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Abstract: Since the fluctuation of cellular selenocysteine (Sec) concentration plays an all-important
role in the development of numerous human disorders, the real-time fluorescence detection of Sec in
living systems has attracted plenty of interest during the past decade. In order to obtain a faster and
more sensitive small organic molecule fluorescence sensor for the Sec detection, a new ratiometric
fluorescence sensor Q7 was designed based on the fluorescence resonance energy transfer (FRET)
strategy with coumarin fluorophore as energy donor and 4-hydroxy naphthalimide fluorophore
(with 2,4-dinitrobenzene sulfonate as fluorescence signal quencher and Sec-selective recognition
site) as an energy acceptor. The sensor Q7 exhibited only a blue fluorescence signal, and displayed
two well distinguished emission bands (blue and green) in the presence of Sec with ∆λ of 68 nm.
Moreover, concentrations ranging of quantitative detection of Sec of Q7 was from 0 to 45 µM (limit
of detection = 6.9 nM), with rapid ratiometric response, high sensitivity and selectivity capability.
Impressively, the results of the living cell imaging test demonstrated Q7 has the potentiality of being
an ideal sensor for real-time Sec detection in biosystems.
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1. Introduction

Selenium (Se) as a vital micronutrient element plays an allimportant role in physiological and
pathological processes of humans, such as maintaining redox balance, activating immunoreaction,
preventing cancer development, and protecting inflammation [1–4]. It has been confirmed that
different chemical forms of Se exist in human systems, including selenocysteine (CysSeH, Sec),
hydrogen selenide (H2Se), selenoproteins (SePs), selenoglutathione (GSeH), cysteine selenopersulfide
(CysSSeH), charged Sec-tRNA, etc. [5–7]. Among them, Sec, an analogue of cysteine (Cys) with the
thiol group replaced by selenium-containing selenol group, seems to serve as the main functional form
of numerous Se-containing species in living systems, and is known as the specifical building block for
the incorporation of selenoproteins (SePs) in the active site of enzymes [8,9]. SePs, such as thioredoxin
reductases (TrxRs) and glutathione peroxidases (GPxs), show a variety of biological functions related to
a series of human disorders, such as inflammation, cardiovascular, cancers, cognitive decline, Keshan
and Kashin–Beck disease [10–12]. Hence, to obtain more precise physiological and pathological
information of Sec, it is very urgent and important to develop methods with efficiency and reliability
for the identification of Sec in biosystems [13].
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To date, there are numerous detection methods for the determination of Sec, such as thin-layer
chromatography, high performance liquid chromatography, capillary electrophoresis inductively
coupled plasma mass spectrometry, and gas chromatography [14,15]. Nevertheless, these methods
need complicated pretreatment or destruction of biological samples. In comparison, fluorescence
imaging methods exhibit latent capability to serve as more widely utilized tools for the detection of
biological relative analytes, since they can offer the higher selectivity and sensitivity, faster response,
nondestructiveness, as well as high resolution [16,17]. However, the design of Sec-specific fluorescent
sensors is still challenging because of the existing more abundant chemically similar biothiols, including
glutathione (GSH), homocysteine (Hcy) and cysteine (Cys), which may bring latent interference due
to similar chemical properties [18,19]. Hence, the research of fluorescent sensors for the selective
identification of Sec progressed slowly [20]. Impressively, after several years of effort, the first generation
of Sec-selective fluorescence sensors with high physiological applicability has been developed based
on the difference of pKa between biothiols (~8.3) and Sec (~5.8) [21,22]. Thereafter, the development of
Sec-selective fluorescent sensor advanced rapidly [23]. Even so, many reported sensors seem to be limited
in the practical application of detection of Sec in vivo due to the poor sensitivity as shown in Table S1
(limit of detection = 9~62 nM) [21,22,24,25]. It is well known that ratiometric fluorescent sensors always
display high sensitivity, especially low detection limit, since the built-in correction of the dual-emission
band of ratiometric response can circumvent the interference brought by the efficiency of the instrument,
and the concentration of the sensor [26]. Despite that several ratiometric Sec-selective fluorescence
sensors have been reported previously [27–29], in order to explore clearer pathophysiological roles of
Sec in biological systems, it is urgent to develop the novel fluorescent sensors with high selectivity and
sensitivity (especially with low detection limit), as well as rapid detection response.

