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Abstract: Recent advances in sensor technology are expected to lead to a greater use of wireless sensor
networks (WSNs) in industry, logistics, healthcare, etc. On the other hand, advances in artificial
intelligence (AI), machine learning (ML), and deep learning (DL) are becoming dominant solutions
for processing large amounts of data from edge-synthesized heterogeneous sensors and drawing
accurate conclusions with better understanding of the situation. Integration of the two areas WSN
and AI has resulted in more accurate measurements, context-aware analysis and prediction useful for
smart sensing applications. In this paper, a comprehensive overview of the latest developments in
context-aware intelligent systems using sensor technology is provided. In addition, it also discusses
the areas in which they are used, related challenges, motivations for adopting AI solutions, focusing
on edge computing, i.e., sensor and AI techniques, along with analysis of existing research gaps.
Another contribution of this study is the use of a semantic-aware approach to extract survey-relevant
subjects. The latter specifically identifies eleven main research topics supported by the articles
included in the work. These are analyzed from various angles to answer five main research questions.
Finally, potential future research directions are also discussed.

Keywords: edge computing; artificial intelligence; wireless sensor network; context-awareness

1. Introduction

Recent advances in technology have had a great impact on today’s digital world, sur-
rounded by billions of intelligent sensors integrated with the Internet of Things (IoT) [1,2].
In such a complex dynamic environment, IoT devices, which usually have limited com-
puting power and small memory capacity, can constantly generate huge amounts of data
that can be analyzed in remote cloud data centers. Wireless Sensor Networks (WSN) are
considered to be one of the key technologies used for data generation in IoT components.

However, transferring data from where it is generated to a data center increases
communication overhead and bandwidth consumption, and also raises privacy concerns.
Thus, the use of cloud processing alone is clearly not the most efficient approach for
real time systems (e.g., health monitoring, autonomous driving, smart city) [3]. Thus,
it is necessary to conduct the computation of the data collected by sensors as locally as
possible, incorporating intelligence from edge devices, to move computation from cloud to
edge [4]. This means placing a kind of artificial intelligence close to edge devices capable of
processing complex behaviors and adapting to rapidly changing situations. In addition,
more than ever before, microcontrollers are powerful enough to make intelligent decisions
without any external help based on data collected from various sensors [5]. These devices
can also analyze data, transmit data to low-latency actuators, and only transfer summarized
information to the cloud [6]. In short, adding some sort of intelligence to the sensor nodes
represents the next step in fulfilling an “awareness” level to the edge [7–10]. If data from
different sensors are appropriately combined, the integrated data can be more precise,
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more reliable or simply provide a better understanding of the context in which the data
was obtained [11]. Thus, sensor fusion will continue advancing in almost all applications,
including security, logistics, voice recognition, object detection, etc. In such a sensor
environment, most of these applications focus on performance metrics such as latency,
reliability and even security [12–14].

As new wireless technologies such as WiFi Direct, 5G, Zigbee, LoRa, NB-IoT and LiFi
are rapidly being developed, Edge Computing (EC) will soon help transition processing
and analysis from the cloud to the edge [15–17].

1.1. Our Contribution

The purpose of this study is to provide an overview and understanding of the theoret-
ical background, challenges, approaches, motivations, and gaps for the implementation
of intelligent context awareness in wireless sensor networks. This document presents a
literature review that covers the analysis of research documents published in the period be-
tween 2015 and January 2022 and available from the Scopus and Web of Science databases.
In previous related reviews, we have not found an exhaustive work that explores deeply in-
telligent solutions using artificial intelligence (AI), machine learning (ML), or deep learning
(DL) algorithms and their contributions to building the context-awareness in various WSN
applications. Moreover, this study can be distinguished from the existing related surveys
through the following key contributions.

• Apply a semantic-aware approach to identify survey-relevant subjects.
• Identify and explore various AI/ML and DL methods that can be used in the estab-

lishment of a context awareness setting of sensor networks.
• Analyze key challenges and the research gaps found in the literature that need to

be solved.
• Discuss the motivations for integration of intelligent context awareness in wireless

sensor networks.
• Outline future research directions.

This investigation will fill the research gaps by comparing the included papers in
terms of their challenges, strengths, limitations, motivations, and the way forward in the
field. Furthermore, this review can help future researchers in identifying and exploring
new perspectives in the field of sensor network context awareness field.

1.2. Organization of This Work

The rest of the paper is organized as follows. Section 2 introduces the technological
context and discusses other surveys related to the topic of this study. Section 3 explains
the methodology of this work. Section 4 analyzes the data extracted from included papers
and discusses the results related to the defined research questions. Section 5 provides
a discussion about industrial perspectives, context-aware challenges and corresponding
intelligent solutions in a logistics use case. Finally, we conclude the paper with some open
issues in Section 6. Figure 1 exhibits the organization of this paper.
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Paper organization

Section 2 Background and Related Work
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Section 2.1.1. Context awareness
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Section 3.3 Data extraction and analysis
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Section 4 Results

Section 4.1 Q1: How much literature activity has there been between 2015 and
January 2022?

Section 4.2 Q2: What are the challenges in context-aware edge-based AI for
sensor networks?

Section 4.3 Q3: What are the state-of-the-art solutions used to address the challenges
depending on the specific application field?

Section 4.4 Q4: What are the motivations to adopt AI solutions to context
awareness scenario?

Section 4.5 Q5: What are the limitations of current literature or what are gaps
existing in the current research about applying AI technologies to context awareness
that future researchers can investigate?

Section 5 Logistics use case: industrial perspectives, challenges and intelligent techniques

Section 6 Conclusions and open issues

Figure 1. A schematic illustration of the paper organization.

2. Background and Related Work
2.1. Background

This section introduces the technological context necessary to facilitate the under-
standing of the context-aware AI modeling challenges in edge environments. Firstly,
in Section 2.1.1, we describe the main features of context-aware computing as a specific
paradigm within the EC environment. Then, in Section 2.1.2, we present the basics of EC.
Section 2.1.3 briefly discusses main concepts of AL, ML and DL. Finally, in Section 2.1.4,
we focus on the role of sensors and present examples of applications that use sensors in
dynamic environments.

