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Abstract

Gene sets, including protein complexes and signaling pathways, have proliferated greatly, in large 

part as a result of high-throughput biological data. Leveraging gene sets to gain insight into 

biological discovery requires computational methods for converting them into a useful form for 

available machine learning models. Here, we study the problem of embedding gene sets as 

compact features that are compatible with available machine learning codes. We present 

Set2Gaussian, a novel network-based gene set embedding approach, which represents each gene 

set as a multivariate Gaussian distribution rather than a single point in the low-dimensional space, 

according to the proximity of these genes in a protein-protein interaction network. We demonstrate 

that Set2Gaussian improves gene set member identification, accurately stratifies tumors, and finds 

concise gene sets for gene set enrichment analysis. We further show how Set2Gaussian allows us 

to identify a previously unknown clinical prognostic and predictive subnetwork around NEFM in 

sarcoma, which we validate in independent cohorts.

Introduction

One of the most basic outcomes of biological data analysis is the discovery of gene sets. 

Such sets come from many sources1–4: Genome-wide association studies (GWAS) produce 

sets of genes associated with a disease or other phenotype. Gene expression analyses 

identify gene sets by examining differential expression between conditions, or clustering 

genes by expression similarity. Proteomics and metabolomics data also produce lists of 

proteins and metabolites. Biological network analysis associates genes, proteins, or 
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metabolites that interact with one another into network neighborhoods. In all of these cases, 

the hypothesis is that genes in the set are likely involved in the same biological process or 

function. Because of their ability to boost signal-to-noise and increase explanatory power, 

gene sets have been used in various downstream analyses, including disease signature 

identification5,6, drug pathway association prediction7, survival analysis8, and drug response 

prediction9. Unfortunately, a bottleneck for gene set-based analysis is a lack of 

computational tools that convert these gene sets into informative forms which can 

distinguish completely different gene sets deemed as the same by averaging embedding 

(Figure 1a). In particular, existing machine learning codes require input features in the form 

of fixed length vectors, and prefer these vectors to be compact and high-quality in order to 

avoid overfitting.

Molecular interaction networks provide novel insights into the functional interdependencies 

of genes and proteins10. In particular, high-throughput experimental techniques, such as 

yeast two-hybrid screens and genetic interaction assays, have enabled researchers to piece 

together large-scale interaction networks in bulk11. Consequently, network-based 

approaches, including network propagation12–18, network clustering19, network 

integration20,21, and network regularization22, have been developed to efficiently analyze 

these networks. Among them, network embedding has emerged as a powerful network 

analysis approach because it generates a highly informative and compact vector 

representation for each node in the network21,23. Molecular interaction networks are noisy 

and incomplete, especially as they increase in size21,23. Network embedding typically 

leverages dimensionality reduction techniques to regularize high-dimensional network data. 

Prior to the advent of network embedding approaches, researchers manually identified 

network features for machine learning, which was time-consuming and often required expert 

knowledge. By contrast, network embedding automates this process by embedding each 

node in the network as a vector. These node embeddings have shown good performance in 

machine learning classifiers, and have become the building blocks in a large number of 

systems biology applications21,23. In this paper, we examine networks with genes as nodes; 

however, it is important to note that these methods can be applied to networks with any type 

of node, such as networks with disease nodes10 or drug nodes24.

Gene embeddings represent each gene as a fixed length vector in a common low-

dimensional continuous vector space. The dimension of these gene embeddings is typically 

much smaller than the original data dimensions (e.g., the number of nodes in the network). 

While many useful gene embeddings are now available21,23, learning representations for 

gene sets remains challenging. One simple approach to represent a gene set is to averaging 

individual gene representations that comprise the gene set. In natural language processing, 

such averaging of word vectors has been used to construct sentence embeddings25. In 

computer vision, deep learning architectures rely on pooling which aggregates nearby pixels 

by taking the average, max, or weighted average of their values26. In network modeling, 

graph neural network models also use pooling to aggregate information from the 

neighborhood to effectively propagate information throughout the network27. However, 

although simple and intuitive, averaging and other pooling operations may not be 

sufficiently expressive for representing gene sets and many underfit the data. By contrast 

