grows,

while its angle with the center of mass of the novel cluster stays constant (Figure 6—figure supple-

ment 1). In the late phase of maturation, the angle j between the center of mass of the novel cluster

and the feedforward weight vector onto the newborn DGC decreases in the case of similar patterns

(Figure 6c, Figure 6—figure supplement 1), but not in the case of distinct patterns (Figure 6—fig-

ure supplement 1), indicating that the newborn DGC becomes selective for the novel cluster for

similar but not for distinct patterns.

The analysis of the simplified model thus leads to a geometric picture that helps us to understand

how the similarity of patterns influences the evolution of the receptive field of the newborn DGC

before and after the switch from excitation to inhibition of the GABAergic input. For novel patterns

that are similar to known patterns, the receptive field of a newborn DGC at the end of maturation

represents the average of novel stimuli.

The cooperative phase of maturation promotes pattern separation for
any dimensionality of input data
Despite the fact that input patterns in our model represent the activity of 144 or 128 model EC cells,

the effective dimensionality of the input data was significantly below 100 because the clusters for dif-

ferent input classes were rather concentrated around their respective center of mass. We define the

effective input dimensionality as the participation ratio (Mazzucato et al., 2016; Litwin-

Kumar et al., 2017) (Materials and methods). Using this definition, the input data of both the MNIST

12 � 12 patterns from digits 3, 4, and 5 and the seven clusters of the handmade dataset for similar

patterns (s ¼ 0:8) are relatively low-dimensional (PR ¼ 19 of a maximum of 144, and PR ¼ 11 of a

maximum of 128, respectively). We emphasize that in both cases the spread of the input data

around the cluster center implies that the effective dimensionality is larger than the number of clus-

ters. In natural settings, we expect the input data to have even higher dimension. Therefore, here

we investigate the effect of dimensionality of the input data on our neurogenesis model by increas-

ing the spread around the cluster centers.

We use our simplified network model and create similar artificial datasets (s ¼ 0:8) with different

values for the concentration parameter k (Materials and methods). The smaller the k, the broader

the distributions around their center of mass; hence, the larger the overlap of patterns generated

from different cluster distributions. Therefore, we can increase the effective dimensionality of the

input by decreasing the concentration parameter k. First, as expected from our analytical analysis

(Materials and methods), we find that the broader the cluster distributions the smaller the length of

the feedforward weight vector onto newborn DGCs (from just below 1.5 with k ¼ 10
4 to about 1.35

with k ¼ 6 � 102). Second, we examine the ability of the simplified network to discriminate input pat-

terns coming from input spaces with different dimensionalities. To do so, we compare our neurogen-

esis model (Neuro.) with a random initialization model (RandInitL.). In both cases, two DGCs are

pretrained with patterns from two clusters, as above. Then we fix the weights of the two mature
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Figure 6. Maturation dynamics for similar patterns. (a) Schematics of the unit hypersphere with three clusters of patterns (colored dots) and three scaled

feedforward weight vectors (colored arrows). After pretraining, the blue and green weight vectors point to the center of mass of the corresponding

clusters. Patterns from the novel cluster (orange points) are presented only later to the network. During the early phase of maturation, the newborn

DGC grows its vector of feedforward weights (red arrow) in the direction of the subspace of patterns which indirectly activate the newborn cell (dark

grey star: center of mass of the presented patterns, located below the part of the sphere surface highlighted in grey). (b) During the late phase of

maturation, the red vector turns toward the novel cluster. The symbol j indicates the angle between the center of mass of the novel cluster and the

feedforward weight vector onto the newborn cell. (c) The angle j decreases in the late phase of maturation of the newborn DGC if the novel cluster is

similar to the previously stored clusters. Its final average value of f » 0:4� is caused by the jitter of the weight vector around the center of mass of the

novel cluster.

The online version of this article includes the following figure supplement(s) for figure 6:

Figure supplement 1. Evolution of the feedforward weight vector onto the newborn DGC.
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DGCs and introduce patterns from a third cluster as well as a newborn DGC. For the neurogenesis

case, after maturation of the newborn DGC we fix its weights (while for the random initialization

model we keep them plastic) upon introduction of patterns from a fourth cluster as well as another

newborn DGC, and so on until the network contains seven DGCs and patterns from the full dataset

of seven clusters have been presented. We compare our neurogenesis model, where each newborn

DGC starts with zero weights and undergo a two-phase maturation (one epoch per phase), with a

random initialization model where each newborn DGC is directly fully integrated into the circuit and

whose feedforward weight vector is randomly initialized with a length of 0.1 (RandInitL.) and is then

learned for two epochs.

Since clusters can be highly overlapping, we assess discrimination performance by computing the

reconstruction error at the end of training. Reconstruction error is evaluated analogously to classifi-

cation error, except that the readout layer has the task of an autoencoder: it contains as many read-

out units as there are input units. Reconstruction error is the mean squared distance between the

input vector and the reconstructed output vector based on testing patterns. We observe that for any

dimensionality of the input space, even as high as 97-dimensional, the neurogenesis model performs

better (has a lower total reconstruction error) than the random initialization model

(Supplementary file 5). Indeed, in the neurogenesis case newborn DGCs grow their feedforward

weights (from zero) in the direction of presented input patterns in their early cooperative phase of

maturation and can later become selective for novel patterns during the competitive phase. In con-

trast, since the random initialization model has no early cooperative phase, the newborn DGC

weight vector does not grow unless an input pattern is by chance well aligned with its randomly ini-

tialized weight vector (which is unlikely in a high-dimensional input space). We get similar results for

a larger initialization of the synaptic weights (e.g. the length of the weight vector at birth is set to 1,

results not shown). Importantly, in high input dimensions, the advantage of a larger weight vector

length at birth in the random initialization model is overridden by the capability of newborn DGCs to

grow their weight vector in the appropriate direction during their early cooperative phase of matura-

tion. Finally, we note that even if the length of the feedforward weight vector onto newborn DGCs is

set to 1.5 (RandInitH., Supplementary file 5), which is the upper bound according to our analytical

results (Materials and methods), the random initialization model performs worse than the neurogen-

esis model for low up to relatively high-dimensional input spaces (PR ¼ 83, Supplementary file 5)

despite its advantage in the competition conferred by the longer weight vector. It is only when input

clusters are extremely broad and overlapping that the random initialization model performs similarly

to the neurogenesis model (PR ¼ 90; 97, Supplementary file 5). In other words, a random initializa-

tion at full length of weight vectors works well if input data is homogeneously distributed on the

positive quadrant of the unit sphere but fails if the input data is clustered in a few directions. More-

over, random initialization requires that synaptic weights are large from the start which is biologically

not plausible. In summary, the two-phase neurogenesis model is advantageous because the feedfor-

ward weights onto newborn cells can start at arbitrarily small values; their growth is, during the

cooperative phase, guided to occur in a direction that is relevant for the task at hand; the final com-

petitive phase eventually enables specialization onto novel inputs.

Discussion
While experimental studies, such as manipulating the ratio of NKCC1 to KCC2, suggest that the

switch from excitation to inhibition of the GABAergic input onto adult-born DGCs is crucial for their

integration into the preexisting circuit (Ge et al., 2006; Alvarez et al., 2016) and that adult dentate

gyrus neurogenesis promotes pattern separation (Clelland et al., 2009; Sahay et al., 2011a;

Jessberger et al., 2009), the link between channel properties and behavior has remained puzzling

(Sahay et al., 2011b; Aimone et al., 2011). Our modeling work shows that the GABA-switch ena-

bles newborn DGCs to become selective for novel stimuli, which are similar to familiar, already-

stored, representations, consistent with the experimentally observed function of pattern separation

(Clelland et al., 2009; Sahay et al., 2011a; Jessberger et al., 2009).

Previous modeling studies already suggested that newborn DGCs integrate novel inputs into the

representation in dentate gyrus (Chambers et al., 2004; Becker, 2005; Crick and Miranker, 2006;

Wiskott et al., 2006; Chambers and Conroy, 2007; Appleby and Wiskott, 2009; Aimone et al.,

2009; Weisz and Argibay, 2009; Temprana et al., 2015; Finnegan and Becker, 2015;
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DeCostanzo et al., 2018). However, our work differs from them in four important aspects. First of

all, we implement an unsupervised biologically plausible plasticity rule, while many studies used

supervised algorithmic learning rules (Chambers et al., 2004; Becker, 2005; Chambers and Con-

roy, 2007; Weisz and Argibay, 2009; Finnegan and Becker, 2015; DeCostanzo et al., 2018). Sec-

ond, as we model the formerly neglected GABA-switch, the connection weights from EC to

newborn DGCs are grown from small values through cooperativity in the early phase of maturation.

