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Abstract
The tumor microenvironment (TME), including immune cells, cancer-associated fibroblasts, endothelial cells,
adjacent normal cells, and others, plays a crucial role in influencing tumor behavior and progression. Here, we
characterized the TME in 83 primary renal tumors and matched metastatic or recurrence tissue samples (n = 15)
from papillary renal cell carcinoma (pRCC) types 1 (n = 20) and 2 (n = 49), collecting duct carcinomas (CDC;
n = 14), and high-grade urothelial carcinomas (HGUC; n = 5). We investigated 10 different markers of immune
infiltration, vasculature, cell proliferation, and epithelial-to-mesenchymal transition by using machine learning
image analysis in conjunction with immunohistochemistry. Marker expression was compared by Mann–Whitney
and Kruskal–Wallis tests and correlations across markers using Spearman’s rank correlation coefficient. Multivari-
able Poisson regression analysis was used to compare marker expression between histological types, while
accounting for variation in tissue size. Several immune markers showed different rates of expression across histo-
logical types of renal carcinoma. Using pRCC1 as reference, the incidence rate ratio (IRR) of CD3+ T cells (IRR
[95% confidence interval, CI] = 2.48 [1.53–4.01]) and CD20+ B cells (IRR [95% CI] = 4.38 [1.22–5.58]) was
statistically significantly higher in CDC. In contrast, CD68+ macrophages predominated in pRCC1 (IRR [95%
CI] = 2.35 [1.42–3.9]). Spatial analysis revealed CD3+ T-cell and CD20+ B-cell expressions in CDC to be higher
at the proximal (p < 0.0001) and distal (p < 0.0001) tumor periphery than within the central tumor core. In
contrast, expression of CD68+ macrophages in pRCC2 was higher in the tumor center compared to the proximal
(p = 0.0451) tumor periphery and pRCC1 showed a distance-dependent reduction, from the central tumor, in
CD68+ macrophages with the lowest expression of CD68 marker at the distal tumor periphery (p = 0.004). This
study provides novel insights into the TME of rare kidney cancer types, which are often understudied. Our find-
ings of differences in marker expression and localization by histological subtype could have implications for
tumor progression and response to immunotherapies or other targeted therapies.
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Introduction

Tumor formation and progression are influenced by
two main factors: genomic changes and the rearran-
gement of the components of the tumor microenviron-
ment (TME) [1,2]. The TME is tumor dependent [3]
and although various immune cells may be recruited
to the tumor site, their tumor killing functions are
often inhibited, resulting in tumor progression.
Thus, understanding the mechanisms, and cells,
governing immune evasion in the TME is essential
to identify novel strategies to disrupt tumor interac-
tions with its surrounding environment and effec-
tively treat cancer [4].
Several of the immunosuppressive components

within the TME have been characterized and used in
the development of novel immunotherapies, including
in kidney cancer, the eighth most common malignancy
in the United States [5]. However, most investigations
of the TME in renal cancers have focused on clear cell
renal cell carcinoma (ccRCC), which is the most fre-
quent renal histotype in adults with a 5-year survival
rate of 68–75% [6]. ccRCCs show abundant immune
cell infiltration [7–9] and there is a role for anti-
angiogenic therapies as this TME has been linked to
increased angiogenic activity following Von Hippel
Lindau tumor suppressor loss [10,11]. Clinical analysis
of immune checkpoint inhibitors alone [12,13], or in
combination with anti-angiogenic therapies [14], has
shown promise in relation to improved clinical out-
comes for patients with ccRCC in a few studies,
highlighting the relevance of the TME in facilitating
therapeutic approaches and precision medicine. How-
ever, to date, little analysis of the TME has been car-
ried out in rarer forms of renal cancers, which often
present with more aggressive or metastatic disease at
diagnosis [15].
Papillary renal cell carcinoma (pRCC) accounts for

