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Abstract: Despite the remarkable complexity of the individual neuron and of neuronal circuits, it has
been clear for quite a while that, in order to understand the functioning of the brain, the contribution of
other cell types in the brain have to be accounted for. Among glial cells, astrocytes have multiple roles
in orchestrating neuronal functions. Their communication with neurons by exchanging signaling
molecules and removing molecules from extracellular space takes place at several levels and is
governed by different cellular processes, supported by multiple cellular structures, including the
cytoskeleton. Intermediate filaments in astrocytes are emerging as important integrators of cellular
processes. Astrocytes express five types of intermediate filaments: glial fibrillary acidic protein (GFAP);
vimentin; nestin; synemin; lamins. Variability, interactions with different cellular structures and the
particular roles of individual intermediate filaments in astrocytes have been studied extensively in
the case of GFAP and vimentin, but far less attention has been given to nestin, synemin and lamins.
Similarly, the interplay between different types of cytoskeleton and the interaction between the
cytoskeleton and membranous structures, which is mediated by cytolinker proteins, are understudied
in astrocytes. The present review summarizes the basic properties of astrocytic intermediate filaments
and of other cytoskeletal macromolecules, such as cytolinker proteins, and describes the current
knowledge of their roles in normal physiological and pathological conditions.

Keywords: astrocytes; intermediate filaments; GFAP; vimentin; nestin; synemin; plectin; cytolinker
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1. Introduction

The first observation of neuroglia, made by Rudolf Virchow in 1858, was rather dubious.
He described it as a substance with a somewhat static role of holding together and giving form to the
nervous parts. In the period of silver staining, pioneered by Camillo Golgi, glia was first recognized
to possess proper cell characteristics and, before the turn of the 19th century, the most numerous
cells of glia were named astrocytes [1]. The interest of the scientific community in astrocytes then
slowed down for nearly a century, mainly because neurons were recognized as the single independent
anatomical and physiological unit of the nervous system, capable of efficient communication over long
distances [2]. Only when it became clear that astrocytes possess a specific form of calcium excitability,
and that they are (in addition to microglia) implicated in inflammatory responses [3], did astrocytes
recapture research attention in the scientific community [4–6]. Astrocytes were shown to be capable
of propagating waves of calcium between the cytosols of neighboring cells, which, considering their
abundance in the brain, was proposed to lead to an “extraneuronal pathway for rapid long-distance
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signal transmission within the central nervous system (CNS)” [5]. At the same time, Cornell-Bell
and coworkers [5] proposed that calcium dynamics in astrocytes may influence neuronal activity
in a bi-directional fashion. This new paradigm aroused the interest of several independent groups,
which before long confirmed that astrocytes can respond to glutamatergic synaptic transmission [7]
and vice versa—that calcium waves, initiated in astrocytes, can result in the modulation of neuronal
activity [8,9]. Hence, the term tripartite synapse was coined, whereby astrocytes were recognized as
partners of neurons that respond to synaptic activity and regulate synaptic transmission [10]. Research
carried out soon after the identification of bi-directional communication between astrocytes and neurons
suggested that one of the distinct pathways of astrocyte communication involves regulated exocytosis
(i.e., the release of “gliotransmitters” by astrocytes) [9]. A quintessential step of exocytosis in astrocytes
is vesicular transport [11], which precedes vesicle fusion and is governed not only by commonly
associated cytoskeletal elements (microtubules and actin filaments) but also by intermediate filaments
(IFs) [12,13]. Of course, the involvement of IFs in vesicular transport is distinct, because they are apolar,
which prevents them being used as tracks, unlike microtubules and actin meshwork, which are utilized
by specialized motor proteins that convert chemical energy into mechanical work [14].

Historically, the research on IFs in astrocytes did not start with vesicular transport. The first
visualization of IFs overlaps to some extent with the discovery of astrocytes, because Golgi’s silver
staining and its variations (notably Ramón and Cajal’s own astrocyte-specific gold sublimate stain)
target IFs among other cellular components [15]. Throughout the 20th century, a series of IF-related
discoveries were made, mainly in the field of keratins, which coincided with the development of new
methodologies and methods for the preparation of biological specimens (for an interesting review,
see [16]). One of the greatest challenges in the early stages of IF research was the classification
of different IF members in a common family. In contrast to highly conserved actin filaments and
microtubules, IFs derive from approximately 70 different genes, and the diversity of expressed proteins
is further increased by multiple splice variants of the same genes [17,18]. In addition, although IFs are
still commonly used as cell type markers, many cell types express more than one type of IF, and the
expression of individual IFs frequently also depends on the physiological state of the cell. For example,
glial fibrillary acidic protein (GFAP) was considered to be a reliable marker of glial and astrocyte cell
identity, yet current investigations have shown that GFAP is not an absolute marker of all non-reactive
astrocytes because it is often not immunohistochemically detectable in astrocytes of healthy CNS
tissue remote from CNS lesions [19]. Be that as it may, starting with the molecular characterization
of α-keratin in the early 1960s [20], ultrastructural analysis provided the first repeating pattern of
fibers in different cell types; the average diameter of these fibers was measured at ~10 nm [21–23].
This diameter is intermediate between that of microfilaments (~6 nm) and microtubules (~24 nm),
which earned this group of filaments its name [23]. At the time, various IFs were given a number
of different names and were frequently misidentified as microtubules [16]. In the 1970s and 1980s,
several types of IFs had been isolated, owing to their conspicuous insolubility, which, combined
with the development of molecular tools (including antibodies against individual IFs), facilitated the
research on IF structure and intracellular localization [24–27]. Systematic analysis of the molecular
organization of IFs revealed a typical tripartite structure, a globular N terminus (head) and C terminus,
connected by a central α-helical domain (the “rod”) with a number of coiled-coil segments of conserved
size [28]. Based on their amino acid sequence, protein structure and tissue-specific expression patterns,
IFs were initially classified into five groups [29]; however, after the discovery of nestin, Group VI was
added to the classification [30]. It was in 1971 that the first IF was identified in astrocytes. A well-known
characteristic of astrocytes, i.e., their ability to form fibers under a variety of pathological conditions
(fibrous gliosis), together with the acidic properties of the new isolated protein, were merged into
the name glial fibrillary acidic protein [3]. In the years that followed, astrocytes were also shown to
express vimentin, nestin, synemin and lamins, which intricately interact with each other as well as
with other filament types.
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2. Glial Fibrillary Acidic Protein and Vimentin