This integration step was mostly bypassed in earlier models by initialization of the connectivity

weights toward newborn DGCs to random, yet fully grown values (Crick and Miranker, 2006;

Aimone et al., 2009; Weisz and Argibay, 2009; Finnegan and Becker, 2015). Third, as the dentate

gyrus network is commonly modeled as a competitive network, weight normalization is crucial. In

our framework, competition occurs during the late phase of maturation. Previous modeling works

either applied algorithmic weight normalization or hard bounds on the weights at each iteration step

(Crick and Miranker, 2006; Aimone et al., 2009; Weisz and Argibay, 2009; Temprana et al.,

2015; Finnegan and Becker, 2015). Instead, our plasticity rule includes heterosynaptic plasticity,

which intrinsically softly bounds connectivity weights by a homeostatic effect. Finally, although some

earlier computational models of adult dentate gyrus neurogenesis could explain the pattern separa-

tion abilities of newborn cells, separation was obtained independently of the similarity between the

stimuli. Contrarily to experimental data, no distinction was made between similar and distinct pat-

terns (Chambers et al., 2004; Becker, 2005; Crick and Miranker, 2006; Wiskott et al., 2006;

Chambers and Conroy, 2007; Aimone et al., 2009; Appleby and Wiskott, 2009; Weisz and Argi-

bay, 2012; Temprana et al., 2015; Finnegan and Becker, 2015; DeCostanzo et al., 2018). To our

knowledge, we present the first model that can explain both (1) how adult-born DGCs integrate into

the preexisting network and (2) why they promote pattern separation of similar stimuli and not dis-

tinct stimuli.

Our work emphasizes why a two-phase maturation of newborn DGCs is beneficial for proper inte-

gration in the preexisting network. From a computational perspective, the early phase of maturation,

when GABAergic inputs onto newborn DGCs are excitatory, corresponds to cooperative unsuper-

vised learning. Therefore, the synapses grow in the direction of patterns that indirectly activate the

newborn DGCs via GABAergic interneurons (Figure 6a). At the end of the early phase of maturation,

the receptive field of a newborn DGC represents the center of mass of all input patterns that led to

its (indirect) activation. In the late phase of maturation, GABAergic inputs onto newborn DGCs

become inhibitory, so that lateral interactions change from cooperation to competition, causing a

shift of the receptive fields of the newborn DGCs toward novel features (Figure 6b). At the end of

maturation, newborn DGCs are thus selective for novel inputs. This integration mechanism is in

agreement with the experimental observation that newborn DGCs are broadly tuned early in matu-

ration, yet highly selective at the end of maturation (Marı́n-Burgin et al., 2012; Danielson et al.,

2016). Loosely speaking, the cooperative phase of excitatory GABAergic input promotes the growth

of the synaptic weights coarsely in the relevant direction, whereas the competitive phase of inhibi-

tory GABAergic input helps to specialize on detailed, but potentially important differences between

patterns.

In the context of theories of unsupervised learning, the switch of lateral GABAergic input to new-

born DGCs from excitatory to inhibitory provides a biological solution to the ‘problem of unrespon-

sive units’ (Hertz et al., 1991). Unsupervised competitive learning has been used to perform

clustering of input patterns into a few categories (Rumelhart and Zipser, 1985; Grossberg, 1987;

Kohonen, 1989; Hertz et al., 1991; Du, 2010). Ideally, after learning of the feedforward weights

between an input layer and a competitive network, input patterns that are distinct from each other

activate different neuron assemblies of the competitive network. After convergence of competitive

Hebbian learning, the vector of feedforward weights onto a given neuron points to the center of

mass of the cluster of input patterns for which it is selective (Kohonen, 1989; Hertz et al., 1991).

Yet, if the synaptic weights are randomly initialized, it is possible that the set of feedforward weights

onto some neurons of the competitive network point in a direction ‘quasi-orthogonal’ (Materials and

methods) to the subspace of the presented input patterns. Therefore, those neurons, called ‘unre-

sponsive units’, will never get active during pattern presentation. Different learning strategies have

been developed in the field of artificial neural networks to avoid this problem (Grossberg, 1976;

Bienenstock et al., 1982; Rumelhart and Zipser, 1985; Grossberg, 1987; DeSieno, 1988; Koho-

nen, 1989; Hertz et al., 1991; Du, 2010). However, most of these algorithmic approaches lack a
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biological interpretation. In our model, weak synapses onto newborn DGCs form spontaneously after

neuronal birth. The excitatory GABAergic input in the early phase of maturation drives the growth of

the synaptic weights in the direction of the subspace of presented patterns that succeed in activat-

ing some of the mature DGCs. Hence, the early cooperative phase of maturation can be seen as a

smart initialization of the synaptic weights onto newborn DGCs, close enough to novel patterns so

as to become selective for them in the late competitive phase of maturation. However, the coopera-

tive phase is helpful only if the novel patterns are similar to the input statistics defined by the set of

known (familiar) patterns.

Our results are in line with the classic view that dentate gyrus is responsible for decorrelation of

inputs (Marr, 1969; Albus, 1971; Marr, 1971; Rolls and Treves, 1998), a necessary step for differ-

ential storage of similar memories in CA3, and with the observation that dentate gyrus lesions impair

discrimination of similar but not distinct stimuli (Gilbert et al., 2001; Hunsaker and Kesner, 2008).

To discriminate distinct stimuli, another pathway might be involved, such as the direct EC to CA3

connection (Yeckel and Berger, 1990; Fyhn et al., 2007).

The parallel of neurogenesis in dentate gyrus and olfactory bulb suggests that similar mechanisms

could be at work in both areas. Yet, even though adult olfactory bulb neurogenesis seems to have a

similar functional role to adult dentate gyrus neurogenesis (Sahay et al., 2011b), follow a similar

integration sequence and undergo a GABA-switch from excitatory to inhibitory, the circuits are dif-

ferent in several aspects. First, while newborn neurons in dentate gyrus are excitatory, newborn cells

in the olfactory bulb are inhibitory. Second, the newborn olfactory cells start firing action potentials

only once they are well integrated (Carleton et al., 2003). Therefore, in view of a transfer of results

to the olfactory bulb, it would be interesting to adjust our model of adult dentate gyrus neurogene-

sis accordingly. For example, a voltage-based synaptic plasticity rule could be used to account for

subthreshold plasticity mechanisms (Clopath et al., 2010).

Our model of transition from an early cooperative phase to a late competitive phase makes spe-

cific predictions, at the behavioral and cellular level. In our model, the early cooperative phase of

maturation can only drive the growth of synaptic weights onto newborn cells if they are indirectly

activated by mature DGCs through GABAergic input, which has an excitatory effect due to the high

NKCC1/KCC2 ratio early in maturation. Therefore, our model predicts that NKCC1-knockout mice

would be impaired in discriminating similar contexts or objects because newborn cells stay silent

due to lack of indirect activation. The feedforward weight vector onto newborn DGCs could not

grow in the early phase and newborn DGCs could not become selective for novel inputs. Therefore,

our model predicts that since newborn DGCs are poorly integrated into the preexisting circuit, they

are unlikely to survive. If, however, in the same paradigm newborn cells are activated by light-

induced or electrical stimulation, we predict that they become selective to novel patterns. Thus dis-

crimination abilities would be restored and newborn DGCs are likely to survive. Analogously, we pre-

dict that using inducible NKCC1-knockout mice, animals would gradually be impaired in

discrimination tasks after induced knockout and reach a stable maximum impairment about 3 weeks

after the start of induced knockout.

Experimental observations support the importance of the switch from early excitation to late inhi-

bition of the GABAergic input onto newborn DGCs. An absence of early excitation using NKCC1-

knockout mice has been shown to strongly affect synapse formation and dendritic development in

vivo (Ge et al., 2006). Conversely, a reduction in inhibition in the dentate gyrus through decrease in

KCC2 expression has been associated with epileptic activity (Pathak et al., 2007;

Barmashenko et al., 2011). An analogous switch of the GABAergic input has been observed during

development, and its proper timing has been shown to be crucial for sensorimotor gating and cogni-

tion (Wang and Kriegstein, 2011; Furukawa et al., 2017). In addition to early excitation and late

inhibition, our theory also critically depends on the time scale of the switching process. In our model,

the switch makes an instantaneous transition between early and late phase of maturation. Several

experimental results have suggested that the switch is indeed sharp and occurs within a single day,

both during development (Khazipov et al., 2004; Tyzio et al., 2007; Leonzino et al., 2016) and

adult dentate gyrus neurogenesis (Heigele et al., 2016). Furthermore, in hippocampal cell cultures,

expression of KCC2 is upregulated by GABAergic activity but not affected by glutamatergic activity

(Ganguly et al., 2001). A similar process during adult dentate gyrus neurogenesis would increase

the number of newborn DGCs available for representing novel features by advancing the timing of

their switch. In this way, instead of a few thousands of newborn DGCs ready to switch (3–6% of the
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whole population [van Praag et al., 1999; Cameron and McKay, 2001], divided by 30 days), a

larger fraction of newborn DGCs would be made available for coding, if appropriate stimulation

occurs. Finally, while neurotransmitter switching has been observed following sustained stimulation

for hours to days (Li et al., 2020), it is still unclear if it has the same functional role as the GABA-

switch in our model. In particular, it remains an open question if neurotransmitter switching pro-

motes the integration of neurons in the same way as our model GABA-switch does in the context of

adult dentate gyrus neurogenesis.

To conclude, our theory for integration of adult-born DGCs suggests that newborn cells have a

coding – rather than a modulatory – role during dentate gyrus pattern separation function. Our the-

ory highlights the importance of GABAergic input in adult dentate gyrus neurogenesis and links the

switch from excitation to inhibition to the integration of newborn DGCs into the preexisting circuit.

Finally, it illustrates how Hebbian plasticity of EC to DGC synapses along with the switch make new-

born cells suitable to promote pattern separation of similar but not distinct stimuli, a long-standing

mystery in the field of adult dentate gyrus neurogenesis (Sahay et al., 2011b; Aimone et al., 2011).