2.1.1. Context Awareness

In recent years, context-aware applications have captured a lot of attention as they
extract user context, such as location, activity, time, health status, physical environmental
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state, etc. Various types of special sensors are used. These can be physical sensors, such as
the Global Positioning System (GPS) sensor and accelerometer, or virtual sensors, such as
user calendar, weather web service and weather radar [18,19]. However, in a consensus
definition, context awareness is defined as “systems that adjust according to conditions:
environmental (e.g., the level of pollution), physical (e.g., one’s current location), social (e.g.,
one’s family and colleagues), or temporal (e.g., the time of the day), as well as changes in
these things over time” [20,21]. As part of this article, context is defined as a situation and
environment of sensors in WSN. Therefore, contextual information use includes interactions
between sensor nodes and the reaction of sensor nodes to environmental changes to
discover information of interest [21,22]. A context-aware system architecture is exhibited in
Figure 2.

Figure 2. Context-aware framework layers.

Sensor nodes typically have specific context metrics. Some examples of these metrics
are location, energy level, connectivity, speed, temperature, pressure, and link quality.

2.1.2. Edge Computing

EC, a computing paradigm which extends cloud computing, enables all computing
outside the cloud to happen at the edge of the network [23], and more specifically in appli-
cations where real-time processing of data is required. Lately, the “Edge” defines the point
where sensor nodes and IoT devices are located in the local network [24]. EC works on a
huge quantity of data generated by sensor nodes or users in the edge network [25]. How-
ever, with respect to context awareness, data generated either from a single sensor node or
by multiple sensor nodes represent unprocessed data, while context information represents
processed raw data [26]. EC system architecture consists of four primary components
shown in Figure 3: centralized cloud, a centralized data processing system, operates on a
massive amount of data that can be accessed at anytime. Edge data centers, are specialized
data centers located closer to the edge than the cloud that deliver faster processing than
edge devices, as well as minimal latency and data transmission costs compared to the
centralized cloud in real time. Edge devices are pieces of physical hardware that send data
between the local network and the central cloud. Traditional edge devices can include
many different things, such as edge sensors, routers, firewalls, and chips. Sensor nodes are
data accumulation sources. These technologies include edge sensors and chips which are
capable of gathering, sensing, and processing data—to an extent.
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Figure 3. EC ecosystem.

Three types of EC architectures have been introduced, namely: Mobile-Edge Comput-
ing (MEC), fog computing, and cloudlets computing [24]. MEC extends EC by providing
compute and storage resources near to low energy, low resource mobile devices. While
fog computing seeks to realize a seamless continuum of computing services from the
cloud to the things rather than treating the network edges as isolated computing platforms.
Cloudlets are small data centers that are typically one hop away from mobile devices [24].
These paradigms differ in terms of software architecture, context awareness, and location
of nodes.

2.1.3. AI Disciplines

The definition of Artificial Intelligence (AI) was first coined by McCarthy in the 1950s,
where the field of AI refers to the capability of a machine to imitate human intelligence
processes [27]. The overall goal of AI research is to let machines perform some advanced
decisions that require intelligent humans to complete. The main concern of AI was and
still is to do tasks that are typically hard to characterize formally in terms of mathematical
rules [28]. The difficulty of explaining this type of task showed that AI approaches needed
the ability to find patterns and gain knowledge [28,29]. This ability is defined as ML, which
allows computer applications to learn and act on data without explicitly programming
it [30]. However, mapping the knowledge gained from learning to final prediction requires
the implementation of methods classified as representation learning, in which features are
converted into representations including useful information [31]. For complex concepts,
if a representation is indicated in terms of other representations, DL needs to be used. DL
allows computational models to learn representations with different levels of abstraction.
Thus, DL can be seen as representation learning that can imitate human thinking and
gain knowledge [28]. These days, AI, ML, and DL are three popular terms that are often
used interchangeably to characterize intelligent systems. Their relations are shown in [32],
in which, DL is part of ML and is also a part of the broad field of AI while ML is considered
a part of the AI umbrella.

2.1.4. Wireless Sensor Network

The WSN, which is the backbone of IoT, consists of dedicated, small, resource-
constrained, and low-cost sensor nodes that are randomly deployed in a monitoring
environment to perform certain specific tasks over a period of time [33]. Current WSN are
widely used in various applications, such as healthcare [34], smart homes [35], environ-
ment monitoring [36], etc. Each sensor node has a processing power, radio, and electrical
storage device that converts a physical phenomenon of a heterogeneous environment into
an electrical signal. The main task is to cooperatively sense, gather and process data about
devices in the coverage region, and then transfer it to remote servers for deriving the
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information [37,38]. Figure 4 displays the typical WSN architecture which contains sensor
nodes, fog nodes, and a central cloud.

Figure 4. A schematic presentation of the general WSN architecture.

A number of factors play a role in determining node failures such as harsh environ-
ments, restricted energy, and device faults. It is also necessary that the sensor network is
able to support the task for a minimum specified period of time [39].

