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Abstract

Motivation: DNA methylation is an intensely studied epigenetic mark implicated in many biological

processes of direct clinical relevance. Although sequencing-based technologies are increasingly

allowing high-resolution measurements of DNA methylation, statistical modelling of such data is

still challenging. In particular, statistical identification of differentially methylated regions across

different conditions poses unresolved challenges in accounting for spatial correlations within the

statistical testing procedure.

Results: We propose a non-parametric, kernel-based method, M3D, to detect higher order changes

in methylation profiles, such as shape, across pre-defined regions. The test statistic explicitly ac-

counts for differences in coverage levels between samples, thus handling in a principled way a

major confounder in the analysis of methylation data. Empirical tests on real and simulated data-

sets show an increased power compared to established methods, as well as considerable robust-

ness with respect to coverage and replication levels.

Availability and implementation: R/Bioconductor package M3D.

Contact: G.Sanguinetti@ed.ac.uk

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

DNA methylation is an epigenetic mark associated with many fun-

damental biological processes of direct clinical relevance, such as

imprinting, retrotransposon silencing and cell differentiation

(Gopalakrishnan et al., 2008; Laurent et al., 2010). Methylation

occurs when a methyl group is attached to a cytosine. In mammals,

methylation is observed predominantly in the CpG context, and,

consequently, studies tend to focus on these loci. The canonical

understanding is that methylation of CpG regions in promoter re-

gions (CGIs) is associated with gene silencing; however, recent stud-

ies have shown that CpG methylation correlates with gene

expression in a more complex and context-dependent manner

(Varley et al., 2013). Methylation profiles are altered in many dis-

eases, most notably cancer (Das and Singal, 2004; Sharma et al.,

2010), and as such epigenetic therapies are being developed, which

specifically target methylation (Yang et al., 2010).

Bisulfite treatment of DNA followed by next-generation

sequencing provides quantitative methylation data with base pair

resolution. Unmethylated cytosines are deaminated into uracils,

which amplify as thymines during PCR (Krueger et al., 2012). Reads

are then aligned to a reference genome, permitting changes of C to

T. The resulting counts of cytosine and thymine at registered cyto-

sine loci form the basis of further analysis. This general procedure

has been adapted in various ways, with reduced representation

bisulfite sequencing (RRBS) being one of the most widely used.

RRBS involves using a restriction enzyme such as MspI (or TaqI) to

cleave the DNA at CCGG (or TCGA) loci and selecting short reads

for sequencing (Gu et al., 2011). This results in greater coverage of

CpG dense regions at lower cost.

Several methods have been proposed to statistically test for dif-

ferentially methylated region (DMRs). Almost all these methods per-

form a search for DMRs by testing individual cytosines followed by
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a post hoc aggregation procedure. Early methylation studies used

Fisher’s exact test (FET) to identify differentially methylated cyto-

sines (DMCs) (Li et al., 2010; Challen et al., 2012). BSmooth

(Hansen et al., 2012), one of the most widely used methods, per-

forms local likelihood smoothing to generate methylation profiles

for each sample, before testing individual locations in the profiles to

identify DMCs. More recent methods, such as BiSeq (Hebestreit

et al., 2013) and methylSig (Park et al., 2014), also employ local

smoothing, together with a beta-binomial model of methylation at

individual cytosines; both of these methods then aggregate the re-

sults of tests at individual loci to compute a measure of significance

for DMRs. The beta-binomial method models biological variability

at each cytosine location and hence requires a high replication level

to achieve power. Coverage can also be problematic, as low cover-

age precludes statistical significance and high coverage can lead to

over-confidence in calling DMRs, although the latter effect can be

ameliorated by having a larger number of replicates. For instance,

methylSig requires a minimum of three replicates per group and ig-

nores loci which are covered by fewer than 10 reads by default. A re-

cent method, MAGI (Baumann and Doerge, 2014), takes a different

approach by testing directly for DMRs, rather than computing region-

wide measures of significance from tests of individual cytosines.

MAGI assumes the availability of genome-wide decision boundary

methylation levels (which can be determined either from annotation

or in a data-driven fashion). Methylation levels at each cytosine are

then given a binary representation based on whether they exceed the

decision boundary, and a single FET is performed over each region by

counting how many cytosines have changed state.