10–20% of all RCC and is histologically characterized
by a proliferation of papillae composed of fibrovascu-
lar cores lined by tumor cells [16]. pRCC can be fur-
ther subtyped as type 1 (pRCC1) and type 2 (pRCC2),
the latter being more aggressive than the former [17]
with 5-year disease-specific survival rates of pRCC1
and pRCC2 of 94.5 and 66.4%, respectively [18]. Col-
lecting duct carcinoma (CDC) arises from the collect-
ing duct in the renal medulla [19]. It comprises less
than 1% of all primary renal tumors and is highly
aggressive, with most subjects presenting with meta-
static disease [20] at the time of diagnosis and a
5-year survival rate of just 8.8% [21]. Urothelial carci-
noma arises from the urothelium of the renal pelvis

and is a highly variable and aggressive disease [22].
High-grade papillary urothelial carcinomas (HGUC)
grow more quickly than low-grade disease, and are
more likely to metastasize, with a 5-year survival rate
of 6% for metastatic disease [23].
With the aim to better understand the TME in renal

cell carcinomas, we characterized the TME in 103 rare
kidney cancer tissue samples by applying machine
learning algorithms to digitized whole slide sections
stained immunohistochemically for immune, endothe-
lial, and epithelial-to-mesenchymal markers.

Materials and methods

Sample collection and subject information
This study was based on archived samples collected at
the Regina Elena Cancer Institute, Rome, Italy, includ-
ing 103 tumor samples from 83 subjects. Specifically,
we analyzed 88 primary tumor samples (20 pRCC1,
49 pRCC2, 14 CDC, 5 HGUC), 13 metastatic tissue
samples, including both distant metastasis and lymph
node metastasis (8 pRCC2, 4 CDC, 1 HGUC), and
2 recurrences (2 pRCC2) (supplementary material,
Table S1). All tissue specimens were derived from sur-
gical resection. Written informed consent to allow
banking of biospecimens for future scientific research
was obtained from each subject. This work was
excluded from the NCI IRB Review per 45 CFR
46 and NIH policy for the use of specimens/data by
the Office of Human Subjects Research Protections
(OHSRP) of the National Institutes of Health. The data
were anonymized. The pathology of all tissue samples
underwent centralized review by a specialist in
uropathology (SS) to confirm the diagnosis. Tumor tis-
sue samples were formalin fixed, paraffin embedded,
sectioned at 3 μm thickness, mounted on SuperFrost
Plus slides (Menzel-Gläser, Braunschweig, Germany),
and stained with hematoxylin and eosin (H&E). H&E
slides were inspected for the presence of neoplastic
cells and the percentages of epithelial and mesenchy-
mal regions on each slide were estimated by an expert
pathologist (SS). Samples with compromised fixation/
processing were excluded from the study.

Immunohistochemistry
Slides were baked at 60 �C for 1 h prior to immuno-
staining. Immunohistochemistry (IHC) for detection of
10 markers per tissue sample was performed on auto-
mated staining platforms using the following antibodies
(supplementary material, Table S2): pan-macrophage
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marker (CD68), M2-like macrophage/tumor-associated
macrophage (TAM) marker (CD163), pan-T-cell markers
(CD3), cytotoxic T-cell maker (CD8), B-cell marker
(CD20), marker of immune suppression (PD-L1), angio-
genic marker (CD31), proliferation marker (Ki67),
marker of tumor tissue (PanCK), and marker of
epithelial-to-mesenchymal transition (EMT) (vimentin).
In addition, staining of LAG3 (a marker of NK cells and
T cells) was performed but expression levels were below
detection in all samples. Staining was carried out as per
the manufacturer’s protocols and recommendations.
After deparaffinization, rehydration, and antigen retrieval
in citrate buffer (10 mM, pH 6.1), the tissue sections were
stained for the marker of interest (supplementary mate-
rial, Table S2). Positive control human tissues were used
for all markers (supplementary material, Table S2).
Immunoreactions were revealed by Bond Polymer

Refine Detection on an automated autostainer
(Bond™Max, Leica Biosystems, Milan, Italy). Stan-
dard processing steps were performed according to
the manufacturer’s instructions. Diaminobenzidine
was used as chromogenic substrate. Stained slides
were rinsed in distilled water, dehydrated, cleared in
xylene, and cover slipped prior to scanning.
IHC for PDL-1 and vimentin was conducted at

the Molecular Digital Pathology Laboratory of
the National Cancer Institute, NIH. All other IHC

slides were prepared at the Regina Elena Cancer
Institute, Rome, Italy.