2.2. Related Work

With the aim of outlining the contribution of the present study over the existing related
surveys, we provide herein a brief overview of these works. There are many surveys on
the subject of context-aware computing, context-aware sensor networks and context-aware
intelligence related to the subject of our study. Peraraet et al. [40] provide a framework for
an overview of context-aware IoT that briefly describes how ML models work, but does
not deepen this point. Furthermore, their proposed solutions are yet to be implemented
in real time. In [41] , a literature review focusing on the most common techniques in the
development of context-aware systems is presented. However, they show that all methods
have disadvantages and do not dive into a discussion of ML methods. Vahdat et al. [42]
expose a survey study about specific application domains, namely Mobile Crowd Sensing
(MCS) in smart environments. In [43], authors have aimed to understand the state-of-the-art
in the development of context-aware middlewares (CAMs) for aiding the construction of
HAR applications when using ML. However, they do not consider explicitly the sensor
networks and they have focused only on HAR applications. Sezer et al. [44] focus on Data
Analytics in Edge-to-Cloud environments. However, they do not deepen the discussion
of ML for HAR. Bogale et al. [45] consider the AI approaches in the context of fog (edge)
computing architecture, but the authors do not present a deep discussion of the various ML
algorithms that are used. In Preeja and Krishnamoorthy’s study [46], authors have outlined
the context characteristics, context organization, and context-aware systems, such as context
modeling and the use of a middleware approach to simplify the development considering
the heterogeneity of technologies. However, their survey has been developed in the context-
aware middleware domain. The work in [47] brings an overview of significant concepts
and related applications in various fields of context-aware systems. Although this work has
presented a review of the latest development of context-aware systems during the period
from 2008 through 2019, the authors present only a few discussions. Chatterjee et al.’s
study [48], on the other hand, is the most relevant paper to our review. This paper has
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focused on identifying the current trends, foundations, and components of the envisioned
IoT devices to enable the design of more efficient connected intelligent systems in the future.
However, the authors do not deepen in a discussion of the type of AI, ML, or DL solutions
that have been used to address the predefined challenges or dive deeper into a discussion
of application domains. In [49], authors have focused only on the algorithms and modeling
techniques used in context-aware recommenders. The purpose of our study is to fill the
gap by considering recent advances in the field of context-aware edge-based AI models for
sensor networks and by identifying application domain-independent challenges. Moreover,
our work differentiates from the above-mentioned studies by applying a semantic-aware
approach for identifying the main subjects supported by the survey included papers.
Namely, the articles’ keywords are analyzed by clustering them into groups of semantically
similar terms. Thus, in our survey we have managed to extract the major covered topics
in its subject framework. Table 1 lists a comparison of our study with the various related
reviews conducted in the period between 2015 and January 2022.

Table 1. Overview of previous related surveys and comparison with our study with respect to their
contributions and discussed intelligent techniques (classical AI, ML and DL).

Reference Year Main Focus AI Techniques

[40] 2015 Evaluation of different available resources, ×
communication mediums, and frameworks

for industrial market perspective.

[41] 2016 A context-aware review for
recognizing emerging ×

fields from a software development
point of view.

[42] 2019 A survey study about context-aware crowd ×
sensing systems for urban environments.

[43] 2022 A survey on the use of ML methods
in context- AI, ML and DL

aware middlewares for HAR.

[44] 2018 A survey on context awareness for IoT
big data analysis. AI, ML and DL

[45] 2018 A comprehensive survey on the utilization
of AI AI, ML and DL

integrating ML, data analytics,
and NLP techniques

for enhancing the efficiency of
wireless networks.

[46] 2019 A literature analysis of various
context-aware systems ×

(modelling, organization, and middleware).

[47] 2019 A short survey of the latest development AI, ML and DL
of context-aware systems.

[48] 2019 A survey of recent advances in
intelligent sensing, AI, ML and DL

computation, communication, and energy
management for resource-constrained

IoT sensor nodes.

[49] 2021 An extensive survey of AI-based
mobile context- AI, ML and DL

aware recommender systems.

Our Paper 2022 A broad study of the adoption AI, ML and DL
of edge-based AI solutions for context-

awareness in WSNs.
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3. Methodology

Given the latest changes that occurred on advances in edge computing with advances
in artificial intelligence, the attention of academia/industries is predominantly focused
on the state of the art in context-awareness systems, which are considered crucial for the
realization of intelligent IoT and sensor network applications. Therefore, it is necessary to
identify the state of the literature on the relationship between AI fields and edge computing
to support context-aware sensing systems. To achieve this goal, the authors formulate
research questions to define the scope of work.

Leaden by research questions listed in Table 2, this research was carried out by defining
the below listed search criteria to gather all relevant publications. We divided this review
of the literature into four main phases outlined in Figure 5: data preparation, search
conducting, data extraction and analysis, identification of survey topics.

Table 2. Research questions (RQs).

ID Question

Q1 How much literature activity has there been between 2015 and January 2022?

Q2 What are the challenges in context-aware edge-based AI for sensor networks?

Q3 What are the state-of-the-art solutions used to address the challenges depending on
the specific application field?

Q4 What are the motivations to adopt AI solutions to context awareness scenario?

Q5 What are the limitations of current literature or what are gaps existing in the current
research about applying AI technologies to context awareness that future

researchers can investigate?

Figure 5. The main methodological phases of the study.

3.1. Preparation of the Data

Based on the above research questions (Table 2), this study is focused on the following
meanings: “context awareness”, “edge computing”, “artificial intelligence”, “machine
learning”, “deep learning”, “sensors” and “wireless sensor network”. In addition to the
main concepts, their synonymous were defined. The indexing databases considered for
this study were Web of Science and Scopus, which were recommended for conducting a
literature review by multiple researches in [50,51]. In line with the setup of the study, a list
of inclusion and exclusion criteria were set to improve the selection of publications and to
guarantee a successful analysis process. The inclusion criteria are:
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IC1. Journal and conference papers that address the intersection between context-aware,
artificial intelligence methods, and sensor network domain, containing the terms in
the title, or keywords. Papers with the terms just in the abstract are excluded in this
study.

IC2. Papers available in electronic form published between 2015 and January 2022.

IC3. Journal and conference papers written in English.

The defined exclusion criteria are:

EC1. Articles without access to the electronic file.

EC2. Bibliographic, conference reviews, works of non-indexed or gray literature, and mas-
ter thesis.

EC3. Duplicate studies after reading the title.

EC4. No relevance after reading title and abstract.

Then, the identified studies were sieved according to five defined filters, explained below.

Filter 1 allows the retention of papers related to context-awareness and AI fields such as
ML and DL for sensor networks. The search takes the TITLE + ABSTRACT + KEYWORDS
fields as a whole, making those 3 fields into just one and then running a text search (IC1).

Filter 2 allows the retention of publications available in electronic form and published
between 2015 and January 2022 (IC2). Articles without access to its electronic file are
discarded (EC1).

Filter 3 includes only publications journal and conference papers written in English (IC3).
It also allows the removal of bibliographic, conference reviews, works of non-indexed or
gray literature, and no research thesis (EC2).

Filter 4 allows the removal of duplicate or redundant publications (EC3).

Filter 5 allows the removal of irrelevant papers. The authors of the current survey have
conducted this task by reviewing the title and abstract of each paper and selecting only
papers that are related to the topic of the survey (EC4).

3.2. Search Conducting

Considering the above-defined research questions, the main focus was papers from the
most reputed scientific databases, namely Web of Science and Scopus, during 2015–January
2022. Table 3 presents the search strings of this study.

