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The post-mitotic state in neurons correlates
with a stable nuclear higher-order structure
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Neurons become terminally differentiated (TD) post-mitotic cells
very early during development yet they may remain alive and
functional for decades. TD neurons preserve the molecular
machinery necessary for DNA synthesis that may be reactivated
by different stimuli but they never complete a successful mitosis.
The non-reversible nature of the post-mitotic state in neurons
suggests a non-genetic basis for it since no set of mutations has
been able to revert it. Comparative studies of the nuclear higher-
order structure in neurons and cells with proliferating potential
suggest that the non-reversible nature of the post-mitotic state
in neurons has a structural basis in the stability of the nuclear
higher-order structure.

Background

A mature, terminally differentiated (TD) cell no longer able to
undergo mitosis is defined as post-mitotic. Traditionally TD cells
which are stably post-mitotic are considered to be permanently
outside form the cell cycle and yet there is ample evidence that
typical TD cells such as neurons and cardiomyocytes express the
molecular machinery necessary for DNA synthesis that may be
reactivated either by cellular stressors or experimental manipula-
tion.1,2 In mammals cortical neurons become post-mitotic quite
early during development, after leaving the germinal centers in the
ventricular zone3 but nevertheless they may remain alive and
functional in the long-term (actually decades in the case of
humans) without any change in their post-mitotic condition.
Indeed, there is compelling evidence that in humans no new
neurons are added to the neocortex after birth.4 Moreover, the
resistance of TD neurons to further cell division is so absolute that
so far no brain tumors derived from mature neurons have
occurred spontaneously or been induced by carcinogens in the
adult cortex.5 The old hypothesis that brain tumors arise from
dedifferentiation of mature brain cells in response to genetic
mutations was assumed facing the evidence that the normal
postnatal brain has no proliferating potential. Yet the discovery in
the adult brain of neural stem cells able to generate all the required
specialized cell types: neurons, astrocytes and oligodendrocytes6

suggests that such cells are the target of the transformation events
leading to a brain tumor.7 In the case of TD muscle cells blocking
the activity of inhibitors of cyclin-dependent kinases leads to
reentry into the cell cycle of such TD cells. Yet successful
completion of the new cell cycle has not been observed as the
reactivated cells cannot complete proper DNA replication and
they undergo cell death or arrest indefinitely in the G2 phase of
the first cell cycle.8 From observations like these it has been
suggested that the post-mitotic state is an active state mediated by
specific gene products2 but that suggestion goes against wider
evidence that any cellular process or state that depends on the
action of specific gene products acting in trans can be either
blocked or reverted by mutations (either spontaneous or induced)
in the corresponding genes but this has never been observed in
the case of post-mitotic neurons. Moreover, in the case of TD
neurons reentry into the cell cycle either induced by cellular stress
or experimental manipulation is always lethal.1,9-11 This cell cycle
related neuronal death (CRND) has been linked to pathological
neurodegenerative processes7,12 and there is evidence that CDK5,
a nontraditional cyclin-dependent kinase very active in TD
neurons, is a potent suppressor of the cell cycle in neurons thus
playing a critical neuroprotective role by avoiding CRND.13,14

DNA and Structural Stress

The chromosomes of the metazoans genomes are constituted by
very long continuous DNA molecules. The general molecular
structure of DNA is characterized by a rather rigid double
backbone made by the high-energy, phosphodiester bonds
between the deoxyribose sugar moieties of the many constituting
nucleotides, such a double backbone defines anti-parallel strands
linked by quasi-statistical, low-energy, hydrogen bonds between
the nitrogenous bases of the corresponding nucleotides in such
anti-parallel strands, this results in the formation of a molecular
double helix subjected to important structural stress along the
molecule’s length. The structural stress of DNA along its axis may
be dissipated by breaking the hydrogen bonds between both
strands, yet by looping and supercoiling along its axis DNA can
dissipate the stress without compromising its structural integrity.15

Thus forming DNA loops along a chromosome is a natural
solution for dissipating structural stress along the DNA mole-
cule,16-19 but this looping can be stabilized by the interaction of
DNA with some other material within the nucleus.
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Nuclear Higher-Order Structure