Although these methods can be highly effective, no current

method explicitly accounts for spatial covariation (MAGI implicitly

assumes spatial homogeneity across a region). DNA methylation

levels are often strongly spatially correlated: accounting for such

correlations in a testing procedure could then lead to considerable

increases in statistical power. Some examples of spatially correlated

changes in the ENCODE data analysed in Section 3.2 are shown in

Figure 1 and Supplementary Figure 1; notice that in all these ex-

amples, the change at individual cytosines is modest, and hence

these regions would not be called as DMRs by currently existing

methods. We remark that, although local smoothing methods like

BSmooth (Hansen et al., 2012) attempt to capture spatial coherence,

the local coherence is not an integral part of the testing procedure.

Smoothing in this setting serves the dual purposes of filtering noise

and highlighting large-scale changes in the methylation profile.

Moreover, the shape of the methylation profile has been suggested

as an important factor in predicting gene expression (VanderKraats

et al., 2013), leading to a potentially functional role for methylation

patterns. To our knowledge, there are no methods that test higher

order properties, such as shape, of the methylation profiles over a

region.

Here, we present maximum mean methylation discrepancy

(M3D), a non-parametric statistical test for identifying DMRs from

pre-defined regions, explicitly accounting for shape changes in

methylation profiles. Our method is based on the maximum mean

discrepancy (MMD), a recent technique from the machine learning

literature, which tests whether two samples have been generated

from the same probability distribution (Gretton et al., 2007, 2012).

Similar non-parametric tests have already been applied to ChIP-Seq

and RNA-Seq data (Schweikert et al., 2013; Drewe et al., 2013).

Our contribution is to adapt the method for the specific challenges

of bisulfite sequencing data, introducing an explicit control for con-

founding changes in coverage levels. Our method is used to test for

changes in methylation profiles across regions, as opposed to

individual cytosines, and we call as DMRs those regions whose vari-

ation cannot be explained by inter-replicate variability. We demon-

strate the performance of M3D against existing methods on real and

simulated data, showing a considerable increase in power and im-

proved robustness against reduced replication and coverage levels.

2 Methods

The M3D method is designed to analyse aligned methylation data.

Rather than testing individual cytosines and pooling them into puta-

tive DMRs, M3D considers changes in the methylation profile’s

shape over a given region. To quantify shape changes, we compute

the MMD over each region and adjust it to account for changes in

the coverage profile across samples. Finally, we use a data-driven

approach to compare test statistics based on the empirical likelihood

of observing between-group differences among replicates. We re-

strict our analysis to CpGs only and combine data from both

strands.

Selecting which regions to test is an important feature of a differ-

ential methylation study and must reflect the specific question being

asked. Regions can either be pre-defined, such as a list of promoter

regions, or generated from the data by selecting regions of dense

CpGs (clusters) as in (Hebestreit et al., 2013). We keep this as a flex-

ible option and instead focus on a general framework for region-

based methylation analysis.

2.1 Maximum mean discrepancy
Formally, the MMD is defined as follows. Let F be a class of func-

tions f : X ! R over a metric space X with Borel probability meas-

ures p, q. We define the MMD as

MMD½F ; p; q� ¼ sup
f2F
ðEp½f ðxÞ� � Eq½f ðxÞ�Þ (1)

Intuitively, we are finding the mean over a bounded function that

maximizes the difference between the probability distributions. For

a sufficiently dense function class, this is equal to 0 if, and only if,

p¼q. Choosing F to be the unit ball in a reproducing kernel Hilbert

space (RKHS) on X provides a searchable class of functions that re-

tains this result (Gretton et al., 2007). For x;x0-independent random

variables with distribution p and y; y0-independent random variables

with distribution q, the square of the MMD becomes:

MMD2½F ;p; q� ¼ Ep½kðx; x0Þ� � 2Ep;q½kðx; yÞ� þ Eq½kðy; y0Þ� (2)

In practice, for X ¼ x1; ::::; xmf g;Y ¼ y1;. . .; ynf g observations inde-

pendently and identically distributed from p and q, respectively, we

can compute a sample-based approximation to the MMD metric,

giving rise to a feature representation in the RKHS, as

MMD½X;Y;k� ¼ Kxx

m2
� 2Kxy

mn
þKyy

n2

� �1
2

(3)

where Kxx ¼
Xm
i;j¼1

kðxi;xjÞ; Kxy ¼
Xm;n
i;j¼1

kðxi; yjÞ;

and Kyy ¼
Xn

i;j¼1

kðyi; yjÞ

2.2 The M3D statistic
We represent a RRBS dataset as a set of vectors xi, where each xi is

composed of the genomic location of a cytosine Ci, and the
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methylation status of that Ci on one mapped read, xi ¼ ðCi;MethiÞ.
Thus, there are as many xis in a dataset as the number of mapped

cytosines (within a CpG context). To define an MMD between data-

sets, we need to define a kernel function operating on pairs of vectors

xi, xj to evaluate Equation (3). A natural choice is a composite kernel

given by the product of a radial basis function (RBF) kernel on the

genomic location and a string kernel on the methylation status:

kfullðxi; xjÞ ¼ kRBFðxi;xjÞkSTRðxi; xjÞ (4)