2.1. Structure and Expression of Glial Fibrillary Acidic Protein in Astrocytes

GFAP forms characteristic fibres in astrocytes and was first isolated from sections of elder human
brain that showed severe fibrous gliosis [3]. A substantial amount of research in the five decades since
the discovery of GFAP has resulted in extensive knowledge of its properties and functions. GFAP is the
principal astrocyte IF protein and is widely used as a diagnostic marker for astrocyte-derived human
neoplasms and as a marker of astrocytes and astrocyte precursors [31,32]. Despite high specificity for
astrocytes, GFAP is also expressed by neural stem cells and, albeit rarely, in non-glial cells [33–35].
Therefore, it was suggested that the proper detection of astrocytes should combine the identification of
different astrocyte markers, such as ALDH1L1 [36]. Ten splicing variants of GFAP mRNA have been
described so far, as shown in Table 1 (reviewed in [18,37]), ranging in approximate size between 38
and 50 kDa [38]. GFAP is a Type III IF [39] and, similar to other type III IFs, is able to form filaments
without a binding partner, although such homopolymers show atypical organization and tend to
cluster, as observed in mouse CNS [40,41].

Table 1. Astrocytes express five types of IF proteins. GFAP and vimentin isoforms are splice variants of
a single gene and lamin isoforms are encoded by different genes.

IF Protein Type Isoforms in Astrocytes Size (kDa) Function in Astrocytes

Glial fibrillary acidic
protein (GFAP) III α, β, γ, δ (ε), ξ, κ, ∆135, ∆164, ∆exon6,

∆exon7 [18,37] 38–50 [38]

Resistance to mechanical stress, cell
migration and motility, mitosis,
myelinization, maintenance and

permeability of the blood–brain barrier,
neurogenesis, chaperone-mediated

autophagy, vesicle mobility, glial scar
formation, response to hypoosmotic stress

[12,13,32,37,41–45]

Vimentin III No splice variants reported in astrocytes 57 [46]

Mechanical integrity of cells and tissues,
neurogenesis, glial scar formation, vesicle
trafficking, cell morphology, cell motility,

cell division, response to hypoosmotic
stress [12,13,41,43–45,47–49]

Nestin VI No splice variants reported in astrocytes 240 [50] Shape of protrusions, neurogenesis,
cell motility [44,51]

Synemin VI α, β (human), H, M, L (mouse) 230 [52], 180 H (α),150
M (β), 41 L [53,54] Astrocytoma motility [55]

Lamin V A, B1, B2, C 60–70 kDa [56]
Control of gene expression [57], transport

of neurofibromin to the nucleus [58],
nucleocytoplasmic transport [59]

The aberrant appearance of IFs is otherwise typical for a range of epithelial, muscle and neuronal
disorders, including gliomas and Alexander disease. GFAP is a standard marker of more differentiated
astrocytoma (i.e., a type of glioma with astrocyte features). However, a thorough analysis of the
reports focusing on GFAP expression in patients with astrocytoma did not confirm the correlation
between general GFAP expression and astrocytoma malignancy [60]. Instead, van Bodegraven and
coworkers proposed that astrocytoma malignancy is well reflected by the ratio of GFAP isoforms
GFAPδ and GFAPα (a canonical GFAP isoform), which could improve the accuracy of assessing
the differentiation state of this type of glioma [60]. GFAPδ is an endogenous GFAP isoform and
is typically expressed at low levels (~10%) [61]. In astrocytoma cells, the silencing of the GFAPα
isoform increased the GFAPδ/GFAPα transcript level ratio, as well as the expression of the extracellular
matrix protein laminin. Simultaneously, the downregulation of plectin mRNA and protein levels was
observed, which together resulted in the decreased mobility of cells [62]. Natural occurrence of GFAP
isoforms other than GFAPα, such as GFAPδ, implies that GFAP filaments can accommodate a small
proportion of other residues, including those with aggregation-prone mutations [61]. Alexander disease
is intrinsically linked to heterozygous mutations of GFAP gene [41,63]. Rosenthal fibers are composed
of numerous proteins, including several IFs, such as GFAP, vimentin, synemin and the cytolinker,
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plectin [64–66]. Vimentin and nestin are GFAP co-polymerization partners that form heteropolymers
in astrocytes [41,67], whereas GFAP merely associates with synemin [68].

Similar to other IFs, GFAP also shows a developmental pattern of expression. Its expression in rat
cortex gradually increases from embryonal to adult stage, showing an inverse trend compared with
other IFs (vimentin, nestin, synemin) [69]. The expression of GFAP in astrocytes is further enhanced
in pathological conditions, such as neurotrauma and neurodegenerative disorders [32], as reviewed
in Section 2.1. So far, the function of GFAP has been linked to a variety of processes implicated in
the signaling and structural properties of astrocytes, ranging from resistance to mechanical stress,
mitosis, the anchoring of transporters, the motility of cells, the mobility of vesicles and resistance
to oxidative and electrophilic stress, as shown in Table 1 [13,32,37,42,43,70]. Functional studies of
GFAP in astrocytes are in many cases linked and interpreted in combination with its polymerizing
partner vimentin.

2.2. Structure and Expression of Vimentin in Astrocytes

Vimentin is the most common co-polymerization partner of GFAP and is considered as the
principal IF, at least in adult astrocytes [71]. The discovery of vimentin, which is also a Type III IF,
dates back to 1978, when it was isolated from a murine embryonic fibroblast cell line, as shown in
Table 1 [46]. Reports of astrocytes positive for vimentin followed soon after [72–75].

Vimentin synthesis begins early during mammalian embryogenesis, and assembled vimentin
filaments were observed somewhere around days E7–E11 of mouse embryogenesis, depending on the
cell type [75]. Vimentin expression in astrocytes decreases with development and may completely
cease in adult CNS or remain expressed at detectable levels. For example, Bergmann glia, Müller glia,
radial glia and a subset of cortical astrocytes continue to express vimentin (together with GFAP) in the
adult stage, suggesting a functional role for vimentin in these cells [69,75,76]. Generally, the tendency
of vimentin expression to cease is reversed in different neurological conditions [48]; its increased
expression in reactive astrocytes in conjunction with GFAP is reviewed in Section 2.1.