Image analysis
Slides were scanned using an Aperio AT2 DX scanner
(Leica Biosystems, Richmond, IL, USA) at �40 mag-
nification. Scanned whole slide images were analyzed
using the HALO image analysis platform (Indica labs,
Albuquerque, NM, USA). The HALO Random Forest
classifier was trained to differentiate between tissue,
glass, and folds/debris and to provide quantitative data
on the total tissue area on each slide. Within the tissue
area, regions of interest, i.e. the tumor tissue islands,
were identified by a pathologist (PL) for analysis.
Image analysis settings were based on differences in
protein expression and tissue localization for the dif-
ferent markers. For CD68, CD163, CD3, CD8, CD20,
PanCK, and vimentin, which are typically localized to
membranous and/or cytoplasmic compartments, we
used the HALO ‘Area quantification v1.0’ algorithm,
a powerful approach for analyzing tissues where clus-
tering and aggregation inhibit reliable cell segmenta-
tion, to estimate the positive staining area (Figure 1).
The percent positive marker area was calculated by
dividing the positive staining area by the total tissue
area and multiplying by 100. For CD31, Ki67, and

Figure 1. Representative images of the comparative quantification of tumor island staining by light microscopy and by digital image
analysis using the HALO imagine analysis software for each marker. CD68, papillary renal cell carcinoma (pRCC) type 1; CD3, collecting
duct carcinoma; Ki67, high-grade urothelial carcinoma; all other markers, pRCC type 2.
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PDL1, the ‘Object colocalization v1.2’ algorithm,
which detects positive staining cells or objects (e.g.
CD31+ endothelial cells) based on their size and
shape, was used for determining the total number of
positively staining objects per mm2 of tissue area
(Figure 1). Algorithms to measure Ki67 and vimentin
were trained on the entire tissue, considering both
tumor and non-tumor regions equally for training.
To investigate immune infiltration patterns by histo-

logical subtype, each image was spatially characterized
into tumor core, proximal tumor periphery, and distal
tumor periphery, and marker expression was assessed
within these compartments. In addition to careful
pathology annotations, delineation of the tumor on the
slide was enhanced using PanCK staining. In general,
machine learning algorithms were trained to identify
and annotate regions on representative sections with
positive PanCK staining. For each subject, annotated
PanCK regions from the representative section were
digitally overlayed on serial sections from the other
markers through a process of digital image registra-
tion. Accordingly, separate PanCK with CD3, CD20,
or CD68 images were successfully merged by using
the HALO image registration tool. For each marker,
concentric rings of 140 μm in width from the tumor
core to 300 μm outside the tumor region (i.e. distal
tumor periphery) were analyzed using the HALO
‘Infiltration analysis’ module (supplementary material,
Figure S1). Percent positive staining area and object
count per mm2 were determined within each concen-
tric region.

Statistical analyses
To compare the TME by histological types, we calcu-
lated the rate of immune markers expression (i.e. the
area of tissue with positive stain divided by the total
tissue area) and tested differences between individual
histological types using Mann–Whitney, and across all
histological types using Kruskal–Wallis tests. A single
sample, chosen at random, was included from tumors
with multiple samples. We examined correlations
across markers using Spearman’s rank correlation
coefficient r.
To examine the associations between TME marker

expression (outcome) and histological types (expo-
sure), we fitted Poisson regression models on the log
of the area of tissue with positive stain. To take into
account the variability in tissue size on each slide, the
log of the total tissue area per slide was included as
an offset. Correlations across multiple samples from
the same tumor were accommodated by using gener-
alized estimating equations [24] with the independent