Where kRBFðxi; xjÞ ¼ exp½�ðCi � CjÞ2=2r2� (5)

and kSTRðxi; xjÞ ¼
1; if Methi ¼Methj

0; otherwise

(
(6)

The RBF kernel, kRBFðxi; xjÞ retains spatial information at a scale

determined by the hyper-parameter r, which corresponds to the dis-

tance along the genome that displays methylation correlation. We

model this parameter independently for each region, R, to reflect the

local correlation structure, as r2
R ¼ x2=2; for x 2 R, a heuristic sug-

gested in (Gretton et al., 2012). Here, x refers to the median distance

of all observations in region R across the datasets being compared.

MMD distances computed using the above procedure would capture

both differences in coverage profiles and differences in methylation

profiles. A particular challenge of bisulfite sequencing data, and a cen-

tral tenet of the RRBS procedure (Gu et al., 2011), is that the fre-

quency with which a cytosine site is tested (the coverage) is unrelated

to the methylation status. This poses a challenge in all bisulfite

sequencing analysis, as the sampling distribution becomes a confound-

ing factor in our attempt to understand methylation. We control for

changes in the coverage profile by subtracting the analogous MMD of

the coverage; the M3D metric is then given by:

M3D½X;Y� ¼MMD½X;Y; kfull� �MMD½X;Y; kRBF� (7)

where kfull and kRBFðxi; xjÞ are as described in Equations (4) and (5)

and the MMD terms are as in Equation (3). Henceforth, we refer to

the first term, MMD½X;Y; kfull� as the ‘full MMD’ and the second

term, MMD½X;Y; kRBF�, as the ‘coverage MMD’ for convenience.

The last term in Equation (7) represents the MMD of the data on

a methylation-blind subspace. This implies that, in the large sample

limit when the sample estimate of the MMD converges to the exact

MMD of Equation (1), the M3D statistic is non-negative.

The M3D statistic will therefore be different from zero when

there is a change in the methylation profile, independently of a

change in the coverage profile. As a consequence, M3D between rep-

licate RRBS experiments (which do not necessarily have identical

coverage) should be close to zero or, equivalently, the full MMD

should be equal to the coverage MMD. This is borne out in the

data; the metrics strongly agree over replicates. Testing equality of

metrics over 102 ENCODE RRBS datasets gives an R2 of 0.95. This

can be seen in Supplementary Figure 2; specific examples can also be

seen in Figures 2(a–c) and 4(a–c), where the dense region around the

diagonal represents unchanged DMRs with M3D close to zero.

2.3 P-value calculation
We use the M3D as a test statistic by comparing the values observed

across groups to those observed between replicates. We define our

null distribution as the observed M3D values over all the testing re-

gions between all replicate pairs. For a given region r, we compute

the mean, lr of the M3D values over all sample pairs across testing

groups for r. The P value for r is the probability of observing lr or

higher among the null distribution. We use the Benjamini–Hochberg

procedure to calculate false discovery rates (FDRs), rejecting clusters

at a 1% significance level (Benjamini and Hochberg, 1995). Because

each test corresponds to an entire region, this correction is less puni-

tive than methods testing each cytosine location.

In general, we calculate the P value empirically. In order for the

method to scale, we also provide a model-based approximation by

fitting an exponential distribution to the 95th percentile of the null

distribution. P values are calculated in the same manner using the

fitted exponential. An example is shown in Supplementary Figure 3.

At a given FDR cut-off, identifying DMRs amounts to identify-

ing a threshold M3D value, tfdr and calling all regions r with

lr > tfdr. We find the empirical method to be marginally more ac-

curate (Fig. 3) and report results with empirically calculated P values

for the rest of this paper.

3 Datasets

We benchmarked the M3D method on a simulated dataset and two

real datasets. We briefly describe here the two real datasets and the

simulation procedure used. Summary statistics and figures of the

testing regions are shown in Section 4 of the Supplementary Data.

3.1 Simulated data
To benchmark the ability of our method to detect true changes with-

out introducing false positives, we resort to a simulation study. To

simulate methylation profile changes with realistic statistics, we con-

structed our simulation from a real RRBS dataset.