Herein, we described a new ratiometric fluorescence sensor Q7, based on the fluorescence
resonance energy transfer (FRET) strategy for the highly selective and sensitive identification of cellular
Sec. The sensor Q7 has the capability of selectively detecting the concentration fluctuation of Sec within
4 min and displays a dual emission ratiometric response without the interference brought by other
bio-relative thiols (including Cys). Additionally, taking advantage of the built-in correction of two
well-distinguished emission bands, the Q7 sensor could determinate the concentration of Sec within
4 min in a wide linear range (0–45 µM) with a lower detection limit (6.9 nM). Moreover, the living cell
fluorescence imaging test results indicated that the sensor Q7 could effectively and efficiently identify
the concentration fluctuation of cellular Sec.

2. Results and Discussion

2.1. Design of Ratiometric Sensor

In the design of a ratiometric fluorescent sensor, as shown in Scheme 1, we employed coumarin
as a donor fluorophore and hydroxy naphthalimide fluorophore as an energy receptor to construct
ratiometric dye Q6 through a piperazine linker. As for the recognition moiety, a 2,4-dinitrobenzene
sulfonate ester moiety was chosen to serve as a Sec-specific response site over biothiols for the difference
of nucleophilicity of Sec and biothiols in living systems. Additionally, since the strong electron
withdrawing effect of the response site, the 2,4-dinitrobenzenesulfonyl moiety would theoretically
modulate the internal charge transfer (ICT) effect of Q6 dye resulting in the signal change of the
naphthalimide receptor. Herein, we speculated that the sensor Q7 itself showed only a blue emission
signal (ascribed to the coumarin moiety) due to ICT quenching effect of 2,4-dinitrobenzene sulfonate
ester group. However, the addition of Sec with Q7 would cleave the sulfonate ester group with green
fluorescence signal recovery (ascribed to naphthalimide fluorophore) via ICT effect blocked and FRET
effect restored, as shown in Scheme 2, accordingly achieving ratiometric fluorescence identification of
Sec theoretically under physiological conditions. Q6 dye was prepared by amidation of piperazine with
carboxyl group functionalized coumarin and 4-hydroxy naphthalimide. Sensor Q7 was synthesized
with Q6, 2,4-dinitrobenzenesulfonyl chloride, and triethylamine as the deacid reagent. The energy donor
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Q5, energy acceptor P5, fluorophore Q6 and the ratiometric fluorescent sensor Q7 were characterized
by 1H NMR, 13C NMR, and HRMS (refer to Figures S1–S12 of the Supporting Information).
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2.2. Spectral Properties of Q7

To evaluate the detection properties of the ratiometric fluorescence sensor Q7 toward Sec under
simulated physiological conditions, we first examined the absorption and fluorescence spectra of Q6
dye (1 µM) and sensor Q7 (1 µM) in PBS buffer (10 mM, pH 7.4, with 1% DMSO).

As shown in Figure 1, the Q6 dye displayed the maximum absorption at 422 nm (pink), while the
maximum absorbance of energy acceptor P5 peaked in the region of longer wavelength around 448 nm
(black). Meanwhile, the maximum absorption peak of Q7 sensor was around 418 nm (red), which
was similar to that of donor fluorophore Q5 (green). Additionally, the solution of sensor treated with
Sec exhibited an absorption peak around 421 nm, which was similar to that of Q6. All the results of
UV-vis spectrum analysis indicated the hydroxy group of Q6 had been blocked by 2,4-dinitrobenzene
sulfonate ester and might be recovered by the reaction with Sec.
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Figure 1. Normalized absorption curve of 1 µM P5 (black), Q5 (green), Q6 (pink), Q7 (red), and Q7
reacting with 10 µM Sec (blue) in DMSO/PBS = 1:99 (v/v).