Materials and methods

Network architecture and neuronal dynamics
DGCs are the principal cells of the dentate gyrus. They mainly receive excitatory projections from

the EC through the perforant path and GABAergic inputs from local interneurons, as well as excit-

atory input from Mossy cells. They project to CA3 pyramidal cells and inhibitory neurons, as well as

local Mossy cells (Acsády et al., 1998; Henze et al., 2002; Amaral et al., 2007; Temprana et al.,

2015; Figure 1—figure supplement 1). In our model, we omit Mossy cells for simplicity and

describe the dentate gyrus as a competitive circuit consisting of NDGC DGCs and NI GABAergic inter-

neurons (Figure 1b). The activity of NEC neurons in EC represents an input pattern

~x ¼ ðx1; x2; :::; xNEC
Þ. Because the perforant path also induces strong feedforward inhibition in the den-

tate gyrus (Li et al., 2013), we assume that the effective EC activity is normalized, such that jj~xjj ¼ 1

for any input pattern ~x (Figure 1—figure supplement 1). We use P different input patterns ~x�,

1<�<P in the simulations of the model.

In our network, model EC neurons have excitatory all-to-all connections to the DGCs. In rodent

hippocampus, spiking mature DGCs activate interneurons in dentate gyrus, which in turn inhibit

other mature DGCs (Temprana et al., 2015; Alvarez et al., 2016). In our model, the DGCs are thus

recurrently connected with inhibitory neurons (Figure 1b). Connections from DGCs to interneurons

exist in our model with probability pIE and have a weight wIE. Similarly, connections from interneur-

ons to DGCs occur with probability pEI and have a weight wEI . All parameters are reported in Table 1

(Biologically plausible network).

Before an input pattern is presented, all rates of model DGCs are initialized to zero. We assume

that the DGCs have a frequency–current curve that is given by a rectified hyperbolic tangent

(Dayan and Abbott, 2001), which is similar to the frequency–current curve of spiking neuron models

with refractoriness (Gerstner et al., 2014). Moreover, we exploit the equivalence of two common

firing rate equations (Miller and Fumarola, 2012) and let the firing rate ni of DGC i upon stimulation

with input pattern~x evolve according to:

t m

dni

dt
¼�niþ tanh

½Ii� bi�þ
L

� �

(2)

where ½:�þ denotes rectification: ½a�þ ¼ a for a>0 and zero otherwise. Here, bi is a firing threshold, L is

the smoothness parameter of the frequency–current curve (L�1 is the slope of the frequency–current

curve at the firing threshold), and Ii the total input to cell i:

Ii ¼
X

NEC

j¼1

wijxjþ
X

NI

k¼1

wEI
ik n

I
k (3)

with xj the activity of EC input neuron j, wij>0 the feedforward weight from EC input neuron j to

DGC i, and wEI
ik the weight from inhibitory neuron k to DGC i. The sum runs over all inhibitory neu-

rons, but the weights are set to wEI
ik ¼ 0 if the connection is absent. The firing rate ni is unit-free and

Gozel and Gerstner. eLife 2021;10:e66463. DOI: https://doi.org/10.7554/eLife.66463 20 of 37

Research article Computational and Systems Biology Neuroscience

https://doi.org/10.7554/eLife.66463


normalized to a maximum of 1, which we interpret as a firing rate of 10 Hz. We take the synaptic

weights as unit-less parameters such that Ii is also unit-free.

The firing rate nIk of inhibitory neuron k, is defined as:

t inh

dnIk
dt

¼�nIk þ½IIk � p�NDGC�þ (4)

with p� a parameter which relates to the desired ensemble sparsity, and IIk the total input toward

interneuron k, given as:

IIk ¼
X

NDGC

i¼1

wIE
ki ni (5)

with wIE
ki the weight from DGC i to inhibitory neuron k. (We set wIE

ki ¼ 0 if the connection is absent.)

The feedback from inhibitory neurons ensures a sparse activity of model DGCs for each pattern.

With p� ¼ 0:1 we find that more than 70% of model DGCs are silent (firing rate < 1 Hz [Senzai and

Buzsáki, 2017]) when an input pattern is presented, and less than 10% are highly active (firing rate

> 1 Hz) (Figure 2c,d), consistent with the experimentally observed sparse activity in dentate gyrus

(Chawla et al., 2005).

Plasticity rule
Projections from EC onto newborn DGCs exhibit Hebbian plasticity (Schmidt-Hieber et al., 2004;

Ge et al., 2007; McHugh et al., 2007). Therefore, in our model, the connections from EC neurons

to DGCs are plastic, following a Hebbian learning rule that exhibits LTD or LTP depending on the fir-

ing rate ni of the postsynaptic cell (Bienenstock et al., 1982; Artola et al., 1990; Sjöström et al.,

2001; Pfister and Gerstner, 2006). Input patterns,~x�, 1<�<P, are presented in random order. For

each input pattern, we let the firing rate converge for a time T where T was chosen long enough to

achieve convergence to a precision of 10�6. After n� 1 presentations (i.e. at time ðn� 1Þ � T), the
weight vector has value w

ðn�1Þ
ij . We then present the next pattern and update at time n � T

(w
ðnÞ
ij ¼ w

ðn�1Þ
ij þ Dwij), according to the following plasticity rule (Equation (1), written here for

convenience):

Dwij ¼ hfgxjni½ni � ��þ �axjni½�� ni�þ �bwij½ni� ��þn3i g

where xj is the firing rate of presynaptic EC input neuron j, ni the firing rate of postsynaptic DGC i, h

the learning rate, q marks the transition from LTD to LTP, and the relative strength a, g of LTP and

LTD depend on q via a¼ a0

�3 >0 and g¼ g0 � �>0. The values of the parameters a0, g0, b, and q are

given in Table 1 (Biologically plausible network). The weights are hard-bounded from below at 0, i.

e., if Equation (1) leads to a new weight smaller than zero, wij is set to zero. The first two terms of

Equation (1) are a variation of the BCM rule (Bienenstock et al., 1982). The third term implements

heterosynaptic plasticity (Chistiakova et al., 2014; Zenke and Gerstner, 2017) with three important

features: first, heterosynaptic plasticity has a negative sign and therefore leads to synaptic depres-

sion; second, heterosynaptic plasticity sets in above a threshold (ni>�) that is the same threshold as

that for LTP, so that if LTP occurs at some synapses LTD is induced at other synapses; third, above

threshold the dependence upon the postsynaptic firing rate ni is supra-linear. The interaction of the

three different terms in the plasticity rule has several consequences. Because the first two terms of

the plasticity rule are Hebbian (‘homosynaptic’) and proportional to the presynaptic activity xj, the

active DGCs (ni>�) update their feedforward weights in direction of the input pattern ~x. Moreover,

whenever LTP occurs at some synapses, all weights onto neuron i are downregulated heterosynapti-

cally by an amount that increases supra-linearly with the postsynaptic rate ni, implicitly controlling

the length of the weight vector (see below) similar to synaptic homeostasis (Turrigiano et al., 1998)

but on a rapid time scale (Zenke and Gerstner, 2017). Analogous to learning in a competitive net-

work (Kohonen, 1989; Hertz et al., 1991), the vector of feedforward weights onto active DGCs will

move toward the center of mass of the cluster of patterns they are selective for, as we will discuss

now.
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For a given input pattern ~x�, there are three fixed points for the postsynaptic firing rate: ni ¼ 0,

ni ¼ �, and ni ¼ n̂i (the negative root is omitted because ni> 0 due to Equation (2)). For ni<�, there is

LTD, so the weights move toward zero: wij ! 0, while for ni>�, there is LTP, so the weights move

toward wij !
gx

�
j

bn̂2
i

(Figure 1c). The value of n̂i is defined implicitly by the network Equations (2–5). If a

pattern~x� is presented only for a short time these fixed points are not reached during a single pat-

tern presentation.

Winners, losers, and quasi-orthogonal inputs
We define the winners as the DGCs that become strongly active (ni>�) during presentation of an

input pattern. Since the input patterns are normalized to have an L2-norm of 1 (jj~x�jj ¼ 1 by construc-

tion), and the L2-norm of the feedforward weight vectors is bounded (see Section Direction and

length of the weight vector), the winning units are the ones whose weight vectors ~wi (row of the

feedforward connectivity matrix) align best with the current input pattern~x�.

We emphasize that all synaptic weights and all presynaptic firing rates nj are non-negative: wij> 0

and nj> 0. Thus, both the weight vectors and the vectors of input firing rates live in the positive

quadrant. The angle between an input pattern ~x� and the weight vector ~wi of neuron i can be at

most ninety degrees. We say that an input pattern~x� is ‘quasi-orthogonal’ to a weight vector ~wi if, in

the stationary state, the input is not sufficient to activate neuron i, i.e.,

Ii ¼
PNEC

j¼1
wijxj þ

PNI

k¼1
wEI
ik n

I
k<bi. If an input pattern~x� is quasi-orthogonal to a weight vector ~wi, then

neuron i does not fire in response to~x� after the stimulus has been applied for a long enough time.

Note that for a case without inhibitory neurons and with bi ! 0, we recover the standard orthogonal-

ity condition, but for finite bi>0 quasi-orthogonality corresponds to angles larger than some refer-

ence angle.