Vimentin shares high sequence homology throughout vertebrates [77]. Similar to GFAP, it has
the ability to assemble into homopolymers or form heteropolymers with its co-polymerization
partners—these are GFAP, nestin, and synemin in the case of astrocytes [41,68]. Vimentin filaments
are highly dynamic structures. Similar to other IFs, their structure and assembly is regulated by
phosphorylation [41,78–80], influencing several cellular functions. As demonstrated in different cell
types, vimentin acts as an organizer of numerous crucial proteins involved in attachment, migration
and cell signaling [77]. Similarly, in astrocytes, vimentin has been demonstrated to influence mechanical
stability and the morphology of cells, cell motility, vesicle trafficking, the guiding of progenitors along the
glial scar, cell division and signaling where phosphorylation reactions play a significant part, as shown in
Table 1 [13,41,44,49,81]. Phosphorylation also regulates the interactions of vimentin with 14-3-3 proteins,
as demonstrated by the application of the phosphatase inhibitor calyculin A [82]. The 14-3-3 dimeric
phosphoserine/threonine-binding molecules are found in all eukaryotic organisms and participate in
developmental processes, signal transduction, checkpoint controls, nutrient sensing, and cell survival
pathways [83]. The sequestering of 14-3-3 molecules by phosphorylated vimentin is predicted to limit
its availability to other target proteins, thereby affecting intracellular signaling processes that require
pathways linked to 14-3-3 [82]. The phosphorylation-induced depolymerization of vimentin filaments
by calyculin A in astrocytes was demonstrated to severely reduce vesicle trafficking [13]. Similarly,
the absence of vimentin expression in astrocytes devoid of IFs (GFAP−/−Vim−/− astrocytes) attenuates
the displacement of vesicles, supporting the hypothesis that IFs are required for long-range directional
vesicle mobility by acting as a three-dimensional lattice [13]. A hypothesis has been proposed that
the upregulation of IFs in pathological states may alter the function of astrocytes by deregulating
the vesicle trafficking of vesicles carrying peptide, transporters and vesicles in endosomal/lysosomal
pathways [11,12,43]. Altered vesicle trafficking is also related to the redistribution of IFs in conditions
that are typically present in such states, as shown in Figure 1.
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Figure 1. Cellular distribution of GFAP and vimentin cytoskeleton in primary rat astrocytes in normal
conditions and in conditions that are typically present in pathological states. Astrocytes treated with
dbcAMP (N 6,2′-O -dibutyryladenosine 3′:5′ cyclic monophosphate), a membrane-permeable analogue
of cAMP, mimic general reactive gliosis. Hypotonic stimulation, on the other hand, leads readily to
astrocyte swelling, which is a part of the cytotoxic or cellular edema response. Changes in intracellular
arrangement of vimentin (A) and GFAP (B) filaments are evident in reactive astrocytes (after cAMP
stimulation) and after hypotonic stimulation (HYPO), as revealed by immunolabeling. Note also
the stellated morphology of astrocytes after the increase in cAMP. Hypotonic treatment triggered
depolymerization of vimentin filaments—selected areas (white squares) are magnified (2×)—in insets
Bars: 10 µm. Modified with permission from [84] (Regulation of AQP4 Surface Expression via Vesicle
Mobility in Astrocytes, GLIA, Copyright© 2013 Wiley Periodicals, Inc., (Hoboken, NJ, USA)).

2.3. Reactive Gliosis

As a consequence of any insult to the CNS (e.g., trauma, stroke or ischaemia), astrocytes respond
by changing their phenotype and gene expression. Hallmarks of this response, which is referred to as
reactive gliosis (also astrogliosis), are hypertrophy, proliferation and metabolic changes, which have
a multifaceted impact on pathological processes. The progression of neurodegenerative diseases,
including Alzheimer’s disease and amyotrophic lateral sclerosis, is associated with the accumulation
of reactive astrocytes producing toxic substances, such as reactive oxygen species and matrix
metalloproteases [85,86], whereas recovery from brain injuries is exacerbated by the ablation of
reactive astrocytes [87,88]. The production of extracellular matrix and factors promoting synapse
formation or pruning by reactive astrocytes is a determinant of prognosis for neuropathological
conditions, including post-traumatic epilepsy [89,90].

Reactive astrocytes are derived not only from astrocytes but apparently also from non-astrocytic
cells, such as neural stem cells or oligodendrocyte progenitor cells [91–93]. However, the significance
of reactive astrocytes derived from neuron-glial antigen 2 (NG2) expressing glia progenitors 2 is
controversial, because another line of evidence shows that a subset of astrocytes deriving from NG2
expressing glia progenitors is generated only in embryonic or fetal tissue [94]. Thus, reactive astrocyte
populations may consist of multiple cell types that are functionally diverse, and the selective detection
and manipulation of these subpopulations is proposed to have clinical relevance in a number of
conditions related to brain disorders. In vitro studies of reactive astrocytes have demonstrated
competitive regulations of astrocyte functions by pro-inflammatory cytokines and growth factors and
suggested the existence of diverse types of reactive astrocytes [95,96]. In agreement, transcriptome
analysis of reactive astrocytes induced by inflammation or brain injury showed distinct gene expression
profiles [97], and these reactive astrocytes were designated as A1 and A2 subtypes in subsequent
publication [98]. The distinct expression of IF genes is summarized in Figure 2, which is based on
the transcriptome databased related to the initial study [97]. Interestingly, GFAP is upregulated in
both the A1 and A2 reactive astrocytes, whereas vimentin expression is more prominent, and nestin
and plectin appear to be exclusively upregulated in the A2 subtype. It is not clear if microarray data
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included plectin rodless variants. The expression levels of these variants in the mouse brain are
approximately 20-times lower compared with the full-length counterparts [99]; however, it is not clear
how the reactivation of astrocytes affects their expression levels.

Cells 2020, 9, x FOR PEER REVIEW 6 of 24 

 

demonstrated competitive regulations of astrocyte functions by pro-inflammatory cytokines and 
growth factors and suggested the existence of diverse types of reactive astrocytes [95,96]. In 
agreement, transcriptome analysis of reactive astrocytes induced by inflammation or brain injury 
showed distinct gene expression profiles [97], and these reactive astrocytes were designated as A1 
and A2 subtypes in subsequent publication [98]. The distinct expression of IF genes is summarized 
in Figure 2, which is based on the transcriptome databased related to the initial study [97]. 
Interestingly, GFAP is upregulated in both the A1 and A2 reactive astrocytes, whereas vimentin 
expression is more prominent, and nestin and plectin appear to be exclusively upregulated in the A2 
subtype. It is not clear if microarray data included plectin rodless variants. The expression levels of 
these variants in the mouse brain are approximately 20-times lower compared with the full-length 
counterparts [99]; however, it is not clear how the reactivation of astrocytes affects their expression 
levels. 