At the same time, we tested the fluorescence emission spectrum of solutions of Q7, Q7 after
addition of Sec, Q6, Q5 and P5 under the same conditions. As depicted in Figure 2, the solution of
Q7 displayed only a blue fluorescence signal and the maximum emission was to be similar to that
of Q5, while the Q6 dye showed a green emission signal with the maximum emission similar to that
of P5 (excited at 400 nm). After treated Q7 with Sec (10 µM), the blue signal at 482 nm decreased,
the green signal at 550 nm increased (blue) and ∆λ was 68 nm. The spectrogram demonstrated that
the 2,4-dinitrobenzene sulfonate ester of Q7 sensor could be cleaved by the addition of Sec with
a ratiometric fluorescence response. Next, as shown in Figure S13 of the Supporting Information,
HPLC analysis was employed to prove the recovery of Q6 dye after the addition of Sec into Q7 solution.
The HPLC spectra of Q7 solution after treatment of Sec (10 µM) displayed a new signal (4.033 min,
blue) with the retention time similar to that of Q6 (4.042 min, black) as shown in Figure S13, which
clarified the determination mechanism of the sensor Q7 toward Sec.
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Figure 2. Fluorescence spectra of 1 µM P5 (black), Q5 (green), Q6 (pink), Q7 (red), and Q7 reacting
with 10 µM Sec (blue) in DMSO/PBS = 1:99 (v/v), excited at 400 nm.

2.3. The Sensitivity Studies

As for the sensitivity studies of Sec detection by Q7 sensor, we firstly examined the optimal
reaction time. Given the instability of Sec, (Sec)2 and DTT were mixed in equal molar amounts in PBS
buffer to obtain fresh analyte. The green emission of Q7 after addition with Sec (100 µM) increased
significantly, while the blue signal decreased rapidly in the initial stage. Both of them reached stability
within about 4 min (Figure 3) indicating Q7 owned a rapider ratiometric fluorescence response property
when compared with the previously reported same type of Sec fluorescence sensors [22,30]. However,
the green emission of Q7 after being added with Cys (1 mM) did not increase significantly in 4 min.
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We further determined the detection sensitivity of Q7 to Sec. Figure 4a shows that the emission
intensity of Q7 increased at 550 nm and declined gradually at 482 nm after the treatment of various
concentrations of Sec (0–100 µM) for 4 min. Interestingly, a reasonable linear relationship was obtained
between the fluorescence ratio (I550/I482) and Sec concentrations (0–45 µM), and the equation of linear
regression was determined as I550/I482 = 0.07656 [Sec] µM + 0.20344 with R2 = 0.99244. Herein,
the detection limit of sensor Q7 for Sec was determined as low as about 6.9 nM (LOD = 3σ/k), which
showed that the sensor Q7 owned a wide linear range and higher sensitivity for quantitative detection
of Sec compared with the previously reported same type of Sec fluorescence sensors [24,25].
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2.4. The Selectivity and Anti-Interference Properties

The selectivity is an important index to evaluate the sensing properties of a new fluorescence sensor,
and thereby we further investigated the selectivity of detecting Sec by Q7 sensor under simulated
conditions. As shown in Figure 5, the addition of other biological active substances (including Pro,
Glu, Asp, Phe, Thr, Val, Leu, Arg, Ile, Ser, Trp, Lys, His, Hcy, Cys, GSH, Na2SeO3 and Na2Se) could
not render a significant change of emission intensity of sensor solution, which demonstrated that this
newly synthesized Q7 sensor owned a good sensitivity toward Sec over biothiols, representative amino
acids, and other selenocompounds.

Additionally, in order to evaluate the capability of practical application under simulated conditions
of Q7, we further examined the anti-interference ability of Q7 by the method of recording the intensity
change of sensor solution which was treated with other biological analytes in the presence of Sec.
As shown in Figure S14, no remarkable intensity changes had been observed, indicating Q7 sensor had
a latent capability of being applied in a complex detection environment.
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400 nm. Each data point was detected after mixing for 4 min.