Direction and length of the weight vector
Let us denote the ensemble of patterns for which neuron i is a winner by Ci and call this the set of

winning patterns (Ci ¼ f�jni>�g). Suppose that neuron i is quasi-orthogonal to all other patterns, so

that for all �=2Ci, we have ni ¼ 0. Then the feedforward weight vector of neuron i converges in expec-

tation to:

~wi ¼
g

b

hG1ðniÞ~xi�2Ci

hG2ðniÞi�2Ci

(6)

where G1ðniÞ ¼ ðni � �Þni and G2ðniÞ ¼ ðni � �Þn3i . Hence ~wi is a weighted average over all winning

patterns.

The squared length of the feedforward weight vector can be computed by multiplying Equa-

tion (6) with ~wi:

jj~wijj2 ¼~wi �~wi ¼
g

b

hG1ðniÞ ~wi �~xð Þi�2Ci

hG2ðniÞi�2Ci

(7)

Since input patterns have length one, the scalar product on the right-hand side can be rewritten

as ~wi �~x¼ jj~wijjcosðaÞ where a is the angle between the weight vector and pattern~x. Division by jj~wijj
yields the L2-norm of the feedforward weight vector:

jj~wijj ¼
g

b

hG1ðniÞcosðaÞi�2Ci

hG2ðniÞi�2Ci

(8)

where the averages run, as before, over all winning patterns.

Let us now derive bounds for jj~wijj. First, since cosðaÞ< 1 we have hG1ðniÞ cosðaÞi�2Ci
< hG1ðniÞi�2Ci

.

Second, since for all winning patterns ni>�, where q is the LTP threshold, we have

hG2ðniÞi�2Ci
> hðni � �Þ nii�2. Thus the length of the weight vector is finite and bounded by:

jj~wijj<
g

b

hG1ðniÞi�2Ci

hG2ðniÞi�2Ci

<
g

b

1

�2
(9)
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It is possible to make the second bound tighter if we find the winning pattern with the smallest

firing rate nmin such that ni>nmin 8i2Ci:

jj~wijj<
g

b

1

nminð Þ2
(10)

The bound is reached if neuron i is winner for a single input pattern.

We can also derive a lower bound. For a pattern � 2 Ci, let us write the firing rate of neuron i as

nið�Þ ¼ �ni þ Dnið�Þ where �ni is the mean firing rate of neuron i averaged across all winning patterns

and hDnii�2Ci
¼ 0. We assume that the absolute size of Dni is small, i.e., hðDniÞ2i�2Ci

� ð�niÞ2. Lineariza-
tion of Equation (8) around �ni yields:

jj~wijj ¼
g

b

G1ð�niÞ
G2ð�niÞ

hcosðaÞi�2Ci
þ g

b

G0
1
ð�niÞ

G2ð�niÞ
hcosðaÞDnii�2Ci

(11)

Elementary geometric arguments for a neuron model with monotonically increasing frequency–

current curve yield that the value of hcosðaÞDnii�2Ci
is positive (or zero) because an increase in the

angle a lowers both the cosine and the firing rate, giving rise to a positive correlation. Since we are

interested in a lower bound, we can therefore drop the term proportional to G0
1
and evaluate the

ratio G1=G2 to find:

jj~wijj>
g

b

1

ð�niÞ2
hcosðaÞi�2Ci

>
g

b

1

ðnmaxÞ2
cosðâÞ (12)

where nmax is the maximal firing rate of a DGC and â¼max�2Ci
fag is the angle of the winning pat-

tern that has the largest angle with the weight vector. The first bound is tight and is reached if neu-

ron i is winner for only two patterns.

To summarize we find that the length of the weight vector remains bounded in a narrow range.

Hence, for a reasonable distribution of input patterns and weight vectors, the value of jj~wijj is similar

for different neurons i, so that the weight vector will have, after convergence, similar lengths for all

DGCs that are winners for at least one pattern. In our simulations with the MNIST data set, we find

that the length of feedforward weight vectors lies in the range between 9.3 and 11.1 across all

responsive neurons with a mean value close to 10; Figure 2e.

Early maturation phase
During the early phase of maturation, the GABAergic input onto a newborn DGC with index l has an

excitatory effect. In the model, it is implemented as follows: wEI
lk ¼ �wEI>0 with probability pEI for

any interneuron k and wEI
lk ¼ 0 otherwise (no connection). Since newborn cells do not project yet

onto inhibitory neurons (Temprana et al., 2015), we have wIE
kl ¼ 0 8l. Newborn DGCs are known to

have enhanced excitability (Schmidt-Hieber et al., 2004; Li et al., 2017), so their threshold is kept

at bl ¼ 0 8l. Because the newborn model DGCs receive lateral excitation via interneurons and their

thresholds are zero during the early phase of maturation, the lateral excitatory GABAergic input is

always sufficient to activate them. Hence, if the firing rate of a newborn DGC exceeds the LTP

threshold q, the feedforward weights grow toward the presented input pattern, Equation (1).

Presentation of all patterns of the data set once (one epoch) is sufficient to reach convergence of

the feedforward weights onto newborn DGCs. We define the end of the first epoch as the end of

the early phase, i.e., simulation of one epoch of the model corresponds to about 3 weeks of biologi-

cal time.

Late maturation phase
During the late phase of maturation (starting at about 3 weeks [Ge et al., 2006]), the GABAergic

input onto newborn DGCs switches from excitatory to inhibitory. In terms of our model, it means

that all existing wEI
lk connections switch their sign to wEI<0. Furthermore, since newborn DGCs

develop lateral connections to inhibitory neurons in the late maturation phase (Temprana et al.,

2015), we set wIE
kl ¼ wIE with probability pIE, and wIE

kl ¼ 0 otherwise. The thresholds of newborn

DGCs are updated after presentation of pattern m at time n � T (b
ðnÞ
l ¼ b

ðn�1Þ
l þ Dbl) according to
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Dbl ¼ hb nl � n0ð Þ, where n0 is a reference rate and hb a learning rate, to mimic the decrease of excit-

ability as newborn DGCs mature (Table 1, Biologically plausible network). Therefore, the distribution

of firing rates of newborn DGCs is shifted to the left (toward lower firing rates) at the end of the late

phase of maturation compared to the early phase of maturation (Figure 2c,d). A sufficient condition

for a newborn DGC to win the competition upon presentation of patterns of the novel cluster is that

the scalar product between a pattern of the novel cluster and the feedforward weight vector onto

the newborn DGC is larger than the scalar product between the pattern of the novel cluster and the

feedforward weight vector onto any of the mature DGCs. Analogous to the early phase of matura-

tion, presentation of all patterns of the data set once (one epoch) is sufficient to reach convergence

of the feedforward weights onto newborn DGCs. We therefore consider that the late phase of matu-

ration has been finished after one epoch.

Input patterns
Two different sets of input patterns are used. Both data sets have a number K of clusters and several

thousands of patterns per cluster. As a first data set, we use the MNIST 12 � 12 patterns

(Lecun et al., 1998) (NEC ¼ 144), normalized such that the L2-norm of each pattern is equal to 1.

Normalization of inputs (be it implemented algorithmically as done here or by explicit inhibitory

feedback) ensures that, once weight growth due to synaptic plasticity has ended and weights have

stabilized, the overall strength of input onto DGCs is approximately identical for all cells (see Section

Direction and length of the weight vector). Equalized lengths of weight vectors are, in turn, an

important feature of classic soft or hard competitive networks (Kohonen, 1989; Hertz et al., 1991).

The training set contains approximately 6000 patterns per digit, while the testing set contains about

1000 patterns per digit (Figure 1d). Both training patterns and test patterns contain a large variety

of different writing styles indicating that the clusters of input patterns for each class are broadly dis-

tributed around their center of mass.

As a second data set, we use handmade artificial patterns designed such that the distance

between the centers of any two clusters, or in other words their pairwise similarity, is the same. All

clusters lie on the positive quadrant of the surface of a hypersphere of dimension NEC � 1. The clus-

ter centers are Walsh patterns shifted along the diagonal (Figure 5b):

~P1 ¼ 1

c0
1þ �;1� �;1þ �;1� �; :::;1þ �;1� �;1þ �;1� �ð Þ

~P2 ¼ 1

c0
1þ �;1þ �;1� �;1� �; :::;1þ �;1þ �;1� �;1� �ð Þ

:::

~PK ¼ 1

c0
1þ �;1þ �;1þ �;1þ �; :::;1� �;1� �;1� �;1� �ð Þ

(13)

with j�j<1 a parameter that determines the spacing between clusters. c0 is a normalization factor to

ensure that the center of mass of all clusters has an L2-norm of 1:

c0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

NEC 1þ �2ð Þ
p

: (14)

The number of input neurons NEC is NEC ¼ 2
K . The scalar product, and hence the angle W,

between the center of mass of any pair of clusters k and l (k 6¼ l) is a function of x (Figure 5a):

~Pk �~Pl ¼ 1

1þ �2 ¼ cosðWÞ (15)

We define the pairwise similarity s of two clusters as: s¼ 1� �. Highly similar clusters have a large

s due to the small distance between their centers (hence a small x).