Table 3. Search strings considering the search process strategy with inclusion and exclusion criteria.

Scientific Database Search String

Scopus TITLE-ABS-KEY ((“Context*” OR “aware*”) AND (*edge
OR device) AND (“artificial intelligence” OR “machine

learning” OR “deep learning”) AND (“sensor*”))

Web of Science TS = ((“Context*“ OR “aware*”) AND (*edge OR device)
AND (“artificial intelligence” OR “machine learning”

OR “deep learning”) AND (“sensor*”))

3.3. Data Extraction and Analysis

Initially, a search of scientific papers from the Web of Science and Scopus databases
was performed to extract the publications from the selected sources. The selection criteria
were divided into the five filters discussed above in order to collect more relevant articles.
Therefore, the selection process comprehended the phases depicted in Figure 6 and followed
the procedures outlined below:
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• A total of 2760 publications related to context-awareness and AI fields were retrieved,
of which, 1841 were obtained from Scopus and 919 from Web of Science.

• As a result of the second filter, 515 publications from Scopus and 380 publications from
Web of Science were retrieved, available in electronic form and published between
2015 and January 2022 with access to its electronic file.

• Only publications in journals and conference papers written in English were retained.
Bibliographic, conference reviews, etc., were excluded. Thus, 435 documents for
Scopus and 328 for Web of Science were retrieved as a result of the third filter.

• After merging the publications of Scopus and Web of Science, 763 duplicate publica-
tions were removed in the fourth filter, and 490 left.

• After reading the title, abstract, and keywords of these publications, 349 were elimi-
nated because they were not related to the topic of the survey. At the end of the fifth
filter, 141 papers were left. These are included and examined in this work.

Figure 6. The number of papers selected after applying each filter of the survey’s related papers is
given for WoS and Scopus databases, respectively.

After we managed to extract and classify the data, the aggregated data were then
analyzed to be used to respond to the research questions in Section 4.

3.4. A Semantic-Aware Approach for Identifying the Survey Main Subjects

We have applied a semantic-aware approach for identifying the main subjects sup-
ported by the survey-related articles. The approach is built upon the analysis of the articles’
keywords. Initially, all different (unique) keywords of the extracted articles are gathered
together. The number of all unique keywords is equal to 637. Then, this number is reduced
to the most frequent keywords. Namely, a score is assigned to each keyword reflecting its
frequency of appearing among the articles’ keywords. Then, all keywords which scores are
below the preliminary defined threshold (2 in our consideration) are filtered out, i.e., only
the most frequent 82 keywords are left. The applied approach uses the semantic similarity
between keywords to identify the main research/application subjects covered by the survey.
It is based on the idea published in [52]. In order to be able to apply this approach we
have manually associated each keyword (from the most frequent ones) with its synonym
keywords. This assists us in calculating the semantic similarity between keywords based on
the common synonymy between two keywords by using the Jaccard coefficient [53]. Thus,
the semantic similarity between two keywords wi and wj can be computed as follows:

SemSim(wi, wj) =
ni + nj − nij

nij
, (1)

where ni and nj are the synonymy numbers of wi and wj, respectively, and nij is the
synonymy common number between wi and wj. The keywords then can be partitioned into
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groups of semantically similar keywords by applying a selected clustering algorithm (e.g.,
DBSCAN). The obtained clusters of keywords represent the main research/application
subjects supported by the selected articles. The flowchart in Figure 7 illustrates the process
of identifying main survey subjects. We have identified 11 of these subjects presented
in Figure 8. The 11 keyword groups and the title of their subjects are shown in Table 4.
In addition, the relative percentage of cluster size produced by applying DBSCAN with
eps = 0.3 on the 82 most frequent keywords are also elaborated in Figure 8. The parameter
eps specifies how close data points (keywords) should be to each other to be considered a
part of a cluster. We have experimented with different values of eps and 0.3 has produced
the most balanced grouping without any outliers.

Figure 7. Flowchart describing the different steps of the semantic-aware approach applied to identify
the main subjects covered by the included papers.
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Figure 8. Relative popularity of the identified subjects assessed on the based of the keywords’
frequency. The most popular subject is AI, ML and DL followed by Edge Computing and Smart
Monitoring, Smart Healthcare and Smart and Wearable Devices.

The selected articles can be further analyzed with respect to identified subjects to
obtain deeper insight into the limitations and gaps in the current research related to the
survey theme (Q5). For example, each article can be represented by a vector of membership
degrees of the article to the different subjects (clusters of keywords). The membership
degree of article i to subject Sj can be calculated as kij/ni, where kij is the number of
keywords from the keyword list of article i that belong to cluster Sj and ni is the total
number of keywords describing article i. In this way, a fuzzy distribution of the articles
among the identified subjects is obtained.

The fuzzy grouping of the articles can easily be transferred into a non-fuzzy clustering
by associating each article to only subject(s), for which it has the highest membership degree.
This allows us to evaluate the popularity of each subject quantified by taking into account
the number of articles belonging to it (see Figure 9). Each group (research/application
subject) can be associated with specific AI/ML techniques and domains of application
by further analysis of the challenges and application domains addressed by the articles
assigned to it. The knowledge extracted due to this analysis can be used to answer Q2, Q3
and Q5 by facilitating the identification of under/over-represented topics in the current
research along with the challenges shared among different application fields. Each cluster
of articles can also be studied with respect to the state-of-the-art solutions used to address
the issues in the research/application subject presented by this cluster (Q3). The articles can
also be grouped with respect to the identified subjects by using their membership degree
vectors to measure the similarity between each pair of articles. In comparison with the
grouping produced by the first approach where each group of articles is related to one
concrete subject, in the current clustering the articles that are grouped together will be
similar with respect to more than one research/application subject, e.g., we can identify
articles that use the similar AI/ML techniques and at the same time deal with issues in
the same application fields. As a result of this grouping the studied articles have been
distributed in 15 disjoint clusters. We have experimented with different values for the
parameter eps. However, all of those have produced clustering solutions where some of
the articles are considered to be outliers. This is due to the scatter of articles in terms of
topics, i.e., most of the articles are related to no more than two topics. The value 0.4 for the
parameter eps is chosen, since it has produced the less number of outlying articles.
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Table 4. The identified eleven clusters of keywords along with the titles of the subjects (cluster labels)
they represent.