2.5. Cell Experiments

Inspired by the excellent sensing properties and anti-interference ability, we next investigated
the cytotoxicity and fluorescence imaging capability of Sec determination by Q7 sensor. As shown
in Figure S15, the cell viability was maintained at over 80% when pre-cultured by 0–10 µM sensor
solutions, which meant that the sensor Q7 exhibited barely obvious cytotoxicity and was able to be
applied in a living cell model. Although the concentration of Sec is very low in normal human cells,
its concentration will increase in the presence of some physiological diseases, such as thyroid cancer,
which can be detected and recognized by fluorescence sensors [17,28]. To investigate fluorescence
detection capability of Q7 in living cells, a rationmetric fluorescence imaging test was carried out.

As shown in Figure 6, the control group of cells pretreated with 1 µM of Q7 itself for 30 min,
displayed only a blue emission signal (Panel A), which suggested that Q7 could not respond to the
cellular biothiols. However, the test group of cells pre-cultured with 10 µM of (Sec)2 (reacted with
biothiols to generate Sec in cells) for 6 h and successive addition of Q7 for 10 min showed an obvious
green emission signal with the blue signal declined (Panel B). Additionally, the group was pretreated
with 10 µM of (Sec)2 and subsequently cultured by Q7 for 30 min, displaying stronger green emission
accompanying weak blue fluorescence intensity and strong rationmetric imaging intensity (Panel C).
All the results of the fluorescence imaging test indicated the sensor Q7 had the potential of being
applied to ratiometric fluorescence detection of Sec in living cells.
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3. Materials and Methods

3.1. Materials and Equipment

Procurement of all commercial chemicals was from commercial suppliers without further
purification. A Bruker Advance III HD400 spectrometer (Zurich, Switzerland) was used to record
1H NMR (400 MHz) and 13C NMR (100 MHz) spectra (with TMS as internal standard). An Agilent
6540 mass spectrometer (Palo Alto, CA, USA) was applied to measure high resolution mass spectrum
of intermediates and final products. SHIMADZU UV-2600 and SHIMADZU RF-6000 fluorescence
spectrometers (Kyoto, Japan) were used for obtaining absorbance and fluorescence spectrum.

3.2. Synthesis of the Fluorescent Sensor

The energy donor Q5, energy acceptor P5, fluorophore Q6 and the ratiometric fluorescent sensor
Q7 were synthesized as shown in Scheme 2.

The compound Q3 was prepared based on the method reported previously [31]. The compounds
4-(Diethylamino) salicylaldehyde (Q1, 1.93 g, 10 mmol), diethyl malonate (Q2, 1.60 g, 10 mmol) and
anhydrous K2CO3 (2.07 g, 15 mmol) were mixed and stirred to reflux in the ethanol solution (50 mL)
with piperidine (425 mg, 5 mmol) as a catalyst. After the reaction was completed as shown by thin
layer chromatography (TLC), the reaction mixture was cooled to room temperature and poured into
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100 mL of water following the addition of 1M HCl solution to acidify the solution with yellowish red
precipitate formed. The precipitate was filtrated and washed to neutral with water. After drying,
the orange product (1.77 g, yield: 68%) was not further purified and used directly in the next step.

The aforementioned compound Q3 (1.31 g, 5 mmol), 1-boc-piperazine (1.12 g, 6 mmol), 1-ethyl-3(3-
dimethylpropylamine) carbodiimide (EDCI, 4.78 g, 25 mmol) and 4-dimethylaminopyridine (DMAP,
305 mg, 2.5 mmol) were added in a flask with anhydrous dichloromethane (40 mL) and stirred at room
temperature for 2 h. After the solvent was removed, the residue was subsequently purified by silica
gel chromatography column with dichloromethane (DCM)/ Methanol (MeOH) (20:1, v/v) as eluent [29].
The compound Q4 was prepared as a yellowish crystal (1.35 g, yield: 63%).