working correlation to obtain variance estimates (Proc
Genmod). pRCC2 was used as the reference group to
ensure stable estimates, as it had the largest sample
size (n = 49). To identify confounders of the associa-
tion between TME markers and histological types, we
verified whether marker expression (in quartiles) was
associated with clinical features (listed in Table 1)
using chi-square or Fisher’s exact tests (data not
shown), and whether clinical features were associated
with histological types using Fisher’s exact tests (sup-
plementary material, Table S3). Poisson models were
first only adjusted for histological type, and then addi-
tionally adjusted for age in categories fitted with a
trend (<51, 51–61, 62–70, >70), sex, tumor size (<4,
4–7, >7 cm) [25], and clinical stage (I, II, III, IV). The
incidence rate ratio (IRR) estimated from the Poisson
model represents the ratio of the percent positive area
in a specific histological type compared to pRCC2. A
Wald-based P heterogeneity was calculated to test dif-
ferences of marker expression across all four histologi-
cal types. In sensitivity analyses, we additionally
adjusted the Poisson model of the immune markers for
the rate of immune marker expression from the same
cell types (i.e. T cells or macrophages) to control for
any possible residual confounding.
Next, we compared the median expression of

markers inside the tumor with that on the proximal
(tumor border) and distal periphery using Wilcoxon
matched-pairs signed rank test. To assess marker
expression by distance from the center of the tumor
island region to the periphery, we fitted linear models
to the log-transformed marker values, adjusted for the

Table 1. Summary of clinical characteristics of study participants.
n (%)

Age at surgery (n = 83) <51 16 (19.28)
51–61 23 (27.71)
62–70 22 (26.51)
>70 22 (26.51)

Gender (n = 83) Male 63 (75.90)
Female 20 (24.10)

Histology (n = 83) pRCC type 1 20 (24.10)
pRCC type 2 44 (53.00)
CDC 14 (16.90)
HGUC 5 (6.00)

Clinical stage (n = 83) I 32 (38.60)
II 7 (8.40)
III 21 (25.30)
IV 23 (27.70)

Tumor size, cm (n = 83) <4 16 (19.50)
4–7 31 (37.80)
>7 35 (42.70)

Metastasis at diagnosis (n = 83) Yes 20 (24.10)
No 63 (75.90)
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log-transformed bandwidth area. P values of <0.05
were considered significant. All statistical analyses
were performed using SAS version 9.4 (SAS Institute,
Cary, NC, USA).

Results

As expected [26], the majority of the subjects were
male (76%) (Table 1). The mean age of participants
was 61 years (range 56–76 years). Over half (53%) of
the samples analyzed were pRCC2. Clinical stage and
tumor size showed even distribution across categories.
Finally, 24% of subjects presented with metastasized
tumors (Table 1).
We analyzed 103 tumor samples from 83 subjects.

Variability in expression across all markers was observed
when we compared multiple samples from the same pri-
mary tumor (supplementary material, Figure S2),
highlighting the heterogeneity of the TME in these can-
cers. In contrast, we observed no significant variation
between marker expression in primary tumors and mat-
ched metastatic (n ≤ 13) or recurrent (n = 2) tissue sam-
ples (supplementary material, Figure S3). However,
although not statistically different, PD-L1 showed a sug-
gestive increase in the metastatic tissue samples (median
positive cells/mm2 = 17.6 (lymph node and distant meta-
static samples) versus 5.30 (primary matched samples),
n = 13, p = 0.1099; nodes only, n = 4, p = 0.1250; dis-
tant metastatic samples only, n = 9, p = 0.820) (supple-
mentary material, Figure S3 and Table S4). Moderate
correlation was observed between expression of markers
from the same cell types, i.e. macrophages (CD68 and
CD163; r = 0.634) and T cells (CD3 and CD8;
r = 0.48) (supplementary material, Table S5). Further-
more, B-cell marker showed moderate and significant
correlation with the pan-T-cell marker CD3 (r = 0.693)
(supplementary material, Table S5), suggesting that acti-
vation of adaptive immune cells may occur concurrently.
Several immune markers showed different rates of

expression across histological types (Figure 2). Kruskal–
Wallis analysis showed that CD68 (p = 0.0005), CD20
(p = 0.0003), and Ki67 (p = 0.0053) expression varied
the greatest between all histological types (not shown on
graphs). Overall, expression of macrophage markers
(i.e. CD68 and CD163) was highest in the pRCC histo-
logical types (pRCC2 versus CDC, CD68: p = 0.006;
pRCC2 versus HGUC, CD68: p = 0.01, CD163;
p = 0.046, Mann–Whitney test). However, lymphocyte
markers (i.e. CD3, CD8, and CD20) showed a trend of
higher expression in the CDC or HGUC subtypes, with
CD20 expression significantly higher in CDC versus