 
Figure 2. Expression profile of intermediate filament and cytolinker genes in A1 and A2 reactive 
astrocytes. Microarray data provided in [98] are converted to Z scores and expressed as a heatmap. 
Saline-1 to -4 are controls of LPS treatments (A1 reactive astrocytes) and sham-1 to -4 are controls of 
MCAO (A2 reactive astrocytes), where LPS is Escherichia coli endotoxin O55:B55 and MCAO stands 
for transient ischaemia induced by occluding the middle cerebral artery. H2-T23 and Serping 1 are 
representative genes highly and selectively expressed in the A1 astrocyte subtype, whereas Clcf1 and 
Tgm 1 are specific for the A2 astrocyte subtype. 

Mouse models lacking IFs are a powerful tool for studying the formation and role of IFs in 
normal or reactive astrocytes in vivo and in astrocyte cultures [41]. The involvement of IFs in the 
functioning of reactive astrocytes has been studied extensively using GFAP−/− and/or Vim−/− mice. 
Reactive gliosis in GFAP−/−Vim−/− mice is generally less pronounced, which is detrimental for the initial 
spread of the injury; however, it is beneficial for the later regenerative phase [100,101]. Furthermore, 
the distinct roles of IFs in the A1 and A2 subtypes of reactive astrocytes [98] are suggested in studies 
of reactive gliosis in various pathological processes. Differences in the parameters of the affected area 
after brain injury, where predominantly the A2 subtype of reactive astrocytes accumulates, were 
observed only in the GFAP−/−Vim−/− mice. For example, glial scar formation after stab injury is reduced 
in the double knockout mice but not in the GFAP−/− mice [48,101]. Similarly, the infarct size after 
permanent occlusion of the middle cerebral artery and the lesion size after spinal cord injury are 
larger in the GFAP−/−Vim−/− mice [102,103]. Moreover, after brain injury, reactive astrocytes possess 
fewer and shorter processes in the double knockout mice. These results suggest that vimentin is 
crucial for neuroprotective A2 astrocytes, whereas GFAP deficiency can be compensated by the 
upregulation of vimentin and crosslinking capacity of plectin. In contrast, A1 reactive astrocytes, 
which accumulate in animal models of brain inflammation, were affected in the GFAP−/− mice, 
presumably due to the lower level of vimentin and plectin upregulation. Reactive astrocytes in an 

Figure 2. Expression profile of intermediate filament and cytolinker genes in A1 and A2 reactive
astrocytes. Microarray data provided in [98] are converted to Z scores and expressed as a heatmap.
Saline-1 to -4 are controls of LPS treatments (A1 reactive astrocytes) and sham-1 to -4 are controls of
MCAO (A2 reactive astrocytes), where LPS is Escherichia coli endotoxin O55:B55 and MCAO stands
for transient ischaemia induced by occluding the middle cerebral artery. H2-T23 and Serping 1 are
representative genes highly and selectively expressed in the A1 astrocyte subtype, whereas Clcf1 and
Tgm 1 are specific for the A2 astrocyte subtype.

Mouse models lacking IFs are a powerful tool for studying the formation and role of IFs in normal
or reactive astrocytes in vivo and in astrocyte cultures [41]. The involvement of IFs in the functioning
of reactive astrocytes has been studied extensively using GFAP−/− and/or Vim−/− mice. Reactive gliosis
in GFAP−/−Vim−/− mice is generally less pronounced, which is detrimental for the initial spread of the
injury; however, it is beneficial for the later regenerative phase [100,101]. Furthermore, the distinct
roles of IFs in the A1 and A2 subtypes of reactive astrocytes [98] are suggested in studies of reactive
gliosis in various pathological processes. Differences in the parameters of the affected area after
brain injury, where predominantly the A2 subtype of reactive astrocytes accumulates, were observed
only in the GFAP−/−Vim−/− mice. For example, glial scar formation after stab injury is reduced in the
double knockout mice but not in the GFAP−/− mice [48,101]. Similarly, the infarct size after permanent
occlusion of the middle cerebral artery and the lesion size after spinal cord injury are larger in the
GFAP−/−Vim−/− mice [102,103]. Moreover, after brain injury, reactive astrocytes possess fewer and
shorter processes in the double knockout mice. These results suggest that vimentin is crucial for
neuroprotective A2 astrocytes, whereas GFAP deficiency can be compensated by the upregulation of
vimentin and crosslinking capacity of plectin. In contrast, A1 reactive astrocytes, which accumulate
in animal models of brain inflammation, were affected in the GFAP−/− mice, presumably due to the
lower level of vimentin and plectin upregulation. Reactive astrocytes in an Alzheimer’s disease
model were identified as the A1 subtype by gene profile analysis [98], and the reaction of astrocytes
to β-amyloid was suppressed in the GFAP−/− mice [104]. The progression of neurodegeneration in a
brain autoimmune disease, called experimental autoimmune encephalomyelitis, was accelerated in
the GFAP−/− mice, reflecting the incomplete formation of the glial border surrounding a lesion [105].
The accumulation of reactive astrocytes after cerebral bacterial infection was suppressed in the GFAP−/−

mice, resulting in an increase in immune cell infiltration [106]. This line of evidence suggests that
the IFs of A1 reactive astrocytes are largely composed of GFAP alone, and the ablation of GFAP is
sufficient for suppressing hypertrophic morphology.
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3. Nestin

3.1. Structure of Nestin

Nestin is one of the earliest expressed IFs during brain development and is still regarded as a
neural progenitor cell (NPC) marker. The discovery of nestin coincides with a search for suitable
markers of major cell types in the developing nervous system. Hockfield and McKay observed that
antibody “Rat-401” identified proliferating cells in the early neural tube of rats [50]. The epitope
recognized by Rat-401 was shown to belong to a protein that was encoded by a gene specifically
expressed in neuroepithelial stem cells and thus named nestin [107]. True to its name, nestin expression
was shown to be downregulated after the differentiation of NPCs into neurons or glial cells [108,109].
Nonetheless, ensuing studies revealed that nestin expression is more promiscuous than suggested
initially; in addition to NPCs, other proliferative cell types, such as myoblasts and cancer cells (nestin is
a useful marker of high-grade gliomas [110]) and even a subpopulation of microglia, have been reported
to express nestin [111–115]. Moreover, together with vimentin and synemin, nestin is also expressed in
immature astrocytes [69,116]. The expression of nestin depends on the ubiquitin proteasome system,
similar to other IFs [117], and is restarted in reactive astrocytes [41,118,119], as further elaborated in
Section 2.1.