The compound Q4 (858 mg, 2 mmol) was added into the 15 mL of mixed solution of DCM/TFA (2:1,
v/v) and then further stirred for 2 h at room temperature. After the raw material had been consumed,
the solvent was removed and the residue was then purified by silica gel chromatography column with
DCM/MeOH (20:1, v/v) as eluent [32]. The compound Q5 was prepared as a yellow crystal (539 mg,
yield: 82%). 1H NMR (400 MHz, DMSO-d6) δ 9.03 (s, 1H), 8.03 (s, 1H), 7.52 (d, J = 9 Hz, 1H), 6.76 (dd,
J = 9, 2 Hz, 1H), 6.56 (d, J = 2 Hz, 1H), 3.77–3.57 (m, 4H), 3.46 (q, J = 7 Hz, 4H), 3.20–3.05 (m, 4H),
1.13 (t, J = 7 Hz, 6H). 13C NMR (100 MHz, DMSO-d6) 164.81, 159.00, 157.25, 151.95, 145.35, 130.79,
115.21, 109.99, 107.61, 96.73, 44.68, 12.76. ESI-MS (C18H24N3O3)+: 330.18063, calcd for (C18H24N3O3)+:
330.18177.

According to the methodology reported previously, the compound P2 was synthesized [33].
Specifically, the compound P1 (2.76 g, 10 mmol), glycine (900 mg, 12 mmol) and triethylamine (1.20 g,
12 mmol) was added into 50 mL N,N-dimethylformamide. The reaction mixture was heated to 105 ◦C
and stirred for 5 h until the reaction completed. Subsequently, the mixture was cooled to room
temperature and poured into 150 mL cold H2O with brown precipitate formed (2.19 g, yield: 66%).
After drying, the brown product was not purified and used directly in the next step.

The compound P2 (1.66 g, 5 mmol), N-hydroxyphthalimide (3.26 g, 10 mmol), and anhydrous
potassium carbonate (6.15 g, 15 mmol) were added into DMSO (50 mL) and stirred at 100 ◦C for 2 h.
The reaction liquid was poured into massive water to form precipitation. The precipitate was filtrated
and subsequently purified by a silica gel chromatography column with DCM/MeOH (20:1, v/v) as
eluent [34]. The compound P3 was synthesized as a yellowish crystal (976 mg, yield: 72%).

The compound P3 (271 mg, 1 mmol), compound Q5 (329 mg, 1 mmol), EDCI (955 mg, 5 mmol) and
DMAP, (61 mg, 0.5 mmol) were added into anhydrous DCM (20 mL) and stirred at room temperature for
2 h. The solvent was removed and the residue was subsequently purified by silica gel chromatography
column with DCM/MeOH (20:1, v/v) as eluent. The compound Q6 was prepared as yellowish crystal
(337 mg, yield: 58%). 1H NMR (400 MHz, DMSO-d6) δ 11.94 (s, 1H), 8.53 (d, J = 8 Hz, 1H), 8.44 (d,
J = 7 Hz, 1H), 8.33 (d, J = 8 Hz, 1H), 8.02 (d, J = 8 Hz, 1H), 7.75 (t, J = 8 Hz, 1H), 7.45 (d, J = 8 Hz, 1H),
7.16 (d, J = 8 Hz, 1H), 6.68 (s, 1H), 6.51 (s, 1H), 4.91 (d, J = 7 Hz, 2H), 3.74–3.53 (m, 12H), 1.09 (t, J = 6 Hz,
6H). 13C NMR (100 MHz, DMSO-d6) 165.77, 164.88, 163.93, 163.20, 160.97, 159.00, 157.11, 151.72, 144.54,
134.19, 131.73, 130.60, 129.72, 126.08, 122.88, 121.94, 116.09, 112.74, 110.49, 109.81, 107.61, 96.71, 44.63,
41.43, 12.72. ESI-MS (C32H31N4O7)+: 583.21928, calcd for (C32H30N4O7)+: 583.21927.