pRCC2 (p = 0.04). Moreover, pRCC1 had significantly
lower expression of CD8 (p = 0.0083), CD20
(p < 0.001), PDL-1 (p = 0.0161), CD31 (p = 0.039),
and Ki67 (p = 0.0245) in comparison to the more clini-
cally aggressive pRCC2 (Figure 2).
In multivariable Poisson models, CDC showed a

higher lymphocytic infiltration in comparison to
pRCC2, i.e. high T cells (CD3; IRR = 2.82, 95% con-
fidence interval [CI] = 1.69–4.69, p < 0.001) and B
cells (CD20; IRR = 4.94, 95% CI = 2.63–9.28,
p < 0.001) (Table 2), but a lower infiltration of macro-
phages (CD68; IRR = 0.06, 95% CI = 0.00–0.95,
p = 0.046). However, no variation across histological
types was found for CD8, a marker of cytotoxic T
cells. Additionally, PDL1 expression was higher in
pRCC2 versus CDC (IRR = 0.11, 95% CI = 0.02–
0.73, p = 0.02).
Moreover, pRCC1 showed lower expression of

Ki67, a marker of cell proliferation, in comparison to
pRCC2 (IRR = 0.47, 95% CI = 0.21–0.92,
p = 0.017). Adjusting for markers expressed on the
same cell types did not substantially alter the findings
(supplementary material, Table S6). We could not
stratify analysis of marker expression by tumor size or
stage because of small numbers in some categories.
By quantifying the percentage of epithelial and mes-

enchymal regions on each H&E slide, we investigated
whether the proportions of these tissue composition
metrics differed by histological type. We found the
proportion of epithelium on the slide to be higher
among pRCC (mean [SD] = 80% [11%] and 78%
[12%] for pRCC1 and pRCC2, respectively) and CDC
(mean [SD] = 72% [17%]) than HGUC (mean
[SD] = 50% [29%]) histological subtypes (supplemen-
tary material, Figure S4A). In contrast, HGUC (mean
[SD] = 50% [26%]) showed a higher proportion of
mesenchymal regions than the other histological types
(mean [SD] = 22% [11%], 20% [11%], and 28%
[17%] for pRCC2, pRCC1, and CDC, respectively;
supplementary material, Figure S4B). We assessed
EMT by using IHC staining of vimentin as a surrogate
marker, which is in keeping with previous reports
[27]. No significant variation in vimentin expression
was observed by histological type (supplementary
material, Figure S4C).
Finally, in an effort to ascertain if immune cells

remain at the tumor periphery or can penetrate the
tumor tissue core, we carried out immune marker spa-
tial analysis using the HALO 3.1 imaging platform
(supplementary material, Figure S1). Notably, CD68
expression was consistently expressed both inside the
tumor tissue core as well as on the periphery in
the pRCC histological types. In contrast, expression of
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CD3 and CD20 increased at the proximal (tumor bor-
der) and distal periphery, most strongly in the CDC
histological type (supplementary material, Figure S5).
When we compared the median expression of markers
inside the tumor island with the expression levels at
the proximal or distant periphery, the highest expres-
sion levels of CD68 were inside the tumor core for
pRCC2 (mean [SD] = 257.9 [270.6] cells per mm2;
p = 0.045) and pRCC1 (mean [SD] = 323 [179] cells
per mm2; p = 0.004) compared to the periphery (mean
[SD] = 194.7 [196.7] cells per mm2; mean
[SD] = 224.3 [164.5] cells per mm2, respectively)
(Figure 3A).
In contrast, statistically significantly higher CD3+