Cluster Label Size Keywords

AI, ML and DL 27 active learning, AI, ANN, attention
mechanism, big data, classification,
CNN, data mining, data models, DL,
DNN, feature extraction, feature
selection, inference, intelligent systems,
LSTM, ML, prediction, predictive
models, RF, RNN, regression, RL,
supervised learning, SVM, time-series
classification, training.

Edge Computing and Smart Monitoring 11 EC, pervasive computing, biomedical
monitoring, ECG, electrocardiography,
health monitoring, heart rate,
monitoring, pervasive healthcare,
physiological signals, physiology.

Smart Healthcare 10 accelerometer, action recognition,
activity recognition, gait recognition,
HAR, mhealth, mobile computing,
mobile health, mobile sensing,
smart healthcare.

Smart and Wearable Devices 8 on-device computation smart devices,
smartphone, wearable computing,
wearable devices, wearable sensors,
wearable system, wearables.

Anticipatory Computing and SSL 4 anticipatory computing,
recommendation system,
semi-supervised learning,
transfer learning.

Context-Awareness 4 context modeling, context-aware
systems, context-awareness,
context-awareness services.

Energy Consumption and Saving 4 energy consumption, energy efficiency,
energy saving, power consumption.

IoT 4 industry 4.0, IoMT, IoT, smart home.

Sensors and WSN 4 WSN, sensor data, sensor
fusion, sensors.

Mental Health 3 mental health, stress, stress monitoring.

Computer Vision 3 computer vision, object recognition,
pattern recognition.

Note. The clustering is produced by applying DBSCAN clustering with eps = 0.3.

As one can see in Table 5, the top ten keywords that appear the most in the articles
included in this review are “ML”, “DL”, “IoT”, “activity recognition”, “sensors”, “HAR”,
“wearable sensors”, “CNN”, “classification” and “context-awareness”, i.e., the review
perimeter is well outlined by those.

Figure 9 presents the percentage of papers of sample studied per the eleven major
subjects identified. The references to the papers related to each subject are given in Table 6.
In addition, as it was discussed before the popularity of each identified subject is assessed
relatively with respect to the others by taking into account the frequency of the keywords
assigned to its cluster. This is represented by a pie chart in Figure 8. Interestingly, the four
most popular subjects (see Figure 8) identified based on the keywords’ frequency coincide
with the four subjects supported by the quantity of the published papers (see Figure 9).
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These subjects are AI, ML and DL, Smart Healthcare, Smart and Wearable Devices and
Edge Computing and Smart. However, AI, ML and DL has a much higher percentage
than Smart Healthcare with respect to the keywords’ frequency while these subjects are
equally represented with respect to the published papers. This may be due to the fact that
in the case of Figure 9, some papers are cross-disciplinary, i.e., they have the same highest
membership degree to more than one subject and in that way, they are counted for all those
subjects. One can also notice that Context-Awareness and Energy Consumption and Saving
have the same representativeness in both Figures 8 and 9. In addition, the two least popular
subjects (Mental Health and Computer Vision) are identical in both figures.

Table 5. Top ten most frequently used keywords.

Keyword Occurrences
ML 55
DL 27
IoT 22
activity recognition 17
sensors 12
HAR 10
wearable sensors 10
CNN 8
classification 7
context-awareness 7

Figure 9. Percentage of papers of sample studied per the main identified subjects. The most repre-
sented subjects are AI, ML and DL and Smart Healthcare followed by Smart and Wearable Devices,
Edge Computing and Smart Monitoring and Sensors and WSN. These well reflect the survey theme.

As it was mentioned above, Table 6 exhibits the paper references belonging to each
subject and how many belong to these primary subjects. Smart Healthcare stands out with
35 papers. AI, ML and DL and Smart and Wearable Devices are second and third, with
34 and 31 documents, respectively. In the fourth position, it can be found the Sensors and
WSN with 17 documents, followed by the Edge Computing and Smart Monitoring with
16 papers. The number of included papers for Computer Vision and Mental Health is
equal, i.e., only 5 papers are assigned to each one. It is worth noting that most of these
studies, as can be seen in the table, belong to more than one subject, since their keywords
are distributed among various clusters of keywords (main subjects).



Sensors 2022, 22, 5544 15 of 33

Table 6. The main subjects along with the references to their related papers.

Main Subject References # of
Studies

Smart Healthcare [54–88] 35

AI, ML and DL [56,59,63,76,78,82,88–114] 34

Smart and Wearable Devices [54–56,59–61,66,67,78,80,83,86–
89,98,106,109,115–127] 31

Sensors and WSN [60,61,76,77,80,83,91,101,104,109,112,113,115,
127–130] 17

Edge Computing and Smart
Monitoring [56,60,67,85,98,106,113,114,117,131–137] 16

Context-Awareness [57,65,68,70,76,81,91,93,134,138–141] 13

Energy Consumption and Saving [62,63,92,130,137,142–144] 8

Anticipatory Computing and SSL [57,62,68,76,83,119,145] 7

IoT [77,105,146–149] 6

Computer Vision [87,99,150–152] 5

Mental Health [61,80,114,117,136] 5

4. Result Analysis

We have analyzed the data extracted by the selected publications (see Section 3.3) to
answer each research question presented in Table 2. The research questions are addressed
one by one in the following subsections.

4.1. Q1: How Much Literature Activity Has There Been between 2015 and January 2022?

We have reviewed the significant research papers in the field published from 2015 to
January 2022. Figure 10 presents the details of the year-wise publications (publishing trend).
A clear increasing interest in the recent years can be seen from that figure. For each year,
we show the total number of papers normalized on monthly base. The highest number
of papers published per year are after 2020. This demonstrates not only highly increased
interest, but also the high need of research in intelligent context-aware WSNs.

Figure 10. Included papers per year (publishing trend) normalized on monthly base. There was a
significant increase in the number of included papers published after 2019.

Moreover, the included papers per year are analyzed and distributed in four groups
based on the used computational techniques, i.e., ML, DL, ML and DL and AI. These
are presented in Figure 11, showing a significant increase in the use of DL in the studies
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published after 2019 with the expectation that this will continue to flourish in the following
years. In addition, one can notice after 2019 the appearance of studies using AI modelling
and reasoning techniques such as fuzzy logic.