The compound Q6 (291 mg, 0.5 mmol) and 120 mg of TEA were dissolved in 10 mL of precooled
anhydrous DCM (0 ◦C). A total of 5 mL of anhydrous DCM with 2, 4-dinitrobenzene sulfonyl chloride
(160 mg, 0.6 mmol) was subsequently added into the reaction mixture dropwise, and further stirred
for 1 h at room temperature until the reaction was accomplished. The solvent was removed and the
remaining residue was then finally purified by silica gel chromatography column with DCM/MeOH
(20:1, v/v) as eluent. A yellow solid product Q7 was obtained (304 mg, yield: 75%). 1H NMR (400 MHz,
DMSO-d6) δ 9.16 (d, J = 2 Hz, 1H), 8.63–8.57 (m, 2H), 8.50 (d, J = 8 Hz, 1H), 8.43 (dd, J = 8, 1 Hz,
1H), 8.37 (d, J = 8 Hz, 1H), 8.09–7.91 (m, 2H), 7.71 (d, J = 8 Hz, 1H), 7.51 (d, J = 8 Hz, 1H), 6.75 (d,
J = 8 Hz, 1H), 6.56 (s, 1H), 4.98 (d, J = 8 Hz, 2H), 3.73 (q, J = 7 Hz, 4H), 3.60–3.39 (m, 8H), 1.13 (t,
J = 7 Hz, 6H). 13C NMR (100 MHz, DMSO-d6) δ 165.30, 163.24, 162.64, 158.97, 157.14, 152.23, 151.79,
149.16, 148.59, 134.38, 132.52, 132.04, 130.91, 130.65, 129.37, 129.30, 128.26, 125.35, 122.59, 122.02, 121.84,
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120.77, 116.10, 109.90, 107.61, 96.78, 44.65, 41.84, 12.77. ESI-MS (C38H33N6O13S)+: 813.18201, calcd for
(C38H33N6O13S)+: 813.18263.

The compound P4 was prepared as a yellowish crystal with the obtained compound P3 (271 mg,
1 mmol), 1-boc-piperazine (223 mg, 1.2 mmol), EDCI (955 mg, 5 mmol) and DMAP (61 mg, 0.5 mmol)
as the raw material based on the Q4 method [32,35]. Thereafter, the compound P5 was prepared by the
reaction of P4 (220 mg, 0.5 mmol) with 4 mL of DCM/TFA (1:1, v/v) for 2 h (room temperature), and then
the compound P5 (122 mg, yield: 72%) was obtained by purification with silica gel chromatography
column (DCM/MeOH (20:1, v/v) as eluent). 1H NMR (400 MHz, DMSO-d6) δ 12.48 (s, 1H), 9.49 (s,
1H), 8.55 (dd, J = 8, 1 Hz, 1H), 8.44 (dd, J = 7, 1 Hz, 1H), 8.33 (d, J = 8 Hz, 1H), 7.79–7.71 (m, 1H), 7.23
(d, J = 8 Hz, 1H), 4.94 (s, 2H), 3.91 (s, 2H), 3.69 (s, 2H), 3.26 (s, 2H), 3.13 (s, 2H). 13C NMR (100 MHz,
DMSO-d6) 166.01, 163.98, 163.23, 161.43, 134.28, 131.74, 129.75, 126.02, 122.98, 121.88, 119.04, 112.42,
110.58, 43.26, 42.99, 41.79, 41.22, 38.85. ESI-MS (C18H18N3O4)+: 340.12924, calcd for (C18H18N3O4)+:
340.12973.

3.3. Spectrum Analysis

The required amount of solid product Q7 was dissolved in DMSO to prepare the stock solution
of sensor Q7 with the final concentration of 100 µM. All the absorbance and fluorescence emission
spectra were recorded by a UV-vis spectrophotometer and fluorescence spectrometer. The spectrum
analysis of sensor, sensor solution with addition of Sec, energy donor, and energy acceptor was carried
out by 1.0 cm quartz cell. The test samples were prepared as following: The sensor stock solution was
diluted to 1 µM (containing 1% DMSO) by PBS (10 mM, pH 7.40), and various amounts of freshly
prepared Sec solutions (equimolar (Sec)2 reacted with dithiothreitol (DTT) in PBS at 37 ◦C) were added
into colorimetric volumetric flasks with further 4 min reaction at 25 ◦C before spectrum analysis [36].