T-cell expression was observed at the proximal (mean
[SD] = 322.7 [271.9] cells per mm2; p < 0.0001 and
186.7 [215.1] cells per mm2; p = 0.0147) and distal
(mean [SD] = 317.7 [254.2] cells per mm2;
p < 0.0001 and 182.8 [190.7] cells per mm2;
p = 0.002) tumor periphery than within the tumor core
(mean [SD] = 131.4 [204.7] and 134.6 [226.6]) for
CDC and pRCC2, respectively. Similarly, for both
CDC and pRCC2, CD20+ B-cell expression was
higher in the proximal (mean [SD] = 158.1 [171];
p < 0.001 and 112.0 [157.6]; p < 0.0018, respectively)

and distal (mean [SD] = 177.4 [184.8]; p < 0.001 and
107.9 [137.2]; p = 0.006, respectively) tumor periph-
ery than within the tumor core (mean [SD] = 57.94
[104.5] and 44.12 [111.7], respectively) (Figure 3C).
Similar results were observed when multiple tumor
islands per tissue slide were combined to represent the
overall mean expression inside the tumor and at the
proximal and distal tumor periphery per slide
(Figure 3D–F).
To assess the statistical significance of the observed

spatial patterns, we conducted linear regression analy-
sis of the markers’ expression by distance from the
tumor center to the periphery. The analysis showed
that CD3 expression and, to a lesser extent, that of
CD20 increased with increasing distance from the
tumor center (p = 0.004 and 0.01, respectively, in
CDC samples). In contrast, CD68 showed no signifi-
cant variation (p = 0.5471).

Discussion

The aim of this study was to evaluate the density and
spatial architecture of different markers in the TME of

Figure 2. Scatter plot representation of median � range of the percentage positive tissue area for markers measured by IHC and quantified
by digital pathology using the HALO image analysis platform. Data were analyzed by unpaired Mann–Whitney test for differences between
individual histological types compared. pRCC2 acted as comparison group for all analysis, as it had the largest subject size. pRCC2, papillary
renal cell carcinoma type 2 (n = 44) (red); pRCC1, papillary renal cell carcinoma type 1 (n = 20) (green); CDC, collecting duct carcinoma
(n = 14) (blue); HGUC, high-grade urothelial carcinoma (n = 5) (magenta). ****p < 0.0001; ***p < 0.0005; **p < 0.005; *p < 0.05.
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rare histological types of RCC and other renal cancers.
In particular, we focused on immune cell expression
and localization in the TME. We found that the

expression levels of CD68, a marker of all macro-
phages, was highest in the pRCC subtypes, with strong
levels of infiltration into the tumor core, while higher

Table 2. Univariable and multivariable analyses of the association between TME marker expression and kidney tumor histological types.
Univariable model Multivariable model*

Marker Histology n IRR (95% CI) P value IRR (95% CI) P value

CD68
pRCC type 2 45 Ref. Ref.
pRCC type 1 16 2.16 (1.09–4.29) 0.0276 1.48 (0.61–3.63) 0.3884
CDC and other 14 0.06 (0.00–1.04) 0.0532 0.06 (0.00–0.95) 0.0458
HGUC 5 0.02 (0.00–33.94) 0.3160 0.03 (0.00–35.21) 0.3277
P heterogeneity 0.0662 0.2522

CD163
pRCC type 2 49 Ref. Ref.
pRCC type 1 20 0.84 (0.43–1.64) 0.6090 0.57 (0.26–1.27) 0.1676
CDC and other 14 0.97 (0.39–2.42) 0.9473 0.96 (0.38–2.38) 0.9239
HGUC 5 0.22 (0.01–8.21) 0.4142 0.31 (0.01–10.72) 0.5170
P heterogeneity 0.3327 0.571

CD3
pRCC type 2 48 Ref. Ref.
pRCC type 1 20 0.95 (0.54–1.68) 0.8589 0.79 (0.41–1.49) 0.4632
CDC and other 14 2.50 (1.56–4.02) <0.0001 2.82 (1.69–4.69) <0.0001
HGUC 5 0.71 (0.24–2.12) 0.5395 1.03 (0.31–3.41) 0.9590
P heterogeneity 0.4508 0.4002

CD8
pRCC type 2 47 Ref. Ref.
pRCC type 1 19 0.65 (0.33–1.28) 0.2145 0.5 (0.23–1.07) 0.0726
CDC and other 14 1.45 (0.82–2.55) 0.1976 1.56 (0.86–2.83) 0.1405
HGUC 5 1.42 (0.60–3.37) 0.4202 1.88 (0.72–4.91) 0.1974
P heterogeneity 0.364 0.1848