We used an RRBS dataset of human embryonic stem cells,

H1-hESC (described in the following section), consisting of two

replicates. Dense CpG regions were identified using the procedure

by Hebestreit et al., (2013), and for simplicity, we focused on

the first 1000 on chromosome 1. We then simulated two more repli-

cates to act as our testing group, as described in Section 5 of

the Supplementary Data. The coverage statistics for the result-

ing dataset have a mean of 34.5 and a median coverage of 23

Fig. 1. Methylation profiles of CpG clusters uniquely identified by the M3D

method in a comparison of leukaemia (K562) and ESC cells, Sections 2.3 and

3.3. DMCs are not individually very different, yet the profile has changed

shape in each case
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at each CpG site. We then selectively altered the methylation profile

of randomly chosen regions in the simulated replicates to create

known methylation changes and used the M3D method to test for

DMRs.

To simulate methylation changes, we randomly selected 250 of

the CpG clusters out of a possible 1000. We selected a short region

within each cluster, at least 100-bp long and with a total coverage of

at least 100, in each replicate. If necessary, we increased the size of

the region until it occupied at least n CpG sites, where n was uni-

formly sampled from [4,20]. The methylation level, Lold
i , was calcu-

lated at each cytosine site, Ci as the proportion of all the data points

mapping to that site that were methylated. We measured the mean

methylation of the sites and created a simulated methylation level,

Lnew
i , by hyper-methylating the region if it was <50% methylated

on average and hypo-methylating it otherwise. The degree of methy-

lation change was controlled by a parameter a 2 ½0;1�, such that the

new methylation level Lnew
i ¼ ð1� aÞLold

i þ a if the region was being

hyper-methylated and Lnew
i ¼ ð1� aÞLold

i if it was being hypo-

methylated. To vary the strength of methylation change, we tested

the methods different values of alpha.

Simulated data were then created by sampling data points

x1;. . .; xnif g at site Ci with corresponding Meth1;. . .;Methnif g
sampled with probability pðMethj ¼ methylatedÞ ¼ Lnew

i , where ni

is the coverage at location Ci. Pseudocode for creating simulated

data is shown in Section 5 of the Supplementary Data.

3.2 Human data
To test the M3D method on real data, we compared two Tier 1

tracks from the ENCODE consortium, GEO series GSE27584

(ENCODE Project Consortium et al., 2012). RRBS data from

human embryonic stem cells, H1-hESC, were compared against leu-

kaemia cells, K562. Both datasets were produced by the Myers Lab

at the HudsonAlpha Institute for Biotechnology. The data are avail-

able pre-processed and aligned to the hg19 genome, and we used the

resulting BED files. H1-hESC cells came from a human male and

K562 from a female, so sex chromosomes were removed from the

analysis. Testing regions were defined by clustering CpG sites in the

same manner as for the simulations, and regions with no coverage in

at least one sample were excluded from the analysis; this resulted in

14,104 genomic regions for testing.

To investigate the relationship between differential methylation

and gene expression, we used the corresponding 200-bp paired end

RNA-seq data for H1-ESC and K562 cells available in release 4 of

the ENCODE consortium (ENCODE Project Consortium et al.,

2012). Reads were aligned using TopHat and gene expression esti-

mates in fragments per kilobase of transcript per million mapped

reads (FPKM) were produced with Cufflinks (Trapnell et al., 2012).

Gene expression estimates were averaged across the three replicates

within each group and analysis was performed on the resulting

changes across groups.

3.3 Mouse data
We compared a 4 replicate data RRBS data set from mouse strain

B6C ESCs (GEO: GSE56572, Booth et al., 2014) to a 3 replicate

data set consisting from sciatic nerve cells from postnatal day 10

(P10) mice (GEO: GSE45343, Varela-Rey et al., 2014). To define

testing regions, we used the list of exons for Mus musculus provided

by Ensembl in release 75 (Flicek et al., 2013). We excluded any

exon regions with no coverage in one of the ESC cell samples or

with <5 CpG sites in total, leaving 2359 regions in total. Again,

data from both strands were combined. The median coverage at the

remaining CpG loci was 24 for the ESCs and 11 for the P10 sciatic

nerve cells.

4 Results

4.1 Simulations
We first benchmarked our method on a realistic simulated dataset

generated as described in Section 3.1. Results were compared

against BSmooth and MAGI. BiSeq and methylSig were also con-

sidered; however, because the dataset had lower replication than the

minimum recommended by the authors, we decided not to use them.