Currently there is important evidence for the existence in
metazoan cells of a nucleoskeleton involved in the organization
of the genome.20 Indeed, the nucleus is crowded with proteins
many of which perform a structural role. The nuclear matrix
(NM) has been operationally defined as a high-salt insoluble
nuclear compartment constituted by a sort of dynamic fibro-
granular network which after extraction retains the shape and
some morphological features of the nucleus.21-23 The exact
composition of the nuclear matrix (NM) is a matter of debate
as some four hundred proteins have been associated with such a
compartment and there is evidence that some NM proteins may
be common to many cell types while others may be cell-type
specific.24-27 Thus in the interphase nucleus of metazoan cells
DNA is organized in supercoiled, topologically constrained loops
anchored to the NM.28,29 DNA is attached or addressed to the
NM by non-coding sequences known as matrix associated or
matrix attachment regions (MARs). So far in mammals there are
no specific consensus sequences for a priori defining a MAR
although most well-characterized MARs are relatively rich in A-T
and repetitive sequences and map to regions where the DNA is
intrinsically curved or kinked and has a propensity for base
unpairing.30 In situ MARs have been operationally classified into
structural-constitutive, resistant to high-salt extraction, and
functional-facultative, non-resistant to high-salt extraction.31,32

Therefore the resulting DNA loops can be also classified into
structural and functional.30,33,34 The high-salt resistant MARs
attaching the structural DNA loops to the NM are also known as
loop anchorage regions or LARs.31 When multiple copies of a
specific MAR are present these are used in a selective fashion
indicating adaptability of the MAR sequence to serve as anchor
only when needed.35 A corollary is that not all potential MARs
present in DNA are actually attached to the NM. The interactions
between DNA and the NM define a higher-order structure
(NHOS) in the interphase nucleus.36,37

Common Properties of Senescent
and Post-Mitotic Cells

Classical studies have shown that normal cells with proliferating
potential lose such a potential in a stochastic and non-reversible
fashion independently of their previous number of cell divisions
thus achieving a state of replicative senescence.38-40 Such a
stochastic replicative senescence (SRS) is not the consequence of
cellular stress thus different of premature RS or STASIS which
depends on the action of specific gene products and so can be
reverted or rescued by specific mutations.41 Also such a SRS is
independent of telomere attrition since it has been observed in
cells of rodents that possess very lengthy telomeres that do not
shorten with each cell division as telomerase is continuously active
in rodent somatic cells.42,43 For example, in the rat liver the
hepatocytes are usually quiescent yet they preserve a remarkable
proliferating potential so that a 70% partial hepatectomy leads to
complete regeneration of the liver mass within seven days after
surgery.44 In young adult rats some 95% of the remaining

hepatocytes re-enter the cell cycle in order to achieve liver
regeneration. However in healthy but older animals the fraction of
remaining hepatocytes able to re-enter the cell cycle after liver
injury is reduced to , 70%.45,46 This spontaneous loss of
proliferating potential as a function of age has been linked to the
terminal differentiation of the hepatocytes.47 Indeed, the SRS of
aged hepatocytes observed in vivo is a de facto long-term, post-
mitotic state.

A common characteristic of tissue enriched with post-mitotic
cells is the presence of polyploid cells. For example, in normal
adult human brain hyperploidy is commonly detected48,49 and the
number of tetraploid neurons has been estimated at 6–12%.50

Such neurons do not express markers of the cell cycle indicating
that they did not re-enter the cell cycle and so could be considered
as a static population of tetraploid cells resulting from aborted
nuclear disassembly (karyokinesis) and mitosis in the progenitor
cells.51 Interestingly, in rats post-natal hepatic growth occurs by
rapid cell proliferation followed by cell hypertrophy that is marked
by the appearance of polyploid hepatocytes.52 Appearance of
nuclear polyploidy is a critical event in hepatocyte differentiation
and is associated with cessation of mitotic activity as well as
terminal differentiation and senescence.47,53 For example, in rats at
post-natal day 21 93% of the hepatocytes are diploid and only
2.5% tetraploid while at 18 mo of age 39% of the hepatocytes are
diploid and 41% are tetraploid.54 Yet after partial hepatectomy
there is a depletion of diploid cells with an associated relative
increase in the proportion of polyploid cells in the regenerated
liver and the fraction of polyploid cells further increases after
repeated partial hepatectomies.55,56 These facts suggest that such
polyploid cells result from the ever increasing fraction of cells that,
despite their ability for performing DNA synthesis, stochastically
lose their proliferating potential a phenomenon that correlates
with their impaired capacity for sister-chromatid segregation
(SCS), karyokinesis and mitosis.