CD20
pRCC type 2 48 Ref. Ref.
pRCC type 1 19 0.38 (0.12–1.24) 0.1087 0.33 (0.09–1.24) 0.0914
CDC and other 13 4.35 (2.49–7.58) <0.0001 4.94 (2.63–9.28) <0.0001
HGUC 5 1.07 (0.30–3.76) 0.9175 1.29 (0.31–5.34) 0.7210
P heterogeneity 0.1631 0.3931

PDL1
pRCC type 2 44 Ref. Ref.
pRCC type 1 15 0.11 (0.01–1.40) 0.0886 0.16 (0.02–1.71) 0.1306
CDC and other 14 0.23 (0.03–2.15) 0.1986 0.11 (0.02–0.73) 0.0224
HGUC 5 0.17 (0.00–16.47) 0.4521 0.05 (0.00–2.39) 0.1310
P heterogeneity 0.4983 0.4304

CD31
pRCC type 2 49 Ref. Ref.
pRCC type 1 18 0.67 (0.48–0.92) 0.0143 0.76 (0.54–1.06) 0.1043
CDC and other 14 1.05 (0.78–1.41) 0.7553 1.14 (0.86–1.52) 0.3496
HGUC 5 0.97 (0.52–1.83) 0.9322 1.06 (0.58–1.94) 0.8387
P heterogeneity 0.0902 0.216

Ki67
pRCC type 2 48 Ref. Ref.
pRCC type 1 18 0.51 (0.29–0.88) 0.0162 0.47 (0.25–0.87) 0.0166
CDC and other 14 0.43 (0.20–0.90) 0.0263 0.47 (0.22–1.00) 0.0487
HGUC 5 0.31 (0.08–1.24) 0.0973 0.32 (0.08–1.31) 0.1142
P heterogeneity 0.0474 0.0282

Data were analyzed by Poisson regression. Marker positive expression tissue area and total tissue area were quantified using HALO algorithms: ‘Area quantification
v1.0’ for CD163, CD68, CD3, CD8, and CD20, and ‘Object colocalization v1.2’ for PDL-1, CD31, and Ki67. Data were modeled as area of tissue with positive stain/
positive object count as the dependent variable, and the log of the total tissue area per slide as an offset.
Ref., reference category.
*Adjusted for sex, age at surgery, clinical stage, and tumor size.
Bold values are statistically significant (P < 0.05).
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expression of T (CD3 only) and B cells was found in
CDC but localized at the proximal and distant tumor
periphery.
Macrophages are innate immune cells that are

primarily involved in host defense and tissue

homeostasis. In response to many stimuli, macro-
phages are recruited to the TME and can prevent or
facilitate further tumor development [28]. Macro-
phages can be categorized into two main subtypes
based on their functions: the classical M1 phenotype,

Figure 3. Scatter plot representation of median � IQR expression of markers inside the tumor regions; the expression of markers across
a 140-μm band at the border between tumor and adjacent normal cells; and across a 140-μm band outside tumor regions. Figures on
the left represent the marker expression in each individual tumor island region analyzed, and the figures on the right the median expres-
sion of all tumor islands analyzed per samples (i.e. tissue slides, n = 3). Images were analyzed using the HALO 3.1 imagine analysis plat-
form. Data were analyzed by Wilcoxon matched pairs signed rank test with ‘inside tumor’ as the comparison group unless defined by a
bar. ****p < 0.0001; ***p < 0.0005; **p < 0.005; *p < 0.05.
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which is involved in immune response, pathogen
clearance, and anti-tumor inflammation, and the alter-
native M2 phenotype (i.e. CD163 expressing), which
has been described as anti-inflammatory and pro-
tumorigenic [29]. A histological hallmark found in
most pRCC cases is focal accumulation of foam cell
macrophages in the stroma of the papillary stalks [30].
Therefore, it is unsurprising that expression levels of
macrophages were highest in pRCC types. Moreover,
pRCC1 had lower expression of lymphocyte markers
(i.e. CD8 and CD20) and markers of aggressiveness
(i.e. CD31 and Ki67) than pRCC2, which is expected
for its more ‘benign’ phenotype [17], whereas CD68
expression was higher in pRCC1 versus pRCC2. This
is consistent with previously reported findings that
foamy macrophages predominate in pRCC1 than
pRCC2 [31]. However, little is known about the role
of macrophages in pRCC biology [32]. Behnes et al
[33] suggested, in a small study of 30 pRCC2 cases,
that M2 TAMs may contribute to the poor prognosis
of pRCC2. In our study, although not statically signifi-
cant, pRCC2 expressed the highest median levels of
CD163 (Figure 2) [34]. Consistent findings were seen
at a transcriptomic level by Liu et al [35], based on
CIBERSORT analysis, in which they found that M1
and M2 macrophages could predict pRCC2 clinical
outcome. Thus, when creating a treatment plan for
these cancer types, the pro-tumorigenic presence of
M2 macrophages and the low expression levels of T-
cell and B-cell markers should be considered.
In contrast, we found higher expression of lympho-