Figure 11. Included papers per year are distributed in four categories based on the used computa-
tional techniques, i.e., ML, DL, ML and DL and AI.

4.2. Q2: What Are the Challenges in Context-Aware Edge-Based AI for Sensor Networks?

In order to answer the question Q2, the main challenges have been identified and are
shown in Figure 12. These are Human Activity Recognition (HAR), monitoring, Quality of
Service (QoS), energy saving, activity recognition, object detection and location-based ser-
vice (LBS). They have been addressed by various AI, ML and DL approaches under different
application domains as this will be discussed in the answers of the next research question.

Figure 12. Main challenges addressed by the papers included in the survey.

According to Figure 12, HAR is the top-addressed challenge, namely in 28.5% of the
sample. HAR includes recognizing daily performed locomotion modes [54–57,153,154],
analyzing the behavior of the elderly in daily life [58,134,135], gait analysis [59,155–157],
etc. Monitoring is the second most studied issue, namely in 26.8% of the included pa-
pers. Not surprisingly, in the context of monitoring, various applications have been iden-
tified, e.g., health [60,89,115,158,159], smart buildings [90,116,160], agriculture [161,162],
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stress [61,117,136,163], transportation [91], military defense [164], etc. Other challenges com-
paratively highly studied in the included papers are QoS [92,93,118,128,137–139,152,165–174]
with 14.6%, and energy saving [62,63,94–96,114,119,142–144,175] with 8.9%.

4.3. Q3: What Are the State-of-the-Art Solutions Used to Address the Challenges Depending on the
Specific Application Field?

As it was already discussed in the answer of Q2, the two most studied challenges are
HAR (28.5%) and monitoring (26.8%), followed by QoS (14.6%), energy saving (8.9%) and
activity recognition (8.1%). In addition, as one can notice in Figure 12, LBS is investigated
only in 2.4% of the sample. In order to answer Q3, we have initially explored the rela-
tionships of these challenges with the application fields addressed in the included papers.
The studied application domains are presented in Figure 13.

Figure 13. Percentage of papers of sample studies per domain of applications. The most popular
category is healthcare followed by smart cities, autonomous driving, environment monitoring and
transportation (logistics).

The top explored category is healthcare studied in 58% of the included papers. It is
followed by smart cities (12%), autonomous driving (5%), environment monitoring (5%)
and transportation/logistics (4%). All the other categories are below 3%.

It is interesting to study the relationships among the five most studied application
domains, the top addressed challenges and used intelligent techniques. In that way, two
types of connections will be revealed: one between the state-of-the-art solutions used to
address the identified main challenges and the other between the addressed challenges and
corresponding application fields used to evaluate the proposed intelligent solutions. This
will outline the technological and application perimeter of the context-aware intelligent
systems for sensor networks. In addition, Section 5 discusses the identified challenges along
with the intelligent techniques used in the logistic use case that has inspired this study.

Figure 14 illustrates the relationship between the HAR challenge and top five applica-
tion domains. As can be seen in the figures, 66.7% of health care studies have addressed the
HAR challenge. Smart cities and transportation are the second and third, with 14.8% and
11.1% of the papers studying this challenge, respectively. HAR is logically less explored in
environmental monitoring and autonomous driving applications.
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Figure 14. The relationship between HAR and top five most studied application domains.

Furthermore, Figure 15 depicts the relationship between QoS with the top five applica-
tion domains. Healthcare is again the most studied application domain (38.5%), followed
by smart cities, transportation, autonomous driving and environmental monitoring sharing
the equal interest (15.4%) in the included papers.

Figure 15. The relationship between QoS and top five most studied application domains.

In addition, we study the relationships of the identified challenges against AI tech-
niques applied. Figure 16 illustrates the relationship between the HAR challenge and
intelligent techniques used to address it in the included papers. According to this figure,
41.4% of the papers studying HAR challenge use traditional ML approaches for handling it,
in 44.8% of the papers DL techniques are applied, while in 10.3% of the studies ML and DL
approaches are applied together to address this challenge, and only in 3.4% of the papers
addressing HAR, AI methods have been employed.
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Figure 16. The relationship between HAR challenge and AI techniques categories used to address it.

Furthermore, Figure 17 depicts the relationship between the QoS challenge and intelli-
gent methods used to address it. We can observe that in 61.5% of the studies ML techniques
have been applied to solve this challenge, in 30.8% of the papers DL methods have been
preferred, and AI techniques are only 7.7% of the included papers devoted to QoS.

Figure 17. The relationship between QoS challenge and corresponding AI techniques categories used
to deal with it.

Figure 18 visualizes, respectively, the relationships between the energy saving chal-
lenge and intelligent approaches used to address it in the studied papers. It is worth
mentioning that the same trend is observed for the activity recognition challenge.

Figure 18. The relationship between Energy Saving challenge and AI techniques categories applied
to address it.

Figure 19 presents the more frequently used ML/DL algorithms in addressing HAR
challenge. We can observe that Decision Tree (DT) (ML) and Convolutional Neural Net-
works (CNN) (DL) are equally used to address this challenge, namely in 17% of the papers
studied the challenge. In addition, 17% of the studies have applied various other ap-
proaches such as Linear Regression (LR), active learning, fuzzy logic, etc. Neural Networks
(NN) are mentioned only in 13% of approaches, while Random Forest (RF) and Support
Vector Machine (SVM) have been implemented in 10% of proposed methods addressing
HAR challenge.
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Figure 19. Specific ML and DL algorithms more frequently used in addressing the HAR challenge.

Figure 20 depicting specific ML/DL techniques used to address Monitoring challenge
shows that in contrast to HAR challenge, a lion’s share (23%) of techniques used is for SVM,
followed by 17% for RF and then K-Nearest Neighbor (K-NN) and CNN taking the equal
percentage (11%).

Figure 20. Specific ML and DL algorithms more frequently used in addressing the Monitoring challenge.

Figure 21 depicts the trend donut chart of the ML and DL approaches that have been
applied in addressing the Activity Recognition challenge. The results show that two DL
techniques (CNN and Recurrent Neural Network (RNN)) and traditional LR are sharing
the same percentage of usage, namely 20% of each one, while Deep Neural Network (DNN),
K-NN, RF and SVM have also shared the equal usage percentage, but twice lower (10%).

Figure 21. Specific ML and DL algorithms more frequently used in addressing Activity Recogni-
tion challenge.

It is worth mentioning that 25% of methods used to address the QoS challenge apply
DT while techniques such as CNN, RF, Naive Bayes (NB), K-means and Q-learning have
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been used only by 12% of the approaches. The analysis of the Energy Saving challenge
reveals that 38% of approaches utilized are based on Long Short-Term Memory (LSTM),
while each of the techniques K-means, RF, CNN, RNN and DNN has been used in 12% of
the studies devoted to this challenge.

With regard to the state-of-the-art solutions used to solve the identified main chal-
lenges, we initially analyzed the sample of selected studies from the view of AI. Studies
using fuzzy logic techniques are 37.5% of articles, while studies using various other ap-
proaches to ML/DL approaches have the attention of 62.5% of articles. In the discussed
papers, see Figure 22, the review of the sample studied through the ML lens shows that
the most used ML techniques are SVM, RF, DT and K-NN. For example, SVM and RF
approaches are used by 17.2% and 14.9% of the selected articles, respectively. DT and
K-NN are identified in 12.6% and 10.3% of the studies, respectively. While the clustering
techniques are applied only by 5.7% of the selected papers. Regarding other ML techniques
used, 28.7% are applied by sample studies.

Figure 22. Percentage of papers per ML category of algorithms found in the sample studied. The most
used ML techniques are SVM, RF, DT and K-NN.

From the sample studied of DL discipline, illustrated in Figure 23, papers considering
CNN are the most numerous, representing 29.3%. NN are discussed in 24.1% of the studies,
while LSTM is used by 19.0% of the sample papers. The use of Reinforcement Learning
(RL) and DNN is found in 3.4% of the articles.

Figure 23. Percentage of papers per DL category of algorithms found in the sample studied. The three
most applied DL techniques are CNN, NN and LSTM.

Figure 24 illustrates the percentage of usage of the ML and DL approaches in the
selected studies. The diagram shows that 52% of selected papers have used ML techniques
such as SVM, RF, K-NN, clustering, etc., while 39% addressed the edge-based AI challenges
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by DL approaches such as CNN, NN, LSTM etc. In addition, we have found that 10% of the
papers use ML and DL together to address different challenges in context-aware scenarios.

Figure 24. Overview of ML and/or DL techniques that have been used in the included papers.

Table 7 presents an overview of selected studies that used ML and DL techniques to
address challenges in context-aware scenarios and highlights the techniques used in each
of them.

Table 7. Various ML and DL techniques used in context-aware scenarios for sensor networks.

Reference ML DL

[60] SVR, RF, GP, LR, K-NN ANN

[136] SVM, J48, RF, NB NN

[119] semi-supervised k-means DNN

[120] DT, Discriminant Analysis, SVM,
K-NN, NB NN

[176] Gaussian mixture models DNN, RNN

[64] SVM NN

[65] RF, DT NN

[66] LR RNN

[121] RF, SVM, K-NN, SGD, LR, NB, ET DF

[97] SVM NN

[177] SVM MLP, LSTM, CNN

4.4. Q4: What Are the Motivations to Adopt AI Solutions to Context Awareness Scenario?

The motivations for applying AI/ML approaches to context-aware scenarios identified
in the included studies are shown in Figure 25.

The results show that 44% of the studies have a motivation to improve the recog-
nition. Some of these are proposed to recognize human activity with the wearable de-
vices [54,59,72,82,85,153] or to ease the finding of objects [87,129,151], or to recognize the
emotion [98,113]. Another motivation is related to management which refers to the con-
figuration, maintenance, and monitoring (27.2%), such as monitoring the elderly [134,135]
or detection of health-related problems [58,69,80,115,158], detection of abnormal driving
behavior [64], etc. QoS is also an important motivation with 14.4%, as optimization of
resource-constrained IoT devices [137,169,173], or forecast the connectivity and bandwidth
of mobile devices [139]. In addition, data privacy and security are another significant
motivation, as to address the data privacy concern in healthcare applications [92,165], or in
autonomous driving [166], or to improve access control techniques of smart devices [118].
Improving the performance of location-aware applications is the motivation used in 2.4%
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of the selected studies, e.g., in location tracking applications [101,178] or in autonomous
driving technology [109].

Figure 25. Motivations of adopting AI solutions to context awareness.

4.5. Q5: What Are the Limitations of Current Literature or What Are Gaps Existing in the
Current Research about Applying AI Technologies to Context Awareness That Future Researchers
Can Investigate?

The papers included in the survey are analyzed from three main perspectives: used
state-of-the-art (AI, ML, and DL) techniques, application domains, and addressed chal-
lenges. The identified limitations and gaps in the study are discussed in light of these
three perspectives.

As a result of the analysis conducted in Section 4.3, we have identified the lack of
unsupervised and semi-supervised approaches that allow for dealing with the cases of
not enough or entirely missing labeled data as well as transfer learning techniques in the
reviewed state-of-the-art solutions. These can be considered as a particular gap calling for
future research and development of techniques dealing with those challenges typical for
most context-aware real-world scenarios. In addition, the current state-of-the-art research in
the context-aware intelligent systems is lacking solutions in the framework of collaborative
learning where several smart devices share insights from the local training, without sharing
the raw data, namely decentralized and distributed learning schemes such as Federated
Learning [179] and Swarm Learning [180].

The second perspective that has been studied in the included papers reviews the
application domains used to evaluate the proposed intelligent context-aware solutions.
Figure 13 exhibits that healthcare domain is studied in more than half of the papers (58%).
The percentages of the other identified application domains are very low in comparison
to that of healthcare, see the discussion presented in Section 4.3. For example, logis-
tics/transportation domain which is in the focus of our special interest (see Section 5) is
studied in only 4% of the reviewed papers. More than the half of the application domains
(e.g., smart homes, agriculture, computer vision, Industry 4.0, robotics, sustainability and
safety) are even below this percentage, only smart cities show a higher representation,
namely the domain is mentioned in 12% of the papers.

Finally, from the perspective of the challenges identified (see Section 4.2), we can
observe in Figure 12 that location-based services are understudied, mentioned in only 2.4%
of the reviewed articles. The interest in studying energy saving, activity recognition and
object detection is also not very high, below 10%, which is quite lower in comparison with
HAR and monitoring, each one explored in more than 25% of the studies included.

5. Logistics Use Case: Industrial Perspectives, Challenges and Intelligent Techniques

The current survey is inspired by an industrial use case in smart logistics. This and
the fact that this application domain is less studied in comparison to the other top four
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fields motivated us to provide with an additional discussion of the industrial perspectives
in logistics, the challenges identified along with the corresponding intelligent solutions
used to addressed them.

Logistics is the backbone of global trade with global logistics expenditures making
up between 10 to 15 percent of the total world GDP [181]. It is a high volume and low-
margin market with many actors, turning supply chains into very complex operations
with numerous logistics partners involved in each shipment. Because of this complexity,
visibility into where goods are at a given moment, if they have been handled correctly, and if
they are going to be delivered on time is a difficult goal to achieve. Most transportations
lack visibility and traceability of what happens during the journey, making it difficult to
answer when goods will arrive.

With the emergence of IoT trackers, tracking of individual goods has become possible
by attaching a tracker on goods instead of manually tracking supply chain segments, such
as individual lorries or containers. The decreasing footprint and price point of IoT devices
have additionally enabled the ubiquitous deployment to not only high value goods and
entire pallets, but to also individual items.

Due to the mobile nature of trackers, they are essentially battery-operated and function
in environments where charging is often limited or nonexistent. Trackers often undergo
shipment in demanding environments, such as containers and warehouses, in which
wireless communication is unattainable and incur a high energy cost. In addition, trackers
are often equipped with other sensors, such as temperature and accelerometer, each with
their own energy profile. Altogether, trackers need to operate during the entire length
of a transportation, while sensing and reporting significant events along a route and
maintaining a sufficiently low energy profile.

With the ubiquity of small form factor AI computing and individual goods level track-
ing, the possibility for trackers to sense their environment and adapt behavior accordingly,
both individually and collaboratively together with other devices, has become attainable.
As an example, trackers can uncover relations between the device and its operating envi-
ronment in order to adjust their sensing and operating profiles. For example, detecting
indoor/outdoor and providing this context-aware information in various environments
may be helpful and lead to battery-saving solutions [182]. In addition, multiple trackers
can work in unison to make distributed decisions and utilize sensor sharing for improved
power efficiency [183].

The study published in [184] identifies research in the context of intelligent trans-
port logistics as performance enhancing approaches that combine multiple modalities of
information technology and sensing into a real-time transportation management system
using AI and ML. A central challenge posed by the authors stemming from the black-box
nature of AI systems, lies in identifying and finding solutions for mitigating the effects of
biased decisions taken by artificial intelligence. Given the advent of continuously learning
AI systems wherein decision-making is updated given new input, we believe that this
challenge will receive an increasing importance and focus. It is also important to note that
the main challenges addressed in the studied papers in logistics domain are HAR, QoS,
and monitoring as it is shown in Figure 26. The monitoring challenge is in the focus of
50% of the sampled papers, while each of HAR and QoS is studied in 25% of the logistics
devoted papers.

Figure 26. Main challenges in logistics addressed by the papers included in the survey.
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In addition, AI categories identified from the included studies in logistics are shown
in Figure 27. Interestingly half of the papers in logistics have used DL techniques, namely
CNN, while one-quarter of the papers included have utilized ML and AI equally. This once
more confirms the finding identified in [184] concerning the black-box nature of the most
existing intelligent solutions in logistics and the need for new more transparent approaches.

Figure 27. Main AI techniques in logistics addressed by the papers included in the survey.

6. Conclusions And Open Issues

In this paper, we have provided an extensive survey of context-aware edge-based AI
methods for WSN technology. Five research questions have been addressed by analyzing
141 research articles used as primary papers. Initially, we have applied a semantic-aware
approach for analyzing the keywords of the included papers in order to extract the survey
main subjects. Eleven such topics have been identified, e.g., the most popular are AI,
ML and DL, Edge Computing and Smart Monitoring, Smart Healthcare and Smart and
Wearable Devices. In the analysis carried out, we have also discovered that healthcare,
smart cities, autonomous driving, environmental monitoring, and transportation are the
top five application domains. Improving the quality of recognition, efficient management,
enhancing QoS and efficiency, and ensuring higher security are the top five motivations for
enabling intelligent applications in context-aware systems.

Various AI-based solutions have been studied in the included papers. Unsupervised
and semi-supervised algorithms, as well as transfer learning techniques are identified as
ones that have not grabbed much attention of researchers in most context-aware scenarios.
Moreover, other promising collaborative frameworks such as federated learning and swarm
learning have not been adequately explored. There is also a lack of research covering the
location-based services in the reviewed articles, further studies with more focus on these
challenges is highly suggested.

Our future research plans include deeper investigation of the challenges and gaps
identified due to the conducted survey in order to expand further the knowledge gained
and use those to develop new efficient intelligent edge-based solutions. For example, we
are particularly interested in developing decentralized resource-efficient unsupervised or
semi-supervised learning frameworks. Our short run goal is the implementation of such a
federated framework and its initial study and evaluation in a logistics use case.
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The following abbreviations are used in this manuscript:

AI Artificial Intelligence
ANN Artificial Neural Network
CNN Convolution Neural Network
DF Deep Forest
DL Deep Learning
DNN Deep Neural Network
DT Decision Tree
EC Edge Computing
ECG Electrocardiogram
EEG Electroencephalogram
ET Extreme Trees
HAR Human Activity Recognition
IoT Internet of Things
IoMT Internet of Mobile Things
GP Gaussian Process
K-NN K-Nearest Neighbors
LBS Location Based Service
LR Linear Regression
LSTM Long Short-Term Memory
ML Machine Learning
MLP Multilayer Perceptron
NB Naive Bayes
NN Neural Networks
QoS Quality of Service
RF Random Forest
RL Reinforcement Learning
RNN Recurrent Neural Network
SGD Stochastic Gradient Descent
SVM Support Vector Machine
SVR Support Vector Regression
SSL Semi-Supervised Learning
WN Wireless Network
WSN Wireless Sensor Network
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