BSmooth was designed for whole-genome bisulfite sequencing

(WGBS) data; to adapt the method to RRBS data, we followed the

authors’ suggestion and altered the maximum allowable distance be-

tween neighbouring cytosines before smoothing (bioconductor mail-

ing list: https://stat.ethz.ch/pipermail/bioconductor/2013-February/

051020.html). Details for implementation of BSMooth and MAGI

are provided in Section 6 of the Supplementary Data.

Fig. 2. Simulation results. (a–c) We plot here the coverage MMD against the

full MMD metric for all methods. The M3D test statistic is their difference, the

distance in the x axis from the diagonal line. Each point is a CpG cluster, with

black points being unchanged. DMRs are shaded according to whether they

are called (M3D) or missed (BSmooth). (a) M3D identifies a clear relationship

and calls almost all the clusters. (b) BSmooth calls some of the clusters but

makes both types of error (Table 1). Classification bears little resemblance to

the M3D method. (c) MAGI calls fewer regions, again with little semblance to

the M3D method. (d) Histogram of test statistics for replicate values (blue)

and with simulated changes (red), log scale

Fig. 3. ROC curve. Here, we plot the true positive rate against the FDR for

each method, reflecting the proportion of regions called at each FDR. From

highest to lowest, we see M3D with empirical P-values, M3D with modelled

P-values and MAGI. AUCs for the methods are 0.99, 0.96 and 0.77, respectively
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Figure 2 summarizes the results obtained with the methylation

strength parameter a (see Section 3.1) set to 1. Of the 250 differently

methylated regions, the M3D method called 232, with no falsely

called DMRs. Figures 2(a–c) show scatterplots of coverage MMD

on the y axis versus full MMD on the x axis for all 1000 regions,

with colours denoting the results of the testing procedure using the

different statistics. Individual regions are represented as circles, col-

oured according to whether the region was a true positive (green), a

false positive (red), a false negative (blue) or a true negative (black).

As discussed before, changes in methylation are likely to occur for

regions that are mapped far from the diagonal. The figures show a

clear cluster of regions about the diagonal (the unchanged regions)

and a clearly identifiable group with much larger full MMD (the

changed regions). Figure 2a shows the results of the testing proced-

ure using the M3D statistic. As we see, M3D correctly identifies

most of the 250 simulated changes. Receiver-operating characteristic

(ROC) curves are shown in Figure 3. Note that BSmooth is omitted

as the method does not test regions as a whole, rather identifies

groups of DMCs within the region and hence does not output a rele-

vant statistic for comparison.

We present the results of BSmooth and MAGI in same frame-

work in Figure 2(b and c). BSmooth correctly called 67 of the re-

gions with an additional 10 false positives, typically calling regions

with similar coverage profile, which we expect is due to the effect of

local likelihood smoothing. Figure 2b shows the BSmooth results; as

we see, even regions with very marked shape differences (as quanti-

fied by M3D) were missed, which is to be expected as BSmooth does

not include spatial correlations in the testing procedure. MAGI

called 211 of the regions correctly, with two false positives (the FDR

was set to 1%). Figure 2c shows that while many of the regions

missed had a low M3D statistic, this was not always the case and

there is not a simple relationship between the two methods indicat-

ing that the M3D method performs a genuinely different computa-

tion, as opposed to simply being more powerful. A histogram of the

M3D test statistic is shown in Figure 2d for the replicates and the

cross-group comparisons. The empirical testing distribution is

shown in blue and is seen to be consistent around zero and sharply

peaked. The simulated DMRs are easily distinguished.

We then investigated the sensitivity of our method by systematic-

ally altering the strength of the methylation changes using

a ¼ 1;0:8;0:6 and 0:4. We compared the M3D method with

BSmooth and MAGI and our results are listed in Table 1. The M3D

method maintains a very creditable performance level for all the a

values. This is due to the fact that neighbouring cytosines are being

altered, and hence there are spatial correlations in the changes. Were

the changes scattered randomly in the region M3D performance

would weaken, whereas MAGI would remain robust. The sudden

dip in performance of MAGI at a ¼ 0:4 is due to fewer of the cyto-

sines’ methylation levels crossing the threshold value. It is remark-

able that at all levels of a the use of the M3D statistic does not lead

to any type I errors, though we note that the other methods have

consistent type 2 error levels across these tests.