cytes in the CDC histological type compared to pRCC
types. CDC is an aggressive form of renal cancer, and
the activation and recruitment of an adaptive immune
response to the tumor site is not unexpected [36].
However, analysis of the spatial architecture of these
immune cells in the TME showed that the accumula-
tion of lymphocytes remains peritumoral. This con-
firms that the recruitment of these cells is occurring,
but immune evasion takes place in the TME at the
tumor site. Previously, a transcriptomic analysis of
17 CDC tumors showed that genes of the immune
response were overexpressed, which is consistent with
our finding of high T-cell and B-cell marker expres-
sion in this histological type [37]. That study did not
analyze the localization of the overexpressed immune
cells, which, based on our study, appear to remain out-
side the tumor island areas. The lack of infiltration of
lymphocytes in the tumor mass could partly explain
the aggressive phenotype of CDC. However, the oppo-
site may also apply, i.e. that aggressive tumor pheno-
types may more likely be high grade and exhibit
central necrosis, which may cause the immune

infiltration to be limited to the periphery. Conversely,
the necrotic tumor core may be predominated by
phagocytes and polymorphonuclear cells. Nonetheless,
this is very unlikely to affect our results as all histo-
logical sections were carefully annotated by a patholo-
gist to exclude regions of necrosis, artifacts, and
debris. Furthermore, when we adjusted for grade in a
subset of patients for whom we had these data, the
results did not change (data not shown). In addition,
both peripheral and intra-tumoral regulatory T cells
have been identified in ccRCC, where they were asso-
ciated with poor prognosis and metastatic progression
[38,39]. As for the B lymphocytes, Sjöberg et al [40]
found that B cells were independent predictors of poor
prognosis in a subset of RCCs; however, their role in
the TME mostly remains inconclusive and additional
studies are warranted.
To the best of our knowledge, this is the first study

to comprehensively characterize the TME in rare renal
cell carcinomas by integrating IHC staining of
10 markers with computational pathology. Our find-
ings provide novel insights into the density and spatial
localization of immune cell subsets in pRCC and
CDC, reflecting differences in TME biology between
distinct subtypes of renal carcinomas. Owing to the
small sample size and lack of clinical outcomes data,
however, we were unable to investigate the prognostic
relevance of TME in this study. Findings from recent
studies suggest that, beyond immune cell densities,
colocalization of immune and proliferation markers,
such as CD8/Ki67, may be of prognostic relevance in
pRCCs [41]. The assessment of marker colocalization
can be facilitated by dual or multiplex chromogenic or
immunofluorescence staining, which differ from the
serial IHC staining that we performed in this analysis.
Nevertheless, the HALO image registration tool enabled
us to spatially characterize histological sections and to
evaluate TME patterns within the tumor and its periph-
ery. Although this approach can be extended to evaluate
colocalization, the images for this study were not
always from consecutive sections which precluded our
ability to perform cell-to-cell level image registration.
Future studies incorporating digital pathology with mul-
tiplex staining will allow colocalization, proximity,
nearest neighbor, and infiltration analyses.
In conclusion, this study provides novel insights

into the immune TME of rare histological types of kid-
ney cancer using a large number of markers and a spa-
tial analysis of immune cells. Although based on a
small number of samples in some analyses, distinct
tumor environments were observed in different histo-
logical types, which could ultimately impact the
response to immune-based therapies or other targeted
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therapies. Future clinical trials of these tumors should
take type-specific immune markers and their localiza-
tions into account.
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