A Common Basis for SRS and the Post-Mitotic State

In primary rat hepatocytes the DNA-NM interactions are very
labile in the early postnatal period and DNA-loop size is
heterogeneous but large on average. Yet such interactions increase
in strength and number as a function of time so that DNA loops
become shorter on average and more homogeneous in size as a
function of age and this correlates with the loss of proliferating
potential.57 Based on such evidence the hypothesis was put
forward that SRS has a structural, non-genetic basis resulting
from thermodynamic constraints acting upon DNA that lead to
an ever increasing number of DNA-NM interactions in order to
dissipate DNA structural stress.36 Therefore DNA loops become
shorter, more numerous and more homogeneous in size as a
function of time. Hence the NHOS defined by the DNA-NM
interactions becomes more stable on average with age (time).
Such a stable nuclear structure requires high activation energy
for being destabilized in order to be permissive for SCS and
karyokinesis. Thus after passing a certain threshold the stability
of the NHOS may become an insurmountable energy barrier for
proper karyokinesis and the corresponding cell becomes stably
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post-mitotic. A prediction of this hypothesis is that the NHOS
of early post-mitotic cells should be at least as stable as that
observed in aged hepatocytes that have spontaneously lost
their proliferating potential. This prediction was confirmed by
comparing the NHOS of cortical neurons from baby and aged
rats (post-natal days 7 and 540) with that of aged hepatocytes
(P540). The results indicated that even in neurons from baby rats
(P7) the NHOS is already very stable up to a higher degree than
that observed in aged hepatocytes.37 Considering the suggestion
that the formation of structural DNA loops by interaction with
the NM obeys thermodynamic and structural constraints, a
further prediction of the hypothesis was that the NHOS should
carry on stabilizing as a function of time even in an already post-
mitotic nucleus, provided that there is any remaining DNA-
structural stress to be dissipated.36 This means that the NHOS
evolves toward maximal stability in time independently of the
functional needs of the nucleus. This prediction was confirmed by
comparing the NHOS in cortical neurons from P0, P7, P80 and
P540 rats. The results indicated that the trend toward further
stabilization of the NHOS in neurons continues throughout post-
natal life and that this phenomenon occurs in absence of overt
changes in the post-mitotic state and transcriptional activity
of neurons, suggesting that it is independent of functional
constraints in the nucleus.58

NHOS and Thermodynamics

From the structural perspective, the topological organization of
the NHOS based on selective use of a limited set of potential
MARs, as seen in nuclei from hepatocytes of newborn and baby
animals57 is highly asymmetrical and the natural trend in physical
systems is toward reducing the asymmetries in such a way that the
system evolves in time so as to become more symmetrical.59,60 A
topological configuration in which most potential MARs are
actually bound to the NM, thus resulting in shorter and more
stable DNA loops, is a more symmetrical structural attractor.
According to the current notion entropy is not a measure of
disorder or chaos, but of energy diffusion, dissipation or dis-
persion in a final state compared with an initial state,61 thus a
highly-stable DNA-loop configuration satisfies the second law
of thermodynamics since the structural stress along the DNA
molecule is more evenly dispersed within the nuclear volume by
increasing the number of DNA-NM interactions (thus increasing,
in terms of molecular thermodynamics, the occupancy of more
microstates in phase space).

Nuclear Tensegrity

There is ample evidence that the cell is a high-wired system able
to transduce mechanical information. Indeed, cells within solid
tissues are part of a continuum system of mechano-transduction
that couples the extracellular matrix, with the cytoskeleton and
the cell nucleus.62 Thus the cell can be modeled as a vector field
in which the mechanically linked cytoskeleton-NM-DNA may
act as transducers of mechanical information.63 The concept of
tensegrity defines structures composed by continuous tension

elements and discontinuous compression elements, in such
systems the role of the compression elements is minimized and
the force is distributed among tension elements that can be
slender and lightweight.64 There is plenty of experimental evi-
dence that both cell and tissue tensegrity are a biological fact.65,66

Thus, a large number of DNA-NM interactions may create a
structural complex based on tensegrity, in which discontinuous
compression elements (proteins) and tensors (DNA) interact for
creating a highly stable overall structure (Fig. 1). There is evidence
that telomeres are attached to the NM67 while elements of the
NM participate in the formation of the chromosome scaffold that
constitutes the structural core of mitotic chromosomes.68-70

However, if the number of stable interactions between DNA
and the NM increases over time they could reach a point in which
the energy input necessary for SCS and destabilization (disassem-
bly) of the cell nucleus is beyond the capacity of the cell (Fig. 1).
This threshold of structural stability may determine the long-term
post-mitotic state that is independent of the action of soluble
factors acting in trans. Since this process obeys thermodynamic
constraints it must follow a stochastic behavior that nevertheless
increases its probability as a function of time.