with sentences that only have a few words or images where we only average a few nearby 
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pixels, gene sets can be arbitrarily large. In part due to this size difference, simple 

aggregation methods are not expressive enough to represent such gene sets. Figure 1a 

provides an example where the average embedding approach is unable to distinguish two 

completely different gene sets. A second intuitive approach to represent a gene set is to add 

new nodes representing the entire gene sets into the existing molecular network and connect 

these “gene set nodes” to their gene members. One can then run node embedding on this 

heterogeneous network to obtain the representation of each gene set. However, adding these 

likely high-degree nodes to the network can substantially change the topological structure 

and connectivity of the network, leading to inaccuracy in the embedding space. Other 

methods aim at embedding densely connected subnetworks: ComE performs community 

embedding and community detection simultaneously using a community-aware high-order 

proximity28; PathEmb models pathways as documents and then applies document 

embedding models to calculate pathway similarity29. However, both ComE and PathEmb 

require gene sets to be fully connected in the network, which is not the case for most of the 

biologically meaningful gene sets.

Fundamentally, all of these approaches assume that genes in the same set tend to have 

similar properties. This is intuitively the case for protein complexes or biological processes; 

however, this is not true for a large number of other biologically meaningful gene sets. To 

examine the diversity of functions in gene sets, we calculated the Gene Ontology (GO) 

enrichment of 150 drug response-related gene sets derived from two pharmacogenomics 

datasets (Figure 1b)30. We found that 86% of these gene sets were significantly enriched 

with more than one GO function (P-value <0.05 after Bonferroni correction). This indicates 

that genes in the same set frequently had different functions and were involved in multiple 

biological processes; however, this diversity is ignored in average embedding and other 

simple aggregation methods. Recently, Gaussian embedding, which represents each node as 

a multivariate Gaussian distribution in the low-dimensional space, has been proposed to 

model the uncertainty of nodes31–33. Motivated by prior work on Gaussian embedding of 

nodes, we propose to represent each gene set as a multivariate Gaussian distribution 

according to its network topology. This allows us to model the diversity by the uncertainty of 

each dimension in this vector. To our knowledge, our method is the first approach that learns 

compact representations for gene sets.

Thus, we present Set2Gaussian, a novel computational method that summarizes genes in the 

same set closely as a multivariate Gaussian distribution in the low-dimensional space (Figure 

1c). Set2Gaussian takes biological networks and a collection of gene sets as input. Each 

gene is represented as a single point and each gene set as a multivariate Gaussian 

distribution parameterized by a low-dimensional mean vector and a low-dimensional 

covariance matrix. The mean vector of each gene set describes the joint contribution of 

genes in this gene set, and the covariance matrix characterizes the agreement among 

individual genes in each dimension. Dimensions that have small variance across different 

genes in the set should have higher weights when they are used to calculate the similarity 

between two gene sets. In contrast to using a diagonal matrix to represent the covariance 

matrix in previous work31, we propose to use a low-rank matrix in order to avoid 

underfitting. Set2Gaussian is able to differentiate between gene sets that would be 

considered equivalent by conventional approaches, such as mean pooling. We demonstrate 
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that Set2Gaussian significantly improves gene set member identification in three large-scale 

gene set collections. We further show how the embeddings generated by Set2Gaussian 

allows us to identify a previously unknown clinical prognostic and predictive subnetwork 

around NEFM in sarcoma, providing insight into the treatment of sarcoma. Finally, we use 

Set2Gaussian to select concise previously defined gene sets that substantially enhance and 

accelerate gene set enrichment analysis.

Results

Overview of Set2Gaussian

A key observation behind our approach is that gene sets can have diverse molecular 

functions and/or biological processes. Set2Gaussian explicitly models this diversity as a low-

dimensional Gaussian distribution which summarizes both location and uncertainty of each 

dimension, improving upon the expressive power of existing node embedding models. 

Set2Gaussian takes a network and a collection of gene sets as input (Figure 1c). It then finds 

a low-dimensional space in which genes and gene sets preserve their distances in the 

network. Each gene is represented as a single point in the low-dimensional space. Each gene 

set is represented as a multivariate Gaussian distribution which is parameterized by a mean 

vector and covariance matrix. In our work, we approximated the covariance matrix through 

low-rank matrix factorization in order to avoid underfitting, as we demonstrated in our 

experiments.