Nestin can form homodimers and homotetramers in vitro but cannot form IFs per se (similar to
synemin). In astrocytes, nestin can form heteropolymeric filaments with either vimentin or GFAP as
obligatory partners [41,48,120,121]. In accordance, different GFAP isoforms were shown to control
intermediate filament network dynamics, including those of nestin [122]. The intricate collaboration
of different types of IFs in filament formation is governed by the structure of individual IFs and the
nature of their interaction. In this respect, the interaction between the acidic α-helical rods and the
basic N-terminal head domain is critical for the formation of IFs. In the case of keratins and vimentin,
the complete removal of the head domain was shown to impair IF assembly beyond tetramers [123,124].
In contrast to the extremely long tail domain (more than 1300 amino acids in human and 1500 in rat
nestin [30,125]), the nestin head domain consists of only six amino acids. For comparison, the head
domain of vimentin and GFAP is composed of 82 and 48 amino acids, respectively [126]. Therefore,
the relatively small head domain of nestin appears to be the key structure that precludes nestin
assembling in filaments on its own.

Upon its identification, nestin was recognized to possess a unique structure and thus became
the prototype for a new IF protein group: Type VI [107]. Nestin shares a common structure
with the other IFs (as recently reviewed in detail in [127]) and exhibits gene structure and protein
similarities, especially with neurofilaments. Consequently, it was proposed that nestin should be
placed, together with neurofilaments, in Group IV IFs [125]; however, the unique α-helical region and
the presence of a third intron in the nestin gene were finally decisive for nestin to be classified in a
distinct group— Group VI. Nestin did not occupy Group VI of IFs alone for long. The sequencing of
synemin [54], as well as discoveries of tanabin (IF expressed in amphibians [128]) and transitin (IF
expressed in birds [129]), eventually joined nestin in Group VI IFs [130].

3.2. Expression and Function of Nestin in Astrocytes

Our knowledge of the functions of nestin in astrocytes is still very limited. Functions of nestin
may also be linked to its localization. The pattern of nestin distribution in astrocytes shows that
nestin protein and nestin mRNA are more prominently localized in cell protrusions than GFAP and
vimentin. Nestin’s extensive localization in astrocyte protrusions may have an important effect on the
reorganization of astrocyte morphology during CNS development and maintenance [131].

The upregulation of IFs (GFAP, vimentin) in astrocytes has a neuroprotective role in the initial phase
of brain injury, yet in the regenerative phases, it might also exhibit certain negative effects [100,101].
Accordingly, downregulation of the expression of IFs at the later phases of brain injury may improve the
neurosupportive properties of astrocytes. Clomipramine, which is classified as a tricyclic antidepressant,
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was shown to be a promising candidate for this task. Clomipramine did not affect astrocyte resilience
to oxidative stress; it decreased the protein levels of GFAP, vimentin and nestin and promoted the
attachment and survival of neurons co-cultured with astrocytes [132]. However, nestin is not relevant
solely in the reactive astrocytes of injured brains, because nestin is also apparently expressed in a
subset of astrocytes in the unchallenged hippocampus. Moreover, the expression of nestin in astrocytes
negatively regulates adult neurogenesis; this effect is mediated by notch signaling, which is crucial in
the differentiation stages of stem cells [51,133]. Nestin-containing cells, including immature astrocytes,
produce Notch1 mRNA [134]. Notch1 is one of the three Notch receptors involved in the elaborate
signaling system that plays many important roles in development and has been shown to promote
the proliferation and differentiation of reactive astrocytes, in particular within the subventricular
zone [135,136]. The absence of nestin in astrocytes likely impairs notch signaling by affecting trafficking
as well as the exo- and endocytosis of vesicles containing the Notch ligand, Jagged-1 [137,138]. As a
functional consequence of impaired notch signalling, nestin-deficient (Nes−/−) mice showed improved
(reversal place) learning as well as memory extinction on account of facilitated forgetting [51,139].

It has been proposed that, in progenitor cells, nestin, through promoting the disassembly of
vimentin filaments, has an important effect on the trafficking and delivery of IF proteins and other cellular
elements to daughter cells during cell division [140]. Cytoplasmic IFs, including nestin, are involved in
a dynamic turnover, which depends on intracellular retrograde and anterograde transport, mediated by
actin and microtubule meshworks, yet they also influence cell mobility. Wound-induced astrocyte
polarization induces the protein kinase C-dependent inhibition of dynein-dependent retrograde
transport, which promotes IF transport directed towards the cell front [141]. In turn, IFs (vimentin,
GFAP and nestin), in combination with the cytolinker plectin, govern the collective migration of
astrocytes by participating in the dynamics of the acto–myosin network [44]. The genetic ablation
of nestin alone is sufficient to cause a significant decrease in astrocyte migration [51]. The crosstalk
between the acto–myosin network and microtubules during the mobility of astrocytes is mediated
by adenomatous polyposis coli (APC), which is known to be a tumor suppressor, regulating cell
differentiation [142]. These results validate the active participation of IFs in astrocytes in adult
neurogenesis, CNS regulation and plasticity.

4. Synemin

4.1. Structure and Expression of Synemin

Synemin, a high-molecular-weight polypeptide, was first isolated from smooth and skeletal
muscle from chicken [52]. Later, it was discovered that human smooth and striated muscles express two
synemin isoforms—α synemin and β synemin (desmuslin)—that are encoded by a single gene [53,54].
On the other hand, mouse skeletal muscles express three isoforms: H and M isoforms, which are
similar in size to human α (180 kDa) and β (150 kDa) synemin, respectively, and a much smaller L
isoform (41 kDa) [143].

The expression of synemin in astrocytes was initially shown for rat brain [69] and subsequently
demonstrated by several other studies. Its expression follows a developmental pattern, whereby
subpopulations of astrocytes in cerebral cortices of rat embryos, new-born and postnatal pups were
shown to express synemin, whereas the cortices of adult (>60 days old) rats were devoid of synemin [69].
A similar developmental pattern of synemin expression was detected in mouse primary cultures
of GFAP and vimentin positive glial cells, prepared from embryonal (E16) brain and dorsal root
ganglia, where synemin also showed a decrease in expression during development [144]. Similarly,
adult astrocytes of rabbit spinal cord also lack synemin [145]. Interestingly, however, astrocytes in
adult bovine and rabbit optic nerves and astrocytes in adult rat retina express at least low levels of
synemin [145,146]. Beside the CNS, synemin was also found in rabbit non-myelin-forming Schwann
cells of the peripheral nervous system [145].
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In contrast to muscle cells [143], astrocytes and other glial cells (ependymal cells, Schwann cells),
along with neural precursors, express H and M synemin isoforms. There are no reports that astrocytes
also express the third isoform, L synemin. Although neurons in rat cerebral cortices are reported to be
apparently devoid of synemin [69], L synemin was detected in the neurons and ependymal cells of
adult mice, as well as in neurons differentiated from mouse pluripotent embryonal stem cells [144,147].
In addition, human astrocytic tumors contain the H and M synemin orthologues α synemin and β
synemin [55].