To make the artificial data set comparable to the MNIST 12 � 12 data set, we choose K ¼ 7, so

NEC ¼ 128, and we generate 6000 noisy patterns per cluster for the training set and 1000 other noisy

patterns per cluster for the testing set. Since our noisy high-dimensional input patterns have to be

symmetrically distributed around the centers of mass ~Pk, yet lie on the hypersphere, we have to use

an appropriate sampling method. The patterns ~x�ðkÞ of a given cluster k with center of mass ~Pk are

thus sampled from a Von Mises–Fisher distribution (Mardia and Jupp, 2009):
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~x�ðkÞ ~
ffiffiffiffiffiffiffiffiffiffiffiffi

1� a2
p� �

~zþ a~Pk (16)

with~z an L2-normalized vector taken in the space orthogonal to ~Pk. The vector~z is obtained by per-

forming the singular-value decomposition of ~Pk (USV� ¼~Pk) and multiplying the matrix U (after

removing its first column), which corresponds to the left-singular vectors in the orthogonal space to

~Pk, with a vector whose elements are drawn from the standard normal distribution. Then the L2-

norm of the obtained pattern is set to 1, so that it lies on the surface of the hypersphere. A rejection

sampling scheme is used to obtain a (Mardia and Jupp, 2009). The sample a is kept if

kaþðNEC � 1Þlnð1� aÞ� c> lnðuÞ, with k a concentration parameter,  ¼ 1�b
1þb

,

c¼ k þðNEC � 1Þlnð1� 2Þ, u drawn from a uniform distribution u~U½0;1�, a¼ 1�ð1þbÞz
1�ð1�bÞz,

b¼ NEC�1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4k2þðNEC�1Þ2
p

þ2k
, and z drawn from a beta distribution z~BeðNEC�1

2
;NEC�1

2
Þ.

The concentration parameter k characterizes the spread of the distribution around the center ~Pk.

In the limit where k ! 0, sampling from the Von Mises–Fisher distribution becomes equivalent to

sampling uniformly on the surface of the hypersphere, so the clusters become highly overlapping. In

dimension NEC ¼ 128, if k>103, the probability of overlap between clusters is negligible. We use a

value k ¼ 10
4.

Classification performance (readout network)
It has been observed that classification performance based on DGC population activity is a good

proxy for behavioral discrimination (Woods et al., 2020). Hence, to evaluate whether the newborn

DGCs contribute to the function of the dentate gyrus network, we study classification performance.

Once the feedforward weights have been adjusted upon presentation of many input patterns from

the training set (Section Plasticity rule), we keep them fixed and determine classification on the test

set using artificial readout units (RO).

To do so, the readout weights (wRO
ki from model DGC i to readout unit k) are initialized at random

values drawn from a uniform distribution: wRO
ki ~sUð0; 1Þ, with s ¼ 0:1. The number of readout units,

NRO, corresponds to the number of learned classes. To adjust the readout weights, all patterns of

the training data set that belong to the learned classes are presented one after the other. For each

pattern~x�, we let the firing rate of the DGCs converge (values at convergence: n�i ). The activity of a

readout unit k is given by:

n
RO;�
k ¼ g I

RO;�
k

� �

¼ g
X

NDGC

i¼1

wRO
ki n

�
i

 !

(17)

As we aim to assess the performance of the network of DGCs, the readout weights are adjusted

by an artificial supervised learning rule. The loss function, which corresponds to the difference

between the activity of the readout units and a one-hot representation of the corresponding pattern

label (Hertz et al., 1991),

LðWROÞ ¼ 1

2

X

NRO

k¼1

ðL�k � n
RO;�
k Þ2 (18)

with L
�
k the element k of a one-hot representation of the correct label of pattern~x�, is minimized by

stochastic gradient descent:

DwRO;�
ki ¼ hðL�k � n

RO;�
k Þg0 I

RO;�
k

� �

n
�
i : (19)

The readout units have a rectified hyperbolic tangent frequency-current curve: gðxÞ ¼ tanh 2½x�þ
� �

,

whose derivative is: g0ðxÞ ¼ 2 1� tanh 2½x�þ
� �� �2

� �

. We learn the weights of the readout units over 100

epochs of presentations of all training patterns with h¼ 0:01, which is sufficient to reach

convergence.

Thereafter, the readout weights are fixed. Each test set pattern belonging to one of the learned

classes is presented once, and the firing rates of the DGCs are let to converge. Finally, the activity of
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the readout units n
RO;�
k is computed and compared to the correct label L�k of the presented pattern.

If the readout unit with the highest activity value is the one that represents the class of the presented

input pattern, the pattern is said to be correctly classified. Classification performance is given by the

number of correctly classified patterns divided by the total number of test patterns of the learned

classes.

Control cases
In our standard setting, patterns from a third digit are presented to a network that has previously

only seen patterns from two digits. The question is whether neurogenesis helps when adding the

third digit. We use several control cases to compare with the neurogenesis case. In the first control

case, all three digits are learned in parallel (Figure 3a, control 1). In the two other control cases, we

either keep all feedforward connections toward the DGCs plastic (Figure 3c, control 3) or fix the

feedforward connections for all selective DGCs but keep unselective neurons plastic (as in the neuro-

genesis case) (Figure 3b, control 2). However, in both instances, the DGCs do not mature in the

two-step process induced by the GABA-switch that is part of our model of neurogenesis.

Pretraining with two digits
As we are interested by neurogenesis at the adult stage, we pretrain the network with patterns from

two digits, such that it already stores some memories before neurogenesis takes place. To do so, we

randomly initialize the weights from EC neurons to DGCs: they are drawn from a uniform distribution

(wij ~U½0; 1�). The L2-norm of the feedforward weight vector onto each DGC is then normalized to 1,

to ensure fair competition between DGCs during learning. Then we present all patterns from digits

3 and 4 in random order, as many times as needed for convergence of the weights. During each pat-

tern presentation the firing rates of the DGCs are computed (Section Network architecture and neu-

ronal dynamics) and their feedforward weights are updated according to our plasticity rule (Section

Plasticity rule). We find that we need approximately 40 epochs for convergence of the weights and

use 80 epochs to make sure that all weights are stable. At the end of pretraining, our network is con-

sidered to correspond to an adult stage, because some DGCs are selective for prototypes of the

pretrained digits (Figure 1e).

Projection on pairwise discriminatory axes
To assess how separability of the DGC activation patterns develops during the late phase of matura-

tion of newborn DGCs, we project the population activity onto axes which are optimized for pairwise

discrimination (patterns from digit 3 versus patterns from digit 5, 4 versus 5, and 3 versus 4). Those

axes are determined using Fisher linear discriminant analysis, as explained below.

We determine the vector of DGC firing rates, ~n, at the end of the late phase of maturation of

newborn DGCs upon presentation of each pattern, ~x, from digits 3, 4, and 5 of the training MNIST

dataset. The mean activity in response to all training patterns m from digit m, ~�m ¼ 1

Nm

P

�2m~n
�, is

computed for each of the three digits (Nm is the number of training patterns of digit m). The pairwise

Fisher linear discriminant is defined as the linear function ~wT~n that maximizes the distance between

the means of the projected activity in response to two digits (e.g. m and n), while normalizing for

within-digit variability. The objective function to maximize is thus given as:

JðwÞ ¼ wTSBw

wTSWw
(20)

with SB ¼ ð~�m�~�nÞð~�m�~�nÞT the between-digit scatter matrix, and SW ¼ SmþSn the within-digit scat-

ter matrix (Sm is the covariance matrix of the DGC activity in response to pattern of digit m, and Sn is

the covariance matrix of the DGC activity in response to pattern of digit n). It can be shown that the

direction of the optimal discriminatory axis between digit m and n is given by the eigenvector of

S�1

W SB with the corresponding largest eigenvalue.

We arbitrarily set ‘axis 1’ as the optimal discriminatory axis between digit 3 and digit 5, ‘axis 2’ as

the optimal discriminatory axis between digit 4 and digit 5, and ‘axis 3’ as the optimal discriminatory

axis between digit 3 and digit 4. For each of the three discriminatory axes, we define its origin (i.e.

projection value of 0) as the location of the average projection of all training patterns of the three
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digits on the corresponding axis. Figure 4 represents the projections of DGC activity upon presenta-

tion of testing patterns at the end of the early and late phase of maturation of newborn DGCs onto

the above-defined axes.

Statistics
In the main text, we present a representative example with three digits from the MNIST data set (3,

4, and 5). It is selected from a set of 10 random combinations of three different digits. For each com-

bination, one network is pretrained with two digits for 80 epochs. Then the third digit is added and

neurogenesis takes place (one epoch of early phase of maturation, and one epoch of late phase of

maturation). Furthermore, another network is pretrained directly with the three digits for 80 epochs.

Classification performance is reported for all combinations (Supplementary file 1).

Simplified rate network
We use a toy network and the artificial data set to determine whether our theory of integration of

newborn DGCs can explain why adult dentate gyrus neurogenesis helps for the discrimination of

similar, but not for distinct patterns.

The rate network described above is simplified as follows. We use K DGCs for K clusters. Their

firing rate ni is given by:

t m

dni

dt
¼�niþH Ii� bið Þ (21)

where H is the Heaviside step function. As before, bi is the threshold, and Ii the total input toward

neuron i:

Ii ¼
X

NEC

j¼1

wijxj þ
X

NDGC

k 6¼i

wrecnk (22)

with xj the input of presynaptic EC neuron j, wij the feedforward weight between EC neuron j and

DGC i, and nk the firing rate of DGC k. Inhibitory neurons are modeled implicitly: each DGC directly

connects to all other DGCs via inhibitory recurrent connections of value wrec<0. During presentation

of pattern ~x�, the firing rates of the DGCs evolve according to Equation (21). After convergence,

the feedforward weights are updated: w
ð�Þ
ij ¼w

ð��1Þ
ij þDwij. The synaptic plasticity rule is the same as

before, see Equation (1), but with the parameters reported in Table 1 (Simple network). They are

different from those of the biologically plausible network because we now aim for a single winning

neuron for each cluster. Note that for an LTP threshold �<1 all active DGCs update their feedforward

weights because of the Heaviside function for the firing rate (Equation 21).