To assess the sensitivity of the various methods to spatial correl-

ations, we ran a further simulation, this time adding a ‘Gaussian bump’

of to the methylation profiles of the regions, at randomly chosen loca-

tions, with varying widths and strengths. Details are described in

Section 5 of the Supplementary Data. Here, we found a more marked

contrast in the performance of the methods, which we show in Table 2.

ROC curves are shown in Section 7 of the Supplementary Data.

4.2 Human data
We now describe the results of comparing two human datasets gener-

ated by the ENCODE consortium (see Section 3.2). We focus on three

aspects: a general comparison of results between M3D and BSmooth,

an analysis of the robustness of the results with respect to the

coverage and an analysis of the functional relevance of our results.

4.3 DMR detection
Out of the 14,104 CpG regions selected for testing (see Section 3.2),

M3D identified 4137 DMRs, and BSmooth and MAGI identified 1649

and 3101 DMRs, agreeing on 1328 and 2353 of the regions, respect-

ively. In Figure 4, we present the results in the same form as Figure 2,

where we again see that the M3D method produces genuinely different

results. Figure 4a shows the method applied to the replicates only,

where the methylation-blind and aware metrics agree. Figure 4(b and c)

show the results of between-group testing by M3D and BSmooth,

respectively. The data have a striking similarity to Figure 2a; this sug-

gests that, on this real dataset, the M3D statistic provides an excellent

measure of changes in methylation profiles. Similar to the simulated

dataset, BSmooth does not behave in a consistent manner with respect

to the M3D test statistic and many CpG clusters are missed (Fig. 4c). A

histogram of the M3D test statistics is shown in Figure 4d, again

confirming that the M3D statistics identifies a clear group of changed

profiles between the two conditions. Comparisons to MAGI are shown

in Section 8 of the Supplementary Data.

4.3.1 Robustness to low coverage

To test the consistency of the M3D method to low coverage, we

simulated a reduction in the coverage levels of the H1-hESC and

Table 1. Simulation results: sensitivity to low methylation changes

Alpha 1 (0.96, 0.10) 0.8 (0.76, 0.15) 0.6 (0.57, 0.16) 0.4 (0.38, 0.15)

Meth change (mean, SD)

M3D BS MAGI M3D BS MAGI M3D BS MAGI M3D BS MAGI

Correct 232 67 211 231 65 205 210 66 201 197 66 157

Type 1 0 10 2 0 7 2 0 10 2 0 10 0

Type 2 18 183 39 19 185 45 40 184 49 53 184 93

For various values of alpha, we show the corresponding mean and standard deviation of the methylation level (the total methylated reads divided by coverage

at each CpG) change for the altered CpG sites and the results of testing the three methods. MMD outperforms BSmooth and MAGI.

Table 2. Sim: Gaussian bump

M3D BS MAGI

Correct 190 58 102

Type 1 0 11 1

Type 2 60 192 148

Results for adding a Gaussian bump to the methylation levels. Despite the

overall change being smaller, M3D retains good performance by considering

spatial correlations in the data.

M3D 813

s
-
vs 
,
-
2 
to
show 
of 
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btu749/-/DC1
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btu749/-/DC1
data sets
,
.
4
s
data set
ly
data set
gard
-
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btu749/-/DC1


K562 data. We discarded at random reads for the datasets to simu-

late a reduction in coverage by 75%, 50% and 25% in both data-

sets. The M3D method was used to find DMRs, and the results were

compared across coverage levels; to alleviate the computational bur-

den, we only considered CpG regions on chromosome 1.

Of the 1345 CpG clusters on chromosome 1, the M3D method

identified 403 DMRs. Reducing coverage to 75%, 50% and 25% of

the original level, the method identified 395, 399 and 386 DMRs,

respectively, with 0, 1 and 1 DMRs not in the original set. To see

the consistency of the calls, we show a Venn diagram in Figure 5.

There is a strong overlap in the calls at all levels, indicating robust-

ness in the method. Interestingly, although fewer regions are called

at lower coverage levels, at each stage we do not see many new re-

gions being called as might be expected. Although the empirical test-

ing distribution is less accurate, the structure remains intact. Both

BSmooth and MAGI showed similar consistency, although the num-

ber of regions called was lower in both cases. Results are shown in

Section 9 of the Supplementary Data.

4.3.2 Functional analysis of differential methylation regions

To investigate the functional relevance of our results, we interpreted

the called DMRs in terms of the functional annotation and expres-

sion level of nearby genes. We used three sets of genomic regions,

gene bodies, first exons and promoters; gene and exon regions were

downloaded from Ensembl release 75 (Flicek et al., 2013) and pro-

moter regions were defined as being 2000 bp upstream from the

transcription start site. Tests were run on gene, promoter and first

exon regions separately. We excluded regions with fewer than 5

CpGs and tested the remaining regions for changes in the methyla-

tion profiles using the M3D method.