4.2. Subcellular Localization of Synemin

Synemin was found closely associated with desmin and vimentin when discovered in myotubes,
suggesting that it either interacts with other IFs or co-polymerizes with them [52]. Later, both assumptions
proved accurate. In mammalian muscle tissue, both α- and β synemin were shown to be incorporated
with desmin into heteropolymeric IFs [54]. In addition, experiments in mouse astrocytes demonstrated
that α synemin interacts with other IFs, namely with GFAP and vimentin filaments [68]. It appears
that synemin interacts with GFAP as an IF-associated protein, whereas with vimentin, it acts as a
polymerization partner that may function as an adaptor protein to enable synemin incorporation
into GFAP filaments [68]. It was proposed that synemin functions as a key crosslinking protein that
connects different cytoskeletal components [120,148], but thus far this theory has not been properly
tested in astrocytes. Synemin’s inability to polymerize into filaments without a binding partner may
be due to its short (10 amino acids) head domain, which is much smaller compared with the roughly
ten-times longer head domains of vimentin or desmin [54]. The ability of synemin to interact with
other proteins originates from its long C-terminal tail domain that can link heteropolymeric IFs to
other cytoplasmic components, such as vinculin and α-actinin, in striated muscle cells [120,148].

Knowledge about the interactions of synemin with different cytoskeleton proteins, along with its
subcellular distribution in astrocytes, is limited. The small number of studies that have dealt with this
issue have shown that the subcellular localization of synemin in astrocytes is heterogeneous. Synemin
can be found along the dense IF network around the nucleus, yet it is also present along dispersed
fibers in other cell regions [68]. Similarly, little is known about the detailed association with other
cytoskeletal proteins in astrocytes. In cultured astrocytes from mouse, where IF protein composition
resembles that of reactive astrocytes, synemin apparently does not co-localize with IF network-linked
structures rich in α-actinin or vinculin [68]. Nevertheless, synemin’s presence in the ruffled parts of
the plasmalemma of human astrocytoma cells, which are rich in α-actinin, opens the possibility that,
in tumors, synemin may interact with cell membranes and possibly play a role in cell motility [55].

4.3. Synemin in Reactive Astrocytes

When astrocytes become reactive, they start to express synemin, as was shown after neurotrauma
in mice and in human reactive astrocytes, where the expression of synemin was confirmed around
ischaemic lesions or epileptic foci [55]. Similar to the CNS, the upregulation of synemin has been
reported in retinal astrocytes in adult rats [146]. Therefore, the expression of synemin in reactive
astrocytes may be another promising marker for reactive gliosis in adults [68]. Reactive astrocytes
express synemin, which is predominately, but not exclusively, present in GFAP-positive astrocytes [68].
In addition to reactive astrocytes in mice, synemin’s presence has been immunohistochemically
documented in the human tissue of patients with Alexander disease [65]. Synemin was also detected
in many among the GFAP-positive reactive astrocytes in Rosenthal fibers, where it aggregated with
GFAP, the small stress proteins, HSP27 and αB-crystallin [65].

Further studies are needed to elucidate the meaning of specific synemin interactions with other
cytoskeleton proteins. With understanding of its developmentally regulated, as well as cell type-specific
expression pattern, including its expression in injured neuronal tissue (reactive astrocytes), we will get
a deeper insight into synemin’s physiological (and pathological) functions.
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5. Lamins

Unlike the other IFs, which are predominantly cytoplasmic, lamins form a scaffold in the
nucleoplasm, primarily at the nuclear periphery. In vertebrate cells, lamins were initially described
by Fawcett [149], who suggested (in 1966) that apart from the structural support, other functions
of “fibrous lamina” should be considered. This conclusion was drawn from the comparison of
nuclear size and the thickness/presence of this layer in cells of vertebrates and invertebrates. Today,
lamins are regarded as the only IFs that are universally expressed in metazoans [150]; in the 1960s,
there were only a few reports on the nuclear lamina. Nonetheless, Fawcett’s suggestion proved to
be appropriate, because, analogous to other IFs, lamins are responsible not only for maintaining the
structural integrity of the nucleus but they also participate in a multitude of other cellular functions,
including higher-order genome organization, the regulation of chromatin, DNA replication and repair,
and nuclear assembly/disassembly [151,152]. Ten years after their fibrous nature was described
in vertebrate cells, Aaronson and Blobel [153] reported that nuclear lamina contains three major
structurally related polypeptides, which were later named lamins A, B and C [154]. The ensuing
biochemical characterization of lamins, isolated from baby hamster kidney cells and cDNA cloning
(human T cells), have classified nuclear lamins as Type V IFs [155,156].

In mammalian somatic cells, four major lamin isoforms are expressed: lamins A and C, which are
classified into A-type lamins (encoded by the LMNA gene) and lamins B1 and B2, which represent B-type
lamins (encoded by the LMNB1 and LMNB2 genes, respectively) [151]. In glial cells, lamins (intranuclear
fibrils) were first reported in the ventral nerve cord of the leech Hirudo medicinalis [157]. In vertebrates,
biochemical and immunohistochemical studies confirmed the presence of lamins in the brain in the
1980s [158,159]. Soon after, their expression was also identified in all glial (and neuronal) cells in
rat CNS [160]. However, not all lamin isoforms are expressed simultaneously during development.
Lamins A and C are largely lacking in the developing embryo (mouse) brain (as well as from
several types of epithelial tissues), because their expression in the brain occurs only several days
after birth [161,162]. Conversely, all embryonic cells that are lamin A and C negative are lamin B
positive [161], and lamin B1 levels apparently modulate the differentiation of murine neural stem
cells (NSCs) into neurons (NSCs expressing high levels of lamin B1) and astroglial-like cells (NSCs
expressing low levels of lamin B1) [163]. In adult animals, lamins A and C are found in similar
amounts in most tissues, aside from the brain (with the exception of endothelial and meningeal cells).
This disproportion has been linked to the expression of a brain-specific microRNA, miR-9; glial cells
and neurons of mice express high levels of miR-9, which results in the downregulation of prelamin
and lamin A, but not lamin C expression [164]. In agreement, a recent report corroborated that adult
rat astrocytes showed immunoreactivity for lamins B1, B2 and C, but not for lamin A [165]; however,
some of the lamin A-positive astrocytes that did not express GFAP (marker used by the authors) may
have been missed in this report.