Assuming a single winner i� for each pattern presentation, the input (Equation 22) to the winner

is:

Ii� ¼~wi� �~x; (23)

while the input to the losers is:

Ii ¼~wi �~xþwrec: (24)

Therefore, two conditions need to be satisfied for a solution with a single winner:

~wi� �~x>bi (25)

for the winner to actually be active, and:

~wi �~xþwrec<bi (26)

to prevent non-winners to become active. The value of bi in the model is lower in the early phase

than in the late phase of maturation to mimic enhanced excitability (Schmidt-Hieber et al., 2004;

Li et al., 2017).
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Similar versus distinct patterns with the artificial data set
Using the artificial data set with j�j<1 (Equation 13), the scalar product between the centers of mass

of two different clusters, given by Equation (15), satisfies: 0:5< 1

1þ�2 < 1. This corresponds to

0
�<W<Wmax ¼ 60

�.

After stimulation with a pattern ~x, it takes some time before the firing rates of the DGCs con-

verge. We call two patterns ‘similar’ if they activate, at least initially, the same output unit, while we

consider two patterns as ‘distinct’ if they do not activate the same output unit, not even initially. We

now show that, with a large concentration parameter k, patterns of different clusters are similar if

�<
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

jj~wijj
bi

� 1

q

and distinct if �>
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

jj~wi jj
bi

� 1

q

.

We first consider a DGC i whose feedforward weight vector has converged toward the center of

mass of cluster k. If an input pattern~x�ðkÞ from cluster k is presented, it will receive the following ini-

tial input:

Ii ¼~wi �~x�ðkÞ ¼ jj~wijj � jj~x�ðkÞjj � cosð#kkÞ ¼ jj~wijj � cosð#kkÞ (27)

where #kk is the angle between the pattern~x�ðkÞ and the center of mass ~Pk of the cluster to which it

belongs. The larger the concentration parameter k for the generation of the artificial data set, the

smaller the dispersion of the clusters, and thus the larger cosð#kkÞ. If instead, an input pattern from

cluster l is presented, that same DGC will receive a lower initial input:

Ii ¼~wi �~x�ðlÞ ¼ jj~wijj � jj~x�ðlÞjj � cosð#klÞ»
jj~wijj
1þ �2 (28)

The approximation holds for a small dispersion of the clusters (large concentration parameter k).

We note that there is no subtraction of the recurrent input yet because output units are initialized

with zero firing rate before each pattern presentation. By definition, similar patterns stimulate (ini-

tially) the same DGCs. A DGC can be active for two clusters only if its threshold is:

bi<
jj~wijj
1þ �2 (29)

Therefore, with a high concentration parameter k, patterns of different clusters are similar if

�<
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

jj~wijj
bi

� 1

q

, while patterns of different clusters are distinct if �>
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

jj~wijj
bi

� 1

q

.

Parameter choice
The upper bound of the expected L2-norm of the feedforward weight vector toward the DGCs at

convergence can be computed, see Equation (10). With the parameters in Table 1 (Simple network),

the value is jj~wijj< 1:5. Moreover, the input patterns for each cluster are highly concentrated; hence,

their angle with the center of mass of the cluster they belong to is close to 0, so we have jj~wijj » 1:5.
Therefore, at convergence, a DGC selective for a given cluster k receives an input Ii� ¼ ~wi� �~x�ðkÞ » 1:5
upon presentation of input patterns~x�ðkÞ belonging to cluster k. We choose bi ¼ 1:2 to satisfy Equa-

tion (25). Given bi the threshold value �thresh for which two clusters are similar (and above which two

clusters are distinct) can be determined by Equation (29) : �thresh ¼ 0:5. We created a handmade

data set with � ¼ 0:2 for the case of similar clusters (therefore with similarity s ¼ 0:8), and a hand-

made data set with � ¼ 0:8 for the distinct case (hence with similarity s ¼ 0:2).

Let us suppose that the weights of DGC i have converged and made this cell respond to patterns

of cluster i. If another DGC k of the network is selective for cluster k, cell i gets the input

Ii ¼ ~wi �~x�ðkÞ þ wrec »
1:5
1þ�2 þ wrec upon presentation of input patterns ~x�ðkÞ belonging to cluster k 6¼ i.

Hence, to satisfy Equation (26), we need wrec<bi �max�
1:5
1þ�2
� �

» � 0:24. We set wrec ¼ �1:2.

Furthermore, a newborn DGC is born with a null feedforward weight vector so that at birth, its

input consists only of the indirect excitatory input from mature DGCs, which vanishes if all DGCs are

quiescent and takes a value Ii ¼ �wrec>0 if a mature DGC responds to the input. For the feedforward

weight vector to grow, the newborn cell i needs to be active. This could be achieved through spon-

taneous activity that could be implemented by setting the intrinsic firing threshold at birth to a value
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bbirth<0. In this case, a difference between similar and distinct patterns is not expected. Alternatively,

activity of newborn cells can be achieved in the absence of spontaneous activity under the condition

�wrec>bbirth. For the simulations with the toy model, we set bbirth ¼ 0:9, which leads to weight growth

in newborn cells for similar, but not distinct patterns.

Neurogenesis with the artificial data set
To save computation time, we initialize the feedforward weight vectors of two mature DGCs at two

training patterns randomly chosen from the first two clusters, normalized such that they have an L2-

norm of 1.5. We then present patterns from clusters 1 and 2 and let the feedforward weights evolve

according to Equation (1) until they reach convergence.

We thereafter fix the feedforward weights onto the two mature cells and introduce a novel cluster

of patterns as well as a newborn DGC in the network. The sequence of presentation of patterns

from the three clusters (a novel one and two pretrained ones) is random. The newborn DGC is born

with a null feedforward weight vector, and its maturation follows the same rules as before (plastic

feedforward weights). In the early phase, GABAergic input has an excitatory effect (Ge et al., 2006)

and the newborn DGC does not inhibit the mature DGCs (Temprana et al., 2015). This is modeled

by setting wNM
rec

¼ �wrec for the connections from mature to newborn DGC, and wMN
rec

¼ 0 for the con-

nections from newborn to mature DGCs. The threshold of the newborn DGC starts at bbirth ¼ 0:9 at

birth, mimicking enhanced excitability (Schmidt-Hieber et al., 2004; Li et al., 2017), and increases

linearly up to 1.2 (same threshold as that of mature DGCs) over 12,000 pattern presentations,

reflecting loss of excitability with maturation. The exact time window is not critical. In the late phase

of maturation of the newborn DGC, GABAergic input switches to inhibitory (Ge et al., 2006), and

the newborn DGC recruits feedback inhibition onto mature DGCs (Temprana et al., 2015). It is

modeled by switching the sign of the connection from mature to newborn DGC: wNM
rec

¼ wrec and

establishing connections from newborn to mature DGCs: wMN
rec

¼ wrec. Each of the 6000 patterns is

presented once during the early phase of maturation and once during the late phase of maturation.

The above paradigm is run separately for each of the two handmade data sets: the one where

clusters are similar (s ¼ 0:8) and the one where clusters are distinct (s ¼ 0:2).

Analytical computation of the L2-norm and angle
We consider the case where two mature DGCs have learned their synaptic connections, such that

the first mature DGC with feedforward weight vector ~w1 is selective for cluster 1 with normalized

center of mass ~P1, and the second mature DGC with feedforward weight vector ~w2 is selective for

cluster 2 with normalized center of mass ~P2. After convergence, we have ~w1 ¼ hjj~w1jji~P1 and

~w2 ¼ hjj~w2jji~P2, where hjj~wkjji is the expected L2-norm of the feedforward weight vector onto mature

DGC k that is selective for pretrained cluster k. In addition, the upper bound for the L2-norm of the

weight vectors of the mature DGCs can be determined hjj~w1jji ¼ hjj~w2jji< 1:5. In our case, we obtain

hjj~w1jji ¼ hjj~w2jji » 1:49 because of the dispersion of the patterns around their center of mass; hence,

we will use this value for the numerical computations below.

We represent the feedforward weight vector ~wi onto a newborn DGC as an arrow of length

hjj~w1jji (Figure 6—figure supplement 1). We compute analytically its L2-norm at the end of the early

phase of maturation of the newborn DGC, as well as its angle j with the center of mass of the novel

cluster ~Pi, to confirm the results obtained numerically (Figure 6, Figure 6—figure supplement 1).

In the early phase of maturation, the feedforward weight vector onto the newborn DGC grows.