As the M3D method provides a measure of the strength, but not

direction of the methylation profile change, we measured the cross

group expression change as the absolute value of the FPKM log-fold

change and excluded all genes with <100 FPKM in one sample to

avoid noise at low expression levels.

We identified 8747 gene body regions with sufficient expression

and CpG content; among these, the M3D method called 404 as

DMRs. We tested the absolute log-fold changes in expression be-

tween called and uncalled regions with a Wilcoxon rank-sum test

and found the former was higher (P value: 2:2� 10�16). Similarly,

103 of 4916 promoter regions were called as DMRs and showed an

associated higher absolute log-fold expression change (Wilcoxon

rank-sum test, P value: 1:18� 10�6). Rather more first exon regions

were tested, with 411 of 19 473 regions being called as DMRs.

Again, there was an associated increase in the log-fold expression

change (Wilcoxon rank-sum test, P value: 2:2� 10�16). None of the

411 first exon DMRs were in the gene bodies of the gene region test-

ing group, hence this is not a duplicate result. The median log-fold

expression change for genes associated with uncalled regions was

0.15 for gene, promoter and first exon regions. In genes associated

with called promoter regions, this rose to 0.24, and in genes and first

exon regions, the median was 0.37 and 0.34, respectively

(Supplementary Figure 12). These results support earlier studies out-

lining a stronger link between methylation in the first exon, as

opposed the promoter region and gene expression (Brenet et al.,

2011).

We performed an enrichment analysis for gene ontology (GO)

terms using the Ontologizer software for the gene, promoter and

first exon regions separately (Bauer et al., 2008). In each case, the

population group was chosen to be the set of genes associated with

the regions being tested, i.e. those with sufficient coverage and CpG

counts, and the study group was the set of genes associated with the

called regions. For this study, we examined the DMRs called by the

M3D method against all the regions tested, independently of

gene expression data. We used parent–child analysis and adjusted

P values according with a Benjamini-Hochberg procedure at

10% FDR.

For the gene regions, we tested 2,692 called genes against 15,321

tested genes resulting in 208 GO terms being called. Among these,

GO terms for embryonic morphogenesis, organ formation, growth,

developmental growth, regulation of cell differentiation, pattern

specification process and cell fate commitment were discovered, as

might be expected in a comparison between ESCs and fully mature

K562 cells. This suggests a connection between gene body methyla-

tion and cell function.

The first exon group was smaller, with 1,087 called gene associ-

ations in a population of 10,811. Thirty-one GO terms were statis-

tically significantly enriched. Twenty-four of these terms were also

enriched in the gene region analysis. Again, terms associated with

cell differentiation, such as cell fate specification and cell fate com-

mitment, were observed. This is striking, because these first exons

were not in gene bodies of the gene testing regions.

The promoter group had 506 gene associations called out of a

population of 8,114. Interestingly, we found no statistically signifi-

cantly enriched GO terms in the analysis. The top 10 enriched GO

terms, by statistical significance, are shown in Supplementary Tables

1, 2 and 3 in Section 11 for the three types of genomic regions

tested.

4.4 Mouse data
To examine the robustness of the M3D statistic to changes in repli-

cation, we considered a comparison between two mouse datasets

with larger replication, the ESCs dataset of (Booth et al., 2014) with

four replicates and the neural dataset of Varela-Rey et al. (2014)

Fig. 4. H1-hESC versus K562 Cells. Black dots are uncalled clusters, red are

called. (a) Just the inter-replicate metrics are shown, for comparison with

Figure 2. (b) Between-group clusters as called by M3D. (c) BSmooth identifies

far fewer. Axes show the full and coverage MMD. Classification bears little re-

semblance to the M3D method. (d) The histogram of test statistics
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with three replicates. Robustness to low replication is important; as

remarked before, although many methods require at least three rep-

licates in each dataset, many experimental protocols (including al-

most all the ENCODE RRBS data) provide only two replicates. We

used the M3D method to identify DMRs with three and with two

ESC replicates, and compared the set to those identified with the full

four ESC replicate sets. DMRs were identified at a 1% FDR.