Many important roles of lamins in the structural organization of the nucleus and chromatin, as well
as genome regulation, have been discovered in the past two decades (reviewed in [151,152]). Some of
their functions are exerted by the direct binding of lamins to different replication and transcription
factors (e.g., proliferating cell nuclear antigen [57]), whereas other functions are indirect and are
mediated by lamin-binding proteins, such as emrin [166]. As the major component of lamina-genome
interaction, lamins most likely are also involved in the control of gene expression programs during
the lineage committed differentiation of neural precursor cells into astrocytes [167]. Noteworthy,
some of the lamin-binding proteins also connect lamins to the cytoplasm, including to the cytoskeleton.
The interaction to the cytoskeleton involves the linker of the nucleoskeleton and cytoskeleton (LINC)
complex, which connects lamins to the actin and intermediate filament cytoskeletons via direct or
plectin-mediated interactions [168,169].
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Lamins and Diseases

The research interest in lamins gained traction in the 1990s, when mutations in genes encoding
proteins of the nuclear lamina, especially lamins, were shown to cause different pathologies [170,171].
Since then, around 15 diseases, which are also known under the name laminopathies, were linked
to mutations in Lamin genes in humans [172]. Most of the laminopathies, such as lipodystrophy,
cardiac dystrophy, muscular dystrophy and skin or bone defects, affect tissues of mesodermal
origin [173]. Charcot-Marie-Tooth (CMT) disease encompasses a heterogeneous group of genetic
disorders, which is characterized by the loss of peripheral nerve myelination, affecting both the
motor and sensory nerves. Certain mutations in LMNA can cause CMT [174], but the CNS
in LMNA knockout mice is unaffected [175]. Nonetheless, clinical features typical of a CMT
neuropathy have been observed in patients with Fragile X-associated tremor/ataxia syndrome
(FXTAS) [176]. FXTAS is a neurodegenerative disorder with heterogeneous clinical presentation,
initiated by a CGG repeat expansion in the fragile X mental retardation 1 gene, which manifests as
intranuclear inclusions in neurons and astrocytes [177]. The presence of lamin A and C in the
neuronal and astrocytic intranuclear inclusions of FXTAS resembles the histopathology of some
disease-forming LMNA mutations, which suggests a functional connection between FXTAS and
CMT-type neuropathies [178,179]. Duchenne muscular dystrophy is another muscular disorder in
which (CNS-related) cognitive disturbances and neuropsychiatric symptoms are prevalent. In this case,
they are attributed, among others, to mutation in the Dp71 variant protein, which is expressed in neurons
and glial cells [180]. Interestingly, the expression of Dp71, which co-localizes with lamin B in healthy
astrocytes, is decreased in glioblastoma cells and localized in the cytoplasm, whereas the expression of
lamin B is increased [181]. Lamins A and C, on the other hand, play a prominent role in the transport
of neurofibromin to the nucleus in astrocytes and glioblastoma cells [58]. Neurofibromin is a tumor
suppressor that regulates RAS signaling in the cytoplasm, and hence also its downstream mediators,
PI3K (phosphatidylinositol 3-kinase)/mTOR (mammalian target of rapamycin) [182]. mTOR plays a
crucial role in regulating autophagy, which has been observed in astrocytes in conditions mimicking
those present at ischaemic stroke and was accompanied by lamin A cleavage [183].

Lamins in astrocytes have been proposed to also play a role in viral infections (lamins A and C
may promote virus egress [184]), amyotrophic lateral sclerosis (GFAP-expressing astrocytes in lumbar
spinal cord express nuclear p16INK4a, which is typically accompanied by the loss of lamin B1 [185]) and
even during chronic alcohol exposure (the decreased expression and redistribution of lamins A and C
affect nucleocytoplasmic transport [59]). Further investigation is warranted to gain full insights into
lamin-related functions in astrocytes and, especially, to define the clinical significance of the astrocytic
phenotypes in certain laminopathies.

6. Cytolinkers and Related Proteins

6.1. Structure and Expression in Astrocytes

In eukaryotic cells, the three main types of cytoskeletal filaments form highly organized networks,
which are interconnected by crosslinking proteins that also ensure their anchorage to junctional
complexes. The crosstalk between different cytoskeletal filament systems, mediated by crosslinking
proteins, is essential for a variety of biological processes in the which synchronous response of more than
one filament type is required, such as in cell migration. Giant cytolinkers of the plakin/spectraplakin
family of proteins represent some of the most important cytoskeletal linker elements [186,187]. Of the
nine family members discovered to date, seven have been identified in mammals: bullous pemphigoid
antigen 1 (BPAG1; also known as dystonin), microtubule actin crosslinking factor 1 (MACF1; also called
ACF7 [188], trabeculin [189] and macrophin [190]), plectin, desmoplakin, envoplakin, periplakin and
epiplakin [191]. With the exception of MACF1 and epiplakin, mammalian plakins share a plakin domain
(consisting of two stretches of spectrin repeats separated by a Src-Homology 3 [SH3] domain) that
mediates protein–protein interactions. In addition, individual plakins comprise distinct combinations
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of various domains, including an actin binding domain (ABD), coiled-coil rod domains of varied
lengths, spectrin repeat-containing rod domains, different numbers of plectin/plakin-repeat domains,
EF-hand motifs, a growth arrest specific 2 (GAS2)-related protein (GAR) domain and a domain
containing a series of glycine–serine–arginine (GSR) repeats. Interestingly, of all the members of the
plakin family, only plectin has been unambiguously shown to be expressed in astrocytes [192,193].

Nonetheless, a few reports indicate that desmoplakin might be present in human astrocytes in
certain conditions, given that electron microscopy has revealed structures similar to desmosomes [194,195].
Desmosomes are a type of adhesive protein complex, specialized to form stable adhesive junctions
between cells with which the N-terminal head domain of desmoplakin associates [196]. Similarly,
astrocytes possess membrane structures that resemble hemidesmosomes (HDs) [195]. HDs are
specialized integrin-mediated attachment structures that ensure the adherence of cells to the extracellular
matrix by firmly anchoring IF networks [197]. Integrin α6β4, which is one of the two transmembrane
components of mature (Type I) HDs, was identified in astrocytes [198]; however, BPAG1, which was
initially discovered as a hemidesmosomal protein in keratinocytes [199], has thus far not been
discovered in astrocytes, defining the astrocytic HD-like structures as Type II HDs. Considering that
astrocytic morphological plasticity significantly depends on actin and tubulin [200], one would expect
that MACF1, which interacts with microtubules and F-actin via distinct microtubule and actin-binding
domains, is expressed in astrocytes. However, MACF1, although with confirmed expression in multiple
tissues throughout the body [201], has only been identified in astrocytomas and glioblastomas, but not
in normal brain tissue [202].