3.4. Anti-Interference Assays

The stock solutions of test biological active analytes with potential interference (including Pro,
Glu, Asp, Phe, Thr, Val, Leu, Arg, Ile, Ser, Trp, Lys, His, Hcy, Cys, GSH, Na2SeO3 and Na2Se) were
prepared by dissolving the exact mass of the above compounds into double distilled water with final
concentrations of 1 mM. The selectivity tests were carried out by mixing the sensor solution with
different species, respectively, for 4 min before measurement. The competition assays were conducted
by reaction of the sensor solution with different species in the presence of Sec after 4 min.

3.5. Cell Imaging

A549 cells (human lung cancer cells), were cultured in dishes in 1640 medium with 10% FBS,
1% penicillin, and 1% streptomycin at 37 ◦C in a CO2 cell incubator with 5% CO2 [37]. After being
incubated for 24 h, the cell experiments were carried out. Cytotoxicity of sensor Q7 was determined by
standard MTT assay. (Sec)2 was added as the source of Sec. After 1 µM sensor was added, the cells
were incubated for a different time and washed with PBS (pH = 7.4). Cell images were carried out by a
Nikon Ni-U fluorescence microscope.

4. Conclusions

In this study, a new FRET-ICT dual-modulated ratiometric fluorescence sensor Q7 was designed
and prepared by introducing 2,4-dinitrobenzene sulfonate ester to a FRET ratiometric fluorophore Q6,
which was constructed by coumarin as a donor fluorophore with hydroxy naphthalimide fluorophore
as energy receptor through a piperazine linker. The sensor Q7 exhibited only a blue fluorescence
signal, and displayed two well-distinguished emission bands (blue and green) in the presence of Sec
with ∆λ of 68 nm. Moreover, Q7 has the capability of quantitative detection of Sec at concentrations
ranging from 0 to 45 µM (limit of detection = 6.9 nM), whose detection limit is lower than those of the
reported sensors [19,21,22,24,25,35–37]. The response time of Q7 to Sec is 4 min, which is faster than
those of the reported sensors [19,22,25,35,37]. In addition, the sensor Q7 can be used for rationmetric
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fluorescence imaging in living cells. Herein, we speculated that this novel FRET-ICT dual-modulated
ratiometric fluorescence sensor will be able to be applied to a wider field of biomedical diagnostics.

Supplementary Materials: The following are available online, Table S1. The performance parameters of some
reported Sec fluorescent sensors and detection method, Figure S1: 1H NMR spectrum of compound Q5 (DMSO-d6),
Figure S2 13C NMR spectrum of compound Q5 (DMSO-d6), Figure S3 HRMS spectrum of compound Q5, Figure S4
1H NMR spectrum of compound Q6 (DMSO-d6), Figure S5 13C NMR spectrum of compound Q6 (DMSO-d6),
Figure S6 HRMS spectrum of compound Q6, Figure S7 1H NMR spectrum of compound Q7 (DMSO-d6), Figure S8
13C NMR spectrum of compound Q7 (DMSO-d6), Figure S9 HRMS spectrum of compound Q7, Figure S10 1H NMR
spectrum of compound P5 (DMSO-d6), Figure S11 13C NMR spectrum of compound P5 (DMSO-d6), Figure S12
HRMS spectrum of compound P5, Figure S13 HPLC spectrum of compound Q6 (black), Q7 (pink) and treating
Q7 with Sec (blue). Mobile phase: MeOH: H2O = 7:3, UV detection wavelength: 420nm, Figure S14 Fluorescent
intensity ratios I550/I482 responses of 1 µM Q7 at 614 nm to Sec (40 µM) in the presence of various biological
analytes (1 mM) in PBS (10 mM, pH 7.40, containing 1% DMSO as cosolvent). Legend: (1) Blank; (2) Hcy; (3) GSH;
(4) Cys; (5) Pro; (6) Glu; (7) Asp; (8) Phe; (9) Thr; (10) Val, (11) Leu, (12) Arg; (13) Ile; (14) Ser; (15) Trp; (16) Lys;
(17) His; (18) Na2SeO3; (19) Na2Se. Excitation at 400 nm. Each data was obtained 4 min after mixing, Figure S15
Cytotoxicity of A549 cells by standard MTT assay in the presence of sensor Q7 (0~10 µM) at 37 ◦C.
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