Of the 2359 exon regions tested, the M3Ds method identified

689, 676 and 609 with methylation profiles that differed signifi-

cantly with respect to inter-replicate variation with 4, 3 and 2 repli-

cates in the ESC group, respectively. As is shown in Figure 6, the

overlap between the three sets of called regions accounts for almost

90% of the total. Importantly, although the testing lost power with

lower replication (as can be expected), only one additional region

was called, indicating that the method does not introduce many false

positives with reduced replication levels.

4.5 Computing times
We report the running times for non-parallel implementations of all

methods on the dataset used in Sections 3.2 and 4.3. This dataset

represents a complete RRBS experiment consisting of 14,104 testing

regions. On an ordinary desktop PC, MAGI took �30 s, BSmooth

took almost 6 min (including smoothing) and M3D took �2 h. The

M3D algorithm is linear in the number of testing regions and com-

binatorial in the number of replicates.

5 Discussion

We proposed the first kernel-based test for DMRs which exploits

higher order spatial features of methylation profiles. Empirical com-

parisons on simulated and real data show a considerable increase in

statistical power in comparison with the widely used BSmooth

method (Hansen et al., 2012), as well as considerable robustness to

low coverage and low replication. The M3D method also outper-

forms MAGI (Baumann and Doerge, 2014) in our simulations, as

well as calling more DMRs in the real dataset, though this comes at

a computational cost.

The increased power of the M3D approach is due to a number of

factors. Firstly, the method is sensitive to spatially correlated

changes in methylation profiles. Methylation profiles are known to

be highly spatially correlated in general, and the results of our ex-

periments imply that spatial correlation is also a feature of

differences in methylation profiles between conditions, at least in

the datasets considered. Secondly, the method explicitly accounts

for differences in the coverage profiles between conditions, a con-

founding factor for other methods, as demonstrated in Figure 2.

Thirdly, the method models inter-replicate variability on a regional

basis along the whole genome. Each regional cross-group methyla-

tion change is compared with this distribution, and test statistics for

each region represent how well the change in methylation profiles

can be explained by inter-replicate variability. At present, other

methods that consider inter-replicate variability do so on a CpG

site-by-site basis, which lacks power with low replication and cover-

age and does not consider regional, spatial changes. When testing

the method with different strengths of methylation change at CpG

loci, we saw a sharp decrease in the number of regions being called

as the methylation profile change over the regions became compar-

able to inter-replicate variability. Other methods experienced a less

pronounced change in this regard.

Other studies have suggested that changes in shape of methyla-

tion profiles are important in predicting gene expression

(VanderKraats et al., 2013). To test whether our method is able to

capture functionally important changes in methylation profiles, we

performed gene expression analysis with human data and showed a

link between methylation changes called by the M3D method and

gene expression changes between conditions. Further, the results

support the hypothesis that gene expression is more closely linked to

methylation in the first exon of a gene than to methylation in pro-

moter regions (Brenet et al., 2011). GO analysis of first exon and

whole gene methylation changes both revealed links to cell function,

despite none of the exons overlapping the gene regions, a result that

was not apparent for promoter methylation changes. Although our

findings confirm a potential role for methylation profile shape as a

predictor of gene expression, they do not provide biological mechan-

isms for linking methylation shape to gene expression and regula-

tion. Although sequence variants and protein binding have been

shown to be predictive of epigenetic variability (Gertz et al., 2011;

Benveniste et al., 2014), we believe that further investigation of the

mechanistic underpinnings of changes in methylation shape could be

a valuable direction for research.

The M3D method provides a considerable increase in power over

existing methods, yet it comes at the cost of computational intensity.

In this study, we have restricted comparisons to datasets of low rep-

lication, as beta-binomial methods should prove effective with

higher replication. We have also focused on sub-megabase scale

changes for two reasons. Firstly, such an analysis is likely to be ex-

ploratory, in the sense that testing regions are not pre-defined, a key

Fig. 5. Venn diagram of calls with reduced coverage. Three-hundred eighty-

two calls are consistent at all coverage levels. The method misses clusters at

lower coverage levels, yet it does not call many DMRs that were not identified

at higher coverage levels

Fig. 6. Venn diagram of calls with fewer replicates, for the case of four, three

and two replicates for ESC cell control group
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requirement for our method, and secondly, because BSmooth has

proved adept at identifying large-scale changes in this setting and is

computationally cheaper.

The M3D framework was developed with RRBS data in mind,

yet, given its robustness to lower coverage, we expect that it may

also be well suited for WGBS data. In the future, it will be interest-

ing to develop models that explain the predictive power of methyla-

tion profiles in terms of other epigenetic marks.
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