The norm stabilizes at a higher value in the case of similar patterns (s ¼ 0:8, Figure 6—figure supple-

ment 1) than in the case of distinct patterns (s ¼ 0:2, Figure 6—figure supplement 1). It is due to

the fact that the center of mass of three similar clusters lies closer to the surface of the sphere than

the center of mass of two distinct clusters (see below). In the late phase of maturation, for similar

clusters we observe a slight increase of the L2-norm of the feedforward weight vector onto the new-

born DGC concomitantly with the decrease of angle with the center of mass of the novel cluster (Fig-

ure 6—figure supplement 1), because the center of mass of the novel cluster lies closer to the

surface of the sphere than the center of mass of the three clusters.
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Similar clusters
The angle between the center of mass of any pair of similar clusters (s ¼ 0:8, � ¼ 0:2) is given by

Equation (15):

WS ¼ arccos
1

1þ 0:22

� �

(30)

Half the distance between the projections of the center of mass of any pair of two similar clusters

on a concentric sphere with radius hjj~w1jji is given by (Figure 6—figure supplement 1):

z¼ hjj~w1jji � sin
WS

2

� �

(31)

The triangle that connects the centers of masses of the three clusters is equilateral, and y sepa-

rates one of its angle in two equal parts (p=6 [rad] each). So the length y can be calculated:

y¼ z

cos p
6

� � (32)

Using Pythagoras formula, we can thus determine the expected L2-norm hjj~wijji of the feedfor-

ward weight vector onto the newborn DGC at the end of the early phase of maturation:

hjj~wijji ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

hjj~w1jji2� y2
q

; (33)

and finally its angle with the center of mass of the novel cluster:

f¼ arccos
hjj~wijji
hjj~w1jji

� �

(34)

The numerical values are as follows: hjj~wijji»1:47 and f»9:21½��, which correspond to the values

on Figure 6—figure supplement 1.

Distinct clusters
In the case of distinct patterns (s ¼ 0:2, � ¼ 0:8), the angle between the center of mass of any pair of

clusters is given by Equation (15):

WD ¼ arccos
1

1þ 0:82

� �

>WS (35)

We can directly compute the expected L2-norm of the feedforward weight vector onto the new-

born DGC at the end of the early phase of maturation (Figure 6—figure supplement 1):

hjj~wijji ¼ hjj~w1jji � cos
WD

2

� �

(36)

We can then calculate the length z between the projection of the center of mass of one of the

two pretrained clusters on a concentric sphere with radius hjj~w1jji and the feedforward weight vector

onto the newborn DGC:

z¼ hjj~w1jji � sin
WD

2

� �

(37)

Analogous to the similar case, we observe that y separates one angle of the equilateral triangle

connecting the projections of the center of mass of the clusters on the sphere in two equal parts,

consequently:

y¼ z

tan p
6

� � (38)

Finally, the angle between the center of mass of the novel cluster and the feedforward weight

vector onto the newborn DGC at the end of the early phase of maturation is:

Gozel and Gerstner. eLife 2021;10:e66463. DOI: https://doi.org/10.7554/eLife.66463 30 of 37

Research article Computational and Systems Biology Neuroscience

https://doi.org/10.7554/eLife.66463


f¼ arccos
hjj~wijji2þhjj~w1jji2 � y2

2hjj~wijjihjj~w1jji

 !

(39)

We obtain the following approximate values: hjj~wijji»1:34 and f»47:2½��, which correspond to the

values on Figure 6—figure supplement 1. The angle j is smaller in the similar case than in the dis-

tinct case, hence the norm is larger in the similar case, as observed in Figure 6—figure supplement

1.

Effective dimensionality and participation ratio
The effective dimensionality of the input is measured as the participation ratio (PR) defined as

PR ¼ ðTrðCÞÞ2=TrðC2Þ, where C is the covariance matrix of the input patterns, and TrðCÞ denotes the
trace of matrix C (Mazzucato et al., 2016; Litwin-Kumar et al., 2017).
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. Supplementary file 2. Comparison of networks with different numbers of inhibitory neurons. The

number of excitatory neurons is NDGC ¼ 100 for all three networks, and there are NI inhibitory neu-

rons. The case with NI ¼ 25 is the one presented in the main text. All other network parameters are

unchanged (including p�). Each network is pretrained once with digits 3 and 4. The percentage of

active neurons (firing rate > 1 Hz) for each testing pattern of the corresponding digit is given

(mean ± standard deviation), as well as the classification performance over all testing patterns from

the trained digits.

. Supplementary file 3. Network with 700 DGCs (expansion factor from EC to dentate gyrus of about

5) compared to the case with NDGC ¼ 100 as in the main text. All other network parameters are

unchanged. Each network is pretrained with digits 3 and 4. Note that only a subset of neurons

responsive to digit 3 (or 4) get active (firing rate > 1 Hz) for a given pattern 3 (or 4). Classification

performance is evaluated over all test patterns from the trained digits. Top: after pretraining; bot-

tom: late phase, after adding patterns from digit ‘5’. Either all unresponsive cells (Figure 4—figure

supplement 1), or only a fraction of these (Figure 4—figure supplement 2), have been replaced by

newborn model cells. For the network with 700 DGCs, about 16-18% of DGCs are activated upon

presentation of a digit 3 or 4 or 5 (about 112-126 model DGCs). If 119 newborn DGCs are plastic

during presentation of the novel digit 5 (middle column), these can become selective for prototypes

of digit 5 (Figure 4—figure supplement 2) yielding a good classification performance while keeping

156 unresponsive DGCs available for future tasks. If only 35 newborn DGCs are available, classifica-

tion performance is lower (right column).

. Supplementary file 4. Classification performance with plastic mature DGCs. Top: Using the main

neurogenesis network with NDGC ¼ 100 DGCs, we keep the learning rate of newborn DGCs at

h ¼ 0:01, but now set the learning rate of mature DGCs to nonzero values (hmature>0) throughout

maturation of newborn DGCs. This enables us to vary the level of remaining plasticity in mature

DGCs. The number of newborn DGCs that undergo neurogenesis (Nnewborn ¼ 21) is the same as in

the main text. Overall classification performance for digits 3, 4, and 5 (P) is computed at the end of

the late phase of maturation of newborn DGCs, as well as the classification performance for digit 3

(P3), digit 4 (P4) and digit 5 (P5). Bottom: Same with the extended neurogenesis network with

NDGC ¼ 700. The number of newborn DGCs is either set to Nnewborn ¼ 119 (corresponding to 17% of

newborn DGCs), or Nnewborn ¼ 35 (corresponding to 5% of newborn DGCs). The results with

hmature ¼ 0 from the main text are repeated here for convenience.

. Supplementary file 5. Comparison of the neurogenesis model and the random initialization model

for different input dimensionalities. The simplified model with s ¼ 0:8 (similar input clusters) is used.

Pretraining with two clusters and subsequent learning of a novel cluster 3 (Neuro.) was performed in

the same way as reported in the main text. After full maturation of the newborn DGC (two epochs),

its weights were fixed, and patterns of a novel cluster 4 were introduced as well as another newborn

DGC, and so on until all seven clusters were learned. Reconstruction errors were computed at the

end of learning of all seven clusters, and compared with two cases where newborn DGCs do not

undergo a two-phase maturation during their 2 epochs of learning, always stay plastic, and are born

with a randomly initialized feedforward weight vector: one where the L2-norm of the weight vector

starts at a low value of 0.1 (RandInitL.), and one where the L2-norm starts at 1.5, which is the upper

bound for the length of the weight vector (RandInitH.). We compare the reconstruction error

between the neurogenesis model and the random initialization models for different values of the

effective input dimensionality (PR), which depends on the concentration parameter (k) used when

creating the artificial dataset. The results with the dataset used in the main text (k ¼ 10
4, PR =11) are

reported here for comparison.

. Transparent reporting form

Data availability

Simulation and plotting scripts can be found at: https://github.com/ogozel/NeurogenesisModel

(copy archived at https://archive.softwareheritage.org/swh:1:rev:

e46f2dfc10c21d69ac057f31c5800f46644b004a).

The following previously published dataset was used:
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Author(s) Year Dataset title Dataset URL
Database and
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LeCun Y, Cortes C,
Burges CJC

1999 The MNIST database of
handwritten digits

http://yann.lecun.com/
exdb/mnist/

THE MNIST
DATABASE, yann.
lecun.com/exdb/
mnist/
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Johnston ST, Shtrahman M, Parylak S, Gonçalves JT, Gage FH. 2016. Paradox of pattern separation and adult
neurogenesis: a dual role for new neurons balancing memory resolution and robustness. Neurobiology of
Learning and Memory 129:60–68. DOI: https://doi.org/10.1016/j.nlm.2015.10.013, PMID: 26549627

Kee N, Teixeira CM, Wang AH, Frankland PW. 2007. Preferential incorporation of adult-generated granule cells
into spatial memory networks in the dentate gyrus. Nature Neuroscience 10:355–362. DOI: https://doi.org/10.
1038/nn1847, PMID: 17277773

Khazipov R, Khalilov I, Tyzio R, Morozova E, Ben-Ari Y, Holmes GL. 2004. Developmental changes in GABAergic
actions and seizure susceptibility in the rat hippocampus. European Journal of Neuroscience 19:590–600.
DOI: https://doi.org/10.1111/j.0953-816X.2003.03152.x, PMID: 14984409

Klausberger T, Somogyi P. 2008. Neuronal diversity and temporal dynamics: the unity of hippocampal circuit
operations. Science 321:53–57. DOI: https://doi.org/10.1126/science.1149381, PMID: 18599766

Kohonen T. 1989. Self-Organization and Associative Memory. Springer-Verlag. DOI: https://doi.org/10.1007/
978-3-642-88163-3

Lecun Y, Bottou L, Bengio Y, Haffner P. 1998. Gradient-based learning applied to document recognition.
Proceedings of the IEEE 86:2278–2324. DOI: https://doi.org/10.1109/5.726791