Set2Gaussian improves gene set member identification

We first sought to examine whether Set2Gaussian could accurately identify gene set 

members. Genes in the same gene set are analyzed together to study the underlying 

biological processes. However, gene sets, especially those generated from high-throughput 

experiments, may contain a substantial number of false positives and false negatives due to 

the robustness and quality of the assay. Therefore, reducing the noise by identifying gene set 

members is an important task for large-scale gene set analysis. Because labeling manually is 

expensive and tedious, many computational approaches have been proposed to identify gene 

set members, each utilizing different information, including domain signatures34, gene 

expression35, and sequence data36.

Set2Gaussian significantly outperformed the proposed baseline gene set representation 

approaches on identifying gene set members in all three datasets at all size categories (P-

value<0.05; Wilcoxon signed-rank test) (Figure 2a, b, c). We first observed clear 

improvements over three pooling-based approaches in all three datasets. For example, In 

Reactome, at the medium set [11–30], Set2Gaussian obtained an AUPRC of 0.48, 

outperforming mean (0.42), weighted mean (0.40), and max (0.22). The above results 

suggest that representing a gene set through mean or max pooling is unable to model the 

uncertainty and capture the diverse functions within a gene set, leading to worse 

performance. We further noticed increasing improvement with larger gene set size. For 

example, Set2Gaussian obtained 36% improvement on large sets [31–1000] versus 21% 

improvement on small sets [3–10] in comparison to mean on MSigDB. Larger gene sets may 

be noisier and contain more diverse functions. Overall, this comparison indicated that using 
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a single vector to represent a gene set, as in these pooling approaches, is not expressive 

enough to capture gene set diversity. By adopting a covariance matrix to model uncertainty, 

Set2Gaussian is able to model this diversity and thus substantially improves gene set 

identification performance.

Additionally, Set2Gaussian outperformed hypergraph embedding on gene set identification 

across all gene set sizes in all three datasets. For example, in MSigDB, Set2Gaussian 

obtained 0.13 AUPRC for small sets [3–10], which was significantly better than hypergraph 

embedding (AUPRC = 0.032). Interestingly, we found that hypergraph embedding was 

worse than mean and weighted mean pooling approaches in all three datasets. Network 

embedding approaches rely on finding similar contexts (e.g., similar neighbors or similar 

diffusion states) to accurately embed nodes. However, in a hypergraph, a “gene set node” 

could have a noisy neighborhood structure due to a large number of neighbors, which may 

make it difficult to find enough nodes with similar contexts to support an accurate 

embedding. Constructing a hypergraph may also introduce too many high degree nodes, 

substantially changing the topological structure of the network.

A key feature of Set2Gaussian is that it leverages a low-rank matrix instead of a diagonal 

matrix to parametrize the covariance in the Gaussian distribution of each gene set. A low-

rank covariance matrix is more expressive but could also be more prone to overfitting. To 

examine whether it is necessary to increase model complexity given the risk of overfitting, 

we compared Set2Gaussian with Set2Gaussian-diag, which forced the covariance matrix to 

be a diagonal matrix. We found that Set2Gaussian had improved performance over 

Set2Gaussian-diag (AUPRC of 0.24 vs. 0.20 respectively) for medium sets [11–30] in 

Reactome (Figure 2d). Moreover, the improvement of Set2Gaussian against Set2Gaussian-

diag was larger on MSigDB than the other two datasets (Supplementary Figure 1). We 

postulated that because MSigDB had the largest number of gene sets, a diagonal covariance 

matrix does not accurately project these gene sets into the same low-dimensional space and 

thus underfits the data. Notably, although worse than Set2Gaussian, Set2Gaussian-diag still 

performed better than other gene set representation approaches including Mean. This 

demonstrates the importance of modeling the uncertainty of each dimension by using a 

Gaussian distribution.