6.2. Plectin

The rat glioma cell line C6, in which plectin was first identified [203], is an experimental model
system for the study of glioblastoma. Several years after the initial discovery, plectin expression was
also confirmed in normal astrocytes [192,204] as well as in most other mammalian cell types [205,206].
IFs are one of the most important binding partners of plectin. Plectin was originally isolated as a major
component of IFs extracted from cell lysates [203]. All plectin isoforms contain a high-affinity IF-binding
site at their C termini, which mediates the targeting and anchorage of IFs at different, clearly defined
cellular locations [207]. The remarkable isoform diversity of plectin is a consequence of differential
splicing of 12 alternative first exons into a common exon 2, which is the first of seven exons (exons
2–8) encoding plectin’s ABD [207,208]; however, three of the alternative first exons are non-coding,
giving rise to isoforms with truncated ABDs. The ABD of plectin is relatively well conserved and
similar to the ABDs in spectrin, dystrophin, BPAG1 and MACF/ACF7 [209]; however, it is unique in
presenting with two short exons (2α, 3α) that optionally splice into the ABD sequence, resulting in
three different ABD isoforms [210]. The CH1 subdomain of plectin’s ABD contains another binding
site for IFs, which likely favours the binding of soluble vimentin [210]. In general, the interaction of
plectin with vimentin and lamin B was shown to be differentially regulated by protein kinase A and
C [211,212]. In primary astroglial cells, a functional manifestation of plectin deficiency was reported
regarding cAMP-dependent signaling pathways, because the cells showed a delay in cAMP-stimulated
morphological differentiation [213]. Morphological (and functional) adaptations of astrocytes (i.e.,
reactive astrogliosis) are especially important as responses to CNS injury [101]. Considering the
interdependence of plectin and IFs, it is not surprising that, in reactive astrocytes (specifically in
the A2 subtype), the augmented expression of GFAP and vimentin is accompanied by the increased
expression of plectin [193], as shown in Figure 2. Hence, it is reasonable to assume that plectin plays
an important role in reactive astrogliosis. However, further research is needed to shed light on the
mechanism and pecking order of IF and plectin action that leads to the resulting physiological response.
Some parallels can be drawn from the involvement of plectin in Alexander disease, a rare progressive
neurodegenerative disorder caused by dominantly acting mutations in GFAP. Rosenthal fibers are
the hallmark of this disease (i.e., cytoplasmic proteinaceous aggregates in astrocytes [63], which,
among other proteins, contain plectin and GFAP). Although the disease results in increased expression
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levels of plectin and GFAP in the brain, the proportion of both proteins appears to be relevant as
well [64]. The overexpression of plectin cDNA converted these aggregates to networks composed of
thin filaments, whereas the expression of GFAP with the most common Alexander disease mutation
lowered plectin levels. These results suggest that insufficient amounts of plectin promote GFAP
aggregation and the formation of Rosenthal fibers in Alexander disease [64]. However, the disease
most frequently associated with plectin deficiency is epidermolysis bullosa simplex with muscular
dystrophy (EBS-MD), a subtype of EBS. EBS, which happens to be the first disease identified involving
IFs [214,215], is characterized by intraepidermal skin split (i.e., blistering of the skin). Mutations in the
human plectin gene may result in autosomal recessive EBS-MD, EBS-MD with myasthenic features
(EBS-MD-MyS), EBS with pyloric atresia (EBS-PA) limb girdle muscular dystrophy type 2Q (LGMD2Q),
skin-only EBS [216] and the autosomal dominant variant EBS-Ogna [207,217].

The binding versatility of plectin is not limited to IFs, because plectin can associate with
microtubules (directly or via microtubule-associated proteins) and actin filaments, the nuclear envelope,
transmembrane receptors, proteins of the plasma membrane protein skeleton, mitochondria and signal
transducers, such as kinases involved in migration and proliferation [205,213,218]. These interactions
are mirrored by plectin’s multiple functions in practically all mammalian cell types [205,207]. However,
considering the importance of IFs in astrocytes, coupled with the relatively limited amount of knowledge
of cytolinker proteins and other cytoskeletal macromolecules in this cell type, there is no doubt that
further research is warranted.

7. Conclusions

Astrocytes and IFs share humble beginnings in the literature, as studies of both were overshadowed
by those performed on neurons and microtubules/actin filaments, respectively. The primary reason
for the early absence of research interest in astrocytes and IFs is that, initially, both were perceived to
provide solely mechanical support and were considered to be static in nature. In contrast, in the last
few decades astrocytes have been shown to possess numerous functions in the CNS, the sum of which
apparently exceeds those performed by neurons. Similarly, IFs have been demonstrated to be not only
significantly more diverse, compared to microtubules/actin filaments, but to participate in a variety of
dynamic processes, such as in cell signaling.

Astrocytes are implicated to be actively involved in many CNS pathologies, either directly or
indirectly. These pathologies result in the hypertrophy of astrocytic processes, a process that is known
as reactive gliosis and encompasses a variety of biochemical, molecular, and morphologic events.
The nature of reactive gliosis is highly heterogeneous and can, depending on the circumstances,
either protect or perpetuate the underlying disease. A hallmark of reactive gliosis is the upregulation of
certain IFs, namely of GFAP, vimentin, nestin and also, in some reactive astrocytes, synemin. Significant
progress has been made in recent years in our understanding of the molecular mechanisms by which
these IFs are orchestrating reactive gliosis. Considering that different IFs are interacting with each
other and with various proteins, the whole IF scaffold is effectively implicated in practically all cellular
processes. In order to fill the gaps in the current knowledge of individual IFs and their complex
networks in astrocytes, both in physiological and pathological settings, a great deal of work remains
to be done. In addition, two key challenges will be: (i) to assess the role of lamins in reactive gliosis,
bearing in mind their capacity to regulate genes in a response to mechanical cues; (ii) to learn how the
considerable complexity of cytolinker proteins, such as plectin and other cytoskeletal macromolecules,
contribute to different stages of reactive gliosis.
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