Leonzino M, Busnelli M, Antonucci F, Verderio C, Mazzanti M, Chini B. 2016. The timing of the excitatory-to-
inhibitory GABA switch is regulated by the oxytocin receptor via KCC2. Cell Reports 15:96–103. DOI: https://
doi.org/10.1016/j.celrep.2016.03.013, PMID: 27052180

Li Y, Stam FJ, Aimone JB, Goulding M, Callaway EM, Gage FH. 2013. Molecular layer perforant path-associated
cells contribute to feed-forward inhibition in the adult dentate gyrus. PNAS 110:9106–9111. DOI: https://doi.
org/10.1073/pnas.1306912110, PMID: 23671081

Li L, Sultan S, Heigele S, Schmidt-Salzmann C, Toni N, Bischofberger J. 2017. Silent synapses generate sparse
and orthogonal action potential firing in adult-born hippocampal granule cells. eLife 6:e23612. DOI: https://
doi.org/10.7554/eLife.23612, PMID: 28826488

Li HQ, Pratelli M, Godavarthi S, Zambetti S, Spitzer NC. 2020. Decoding neurotransmitter switching: the road
forward. The Journal of Neuroscience 40:4078–4089. DOI: https://doi.org/10.1523/JNEUROSCI.0005-20.2020,
PMID: 32434858

Litwin-Kumar A, Harris KD, Axel R, Sompolinsky H, Abbott LF. 2017. Optimal degrees of synaptic connectivity.
Neuron 93:1153–1164. DOI: https://doi.org/10.1016/j.neuron.2017.01.030, PMID: 28215558

Lynch GS, Dunwiddie T, Gribkoff V. 1977. Heterosynaptic depression: a postsynaptic correlate of long-term
potentiation. Nature 266:737–739. DOI: https://doi.org/10.1038/266737a0, PMID: 195211

Mardia KV, Jupp PE. 2009. Directional Statistics. John Wiley & Sons. DOI: https://doi.org/10.1002/
9780470316979

Marı́n-Burgin A, Mongiat LA, Pardi MB, Schinder AF. 2012. Unique processing during a period of high
excitation/inhibition balance in adult-born neurons. Science 335:1238–1242. DOI: https://doi.org/10.1126/
science.1214956, PMID: 22282476

Marr D. 1969. A theory of cerebellar cortex. The Journal of Physiology 202:437–470. DOI: https://doi.org/10.
1113/jphysiol.1969.sp008820, PMID: 5784296

Marr D. 1971. Simple memory: a theory for archicortex. Philosophical Transactions of the Royal Society of
London. Series B, Biological Sciences 262:23–81. DOI: https://doi.org/10.1098/rstb.1971.0078, PMID: 4399412

Mazzucato L, Fontanini A, La Camera G. 2016. Stimuli reduce the dimensionality of cortical activity. Frontiers in
Systems Neuroscience 10:11. DOI: https://doi.org/10.3389/fnsys.2016.00011, PMID: 26924968

McHugh TJ, Jones MW, Quinn JJ, Balthasar N, Coppari R, Elmquist JK, Lowell BB, Fanselow MS, Wilson MA,
Tonegawa S. 2007. Dentate gyrus NMDA receptors mediate rapid pattern separation in the hippocampal
network. Science 317:94–99. DOI: https://doi.org/10.1126/science.1140263, PMID: 17556551

Miller KD, Fumarola F. 2012. Mathematical equivalence of two common forms of firing rate models of neural
networks. Neural Computation 24:25–31. DOI: https://doi.org/10.1162/NECO_a_00221, PMID: 22023194

Owens DF, Kriegstein AR. 2002. Is there more to GABA than synaptic inhibition? Nature Reviews Neuroscience
3:715–727. DOI: https://doi.org/10.1038/nrn919, PMID: 12209120

Pathak HR, Weissinger F, Terunuma M, Carlson GC, Hsu FC, Moss SJ, Coulter DA. 2007. Disrupted dentate
granule cell chloride regulation enhances synaptic excitability during development of temporal lobe epilepsy.
Journal of Neuroscience 27:14012–14022. DOI: https://doi.org/10.1523/JNEUROSCI.4390-07.2007, PMID: 180
94240

Gozel and Gerstner. eLife 2021;10:e66463. DOI: https://doi.org/10.7554/eLife.66463 35 of 37

Research article Computational and Systems Biology Neuroscience

https://doi.org/10.1038/nn887
http://www.ncbi.nlm.nih.gov/pubmed/12118256
https://doi.org/10.1016/S0079-6123(07)63013-1
http://www.ncbi.nlm.nih.gov/pubmed/17765721
https://doi.org/10.1002/hipo.20455
https://doi.org/10.1002/hipo.20455
http://www.ncbi.nlm.nih.gov/pubmed/18493930
https://doi.org/10.1016/0163-1047(93)90664-4
http://www.ncbi.nlm.nih.gov/pubmed/8216164
https://doi.org/10.1101/lm.1172609
http://www.ncbi.nlm.nih.gov/pubmed/19181621
https://doi.org/10.1016/j.nlm.2015.10.013
http://www.ncbi.nlm.nih.gov/pubmed/26549627
https://doi.org/10.1038/nn1847
https://doi.org/10.1038/nn1847
http://www.ncbi.nlm.nih.gov/pubmed/17277773
https://doi.org/10.1111/j.0953-816X.2003.03152.x
http://www.ncbi.nlm.nih.gov/pubmed/14984409
https://doi.org/10.1126/science.1149381
http://www.ncbi.nlm.nih.gov/pubmed/18599766
https://doi.org/10.1007/978-3-642-88163-3
https://doi.org/10.1007/978-3-642-88163-3
https://doi.org/10.1109/5.726791
https://doi.org/10.1016/j.celrep.2016.03.013
https://doi.org/10.1016/j.celrep.2016.03.013
http://www.ncbi.nlm.nih.gov/pubmed/27052180
https://doi.org/10.1073/pnas.1306912110
https://doi.org/10.1073/pnas.1306912110
http://www.ncbi.nlm.nih.gov/pubmed/23671081
https://doi.org/10.7554/eLife.23612
https://doi.org/10.7554/eLife.23612
http://www.ncbi.nlm.nih.gov/pubmed/28826488
https://doi.org/10.1523/JNEUROSCI.0005-20.2020
http://www.ncbi.nlm.nih.gov/pubmed/32434858
https://doi.org/10.1016/j.neuron.2017.01.030
http://www.ncbi.nlm.nih.gov/pubmed/28215558
https://doi.org/10.1038/266737a0
http://www.ncbi.nlm.nih.gov/pubmed/195211
https://doi.org/10.1002/9780470316979
https://doi.org/10.1002/9780470316979
https://doi.org/10.1126/science.1214956
https://doi.org/10.1126/science.1214956
http://www.ncbi.nlm.nih.gov/pubmed/22282476
https://doi.org/10.1113/jphysiol.1969.sp008820
https://doi.org/10.1113/jphysiol.1969.sp008820
http://www.ncbi.nlm.nih.gov/pubmed/5784296
https://doi.org/10.1098/rstb.1971.0078
http://www.ncbi.nlm.nih.gov/pubmed/4399412
https://doi.org/10.3389/fnsys.2016.00011
http://www.ncbi.nlm.nih.gov/pubmed/26924968
https://doi.org/10.1126/science.1140263
http://www.ncbi.nlm.nih.gov/pubmed/17556551
https://doi.org/10.1162/NECO_a_00221
http://www.ncbi.nlm.nih.gov/pubmed/22023194
https://doi.org/10.1038/nrn919
http://www.ncbi.nlm.nih.gov/pubmed/12209120
https://doi.org/10.1523/JNEUROSCI.4390-07.2007
http://www.ncbi.nlm.nih.gov/pubmed/18094240
http://www.ncbi.nlm.nih.gov/pubmed/18094240
https://doi.org/10.7554/eLife.66463


Pfister JP, Gerstner W. 2006. Triplets of spikes in a model of spike timing-dependent plasticity. Journal of
Neuroscience 26:9673–9682. DOI: https://doi.org/10.1523/JNEUROSCI.1425-06.2006, PMID: 16988038

Rolls ET, Treves A. 1998. Neural Networks and Brain Function. Oxford: Oxford University Press. DOI: https://doi.
org/10.1093/acprof:oso/9780198524328.001.0001

Rumelhart DE, Zipser D. 1985. Feature discovery by competitive learning. Cognitive Science 9:75–112.
DOI: https://doi.org/10.1207/s15516709cog0901_5

Sahay A, Scobie KN, Hill AS, O’Carroll CM, Kheirbek MA, Burghardt NS, Fenton AA, Dranovsky A, Hen R. 2011a.
Increasing adult hippocampal neurogenesis is sufficient to improve pattern separation.Nature 472:466–470.
DOI: https://doi.org/10.1038/nature09817, PMID: 21460835

Sahay A, Wilson DA, Hen R. 2011b. Pattern separation: a common function for new neurons in hippocampus and
olfactory bulb. Neuron 70:582–588. DOI: https://doi.org/10.1016/j.neuron.2011.05.012, PMID: 21609817

Schmidt-Hieber C, Jonas P, Bischofberger J. 2004. Enhanced synaptic plasticity in newly generated granule cells
of the adult hippocampus. Nature 429:184–187. DOI: https://doi.org/10.1038/nature02553, PMID: 15107864
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