In addition to accurately recovering existing gene set collections, the top predictions made 

by Set2Gaussian also revealed novel gene set members that could supplement existing 

pathway databases. For example, the NLRP1 inflammasome pathway in Reactome is known 

to have three genes, BCL2, BCL2L1, and NLRP1. All these three genes were included in the 

top ten predictions of Set2Gaussian. In addition, Set2Gaussian predicted that BAX, CASP1, 

MCL1, BCL2A1, CASP9, CASP3, and NLRP1 were within the multidimensional Gaussian 

distribution described by the original set and thus might be the members of this pathway. 

These predictions were supported by the literature; NLRP1 activates a downstream protease 

Caspase‐1 (CASP1)37. BAX, BCL2A1, and MCL1 belong to the BLC2 family, which 

inhibits NLRP1 induced CASP1 activation in a concentration-dependent manner38.
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Set2Gaussian identifies novel subtypes and subnetworks in Sarcoma

We next applied Set2Gaussian to tumor stratification and subnetwork identification in 

Sarcoma. Tumor stratification aims at dividing a heterogeneous population of tumors into 

clinically and biologically meaningful subtypes. We modeled each tumor as a gene set 

denoted by the tumor’s set of mutations and then clustered these gene sets based on the gene 

set representations derived from Set2Gaussian. We found that Set2Gaussian’s subtypes had 

significantly different survival in Sarcoma across groups; while subtypes from the other 

three approaches did not (Figure 3a). For example, at k=2 subtypes, the survival times were 

significantly different between subtypes (P-value <0.03, log-rank test); and five-year 

survival rates varied greatly (41% and 71% respectively) (Figure 3b). We attributed 

Set2Gaussian’s superior performance against comparison approaches to its projection of 

mutation profiles as low-dimensional Gaussian distributions, thus obtaining more accurate 

similarity between tumors.

By finding the top differentially mutated genes between two subtypes that have the highest 

and lowest survival rates, we further identified a connected subnetwork of five genes in 

protein-protein interaction networks from the STRING database, including NEFM, FREM2, 

KIF1A, NRXN1, and DSCAM (Figure 3c). We named this subnetwork NEFM-subnetwork 

since it was central around NEFM. The subtype with a larger NEFM-subnetwork mutation 

rate tends to have worse survival in comparison to other subtypes. Since this subnetwork 

seemed to be associated with Sarcoma survival, we divided the 235 Sarcoma tumors into 

two subtypes based on whether at least one of NEFM-subnetwork genes was mutated in a 

given tumor. We found that dividing tumors using only these five genes obtained subtypes 

that had significantly different overall survival (P-value < 0.03, log-rank test) (Figure 3d), 

and subtypes had very different five-year survival rates (49% for NEFM-subnetwork 

mutated vs. 87% for NEFM-subnetwork not mutated).

After demonstrating that the NEFM-subnetwork stratifies sarcoma tumors by survival, we 

investigated if this subnetwork could be used as a biomarker for chemosensitivity prediction. 

To this end, we first collected gene expression profiles of 16 soft tissue cell lines from 

GDSC39. Among genes within the NEFM subnetwork, we found that FREM2 expression 

was significantly correlated with Paclitaxel sensitivity (Figure 3e). Paclitaxel is a 

microtubule-stabilizing drug that has been used to treat Kaposi’s sarcoma, lung, ovarian, and 

breast cancer40. We clustered these 16 cell lines into two groups according to the gene 

expression values of the NEFM-subnetwork. We observed that these two clusters had 

significantly different Paclitaxel sensitivities (indicated by the area under the dose-response 

curve (P-value < 0.0019, t-test)) (Figure 3f). Notably, clustering on any of these five genes 

alone did not yield clusters with significantly different Paclitaxel sensitivities. When using 

this subnetwork to cluster a larger collection of 990 cell lines across 25 tissue lineages, we 

also observed significantly different Paclitaxel sensitivities (P-value < 0.004). Additionally, 

gene expression of Neurofilament Medium (NEFM) itself was significantly overexpressed in 

the Paclitaxel sensitive group relative to the Paclitaxel resistant group (log2 fold change 7.93 

vs 4.00 respectively, P-value < 3.12e-8, rank-sum test). Neurofilaments are known to 

modulate microtubule stability41, and higher neurofilament levels have been observed to 

destabilize microtubule network42, thus may increase sensitivity to