A Stable NHOS as a Barrier
for Efficient DNA Synthesis

Early death is observed in neurons forced to re-enter the cell
cycle13 and neuronal cell cycle activity has been observed early in
several diseases that course with neurodegeneration.7 Other
reactivated post-mitotic TD cells such as myotubes die very
quickly, from apotosis, after re-entry into the cell cycle. In this
case the apoptotic process is triggered by significant DNA damage
resulting from the attempted DNA replication and those few
myotubes that proceed to mitosis show aberrant mitotic spindles
and other serious mitotic anomalies before dying.8 There is
important evidence that structural DNA loops correspond to the
actual replicons in vivo and that replication occurs in macro-
molecular complexes organized upon the NM.31,32,71,72 Thus,
considering that highly stable physical systems have a much
reduced dynamic potential, resulting from intrinsically high
activation-energy barriers, it is likely that forced DNA replication
in post-mitotic cells having a highly stable NHOS leads to severe
replicon damage and cellular death, as it has been observed.8 The
fact that the non-canonical cyclin-dependent kinase CDK5 is
highly active in neurons so as to inhibit their possible re-entry into
the cell cycle that may lead to replicative stress and cellular
death13,14 ties in with the notion that the structural, non-reversible
post-mitotic state in neurons requires active safeguards against
their possible re-entry into the cell cycle otherwise the neurons
will die. Indeed, the homozygous null mutation of CDK5 is
embryonic lethal and the aborted embryos display many neuronal
abnormalities.73,74

Why Neurons Become Early Post-Mitotic

Why some cells reach the post-mitotic state rather early in life
(neurons) while others may have not reached that state even at the
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end of the usual life expectancy in the wild (hepatocytes). A
possible answer to this puzzle is the presence of tissue-specific
NM proteins that may increase or facilitate the DNA-NM
interactions. For example, NeuN/Fox3 is an abundant neuron-
specific protein that is an intrinsic component of the neuronal
NM and shows significant DNA-binding properties.27,75 So far
very few specific MAR-binding proteins have been identified23,30

yet the structural DNA-NM interactions occur on a grand scale
despite the fact that there are no MAR consensus sequences,
implying that such interactions are the result of indirect readouts
between DNA and NM proteins.76 Such protein-DNA indirect
readouts depend on local DNA shape and overall DNA mechani-
cal properties such as curvature, helical twist, bending and
torsional flexibilities.15,33,76 In blastomeres the genome is
organized into a large number of short DNA loops that constitute
highly dynamic replicons77 but such early embryonic cells lack
lamins A/C which are important components of the NM of
differentiated cells78 thus the observed maturation of the NM
composition during development leads to stabilization of the

DNA-NM interactions.57 On the other hand, during embryo-
genesis there are changes in the rate or timing of development of
some cell lineages in the body relative to others (heterochrony), so
that different cell lineages develop at different rates.79 Mechano-
transduction during tissue morphogenesis may induce changes in
the differentiation state of cells and such a modification of the
differentiation state may also impinge on the potential morpho-
genetic trajectory by limiting the repertory of changes in cellular
size and shape. Heterochrony may alter the distribution of
probabilities of stochastic events such as the rate of actualization
of the DNA-NM interactions, thus some cell types such as
neurons may on average reach terminal differentiation and
became post-mitotic earlier than other cell types, depending on
their morphogenetic trajectory.
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Figure 1. Drawing schematizing the interaction between interphase chromosomes and the nuclear matrix (NM) (A) In cells with proliferating potential
interphase chromosomes (only two are shown as black and red fibers) are attached the peripheral NM but to very few elements of the internal
NM (green spots) thus forming a relatively limited number of rather large DNA loops. In this configuration chromosome DNA preserves significant
structural stress and so it has a high dynamic potential. Input of biochemical energy may easily destabilize the nuclear higher order structure, defined
by the DNA-NM interactions, leading to karyokinesis and mitosis. (B) In TD cells the interphase chromosomes are organized into a large number
of shorter DNA loops attached to many elements of the internal NM, this organization dissipates most DNA structural stress and so DNA loses most
of its dynamic potential becoming and integral component of a very stable structural system (perhaps of the tensegrity type) constituted by a large
number of DNA-NM interactions that cannot be destabilized by the available input of biochemical energy. Under such a configuration the nucleus
cannot be disassembled and so no mitosis may ensue. Thus in order to preserve a proliferating potential the cells cannot dissipate DNA structural stress
beyond a certain threshold without becoming stably post-mitotic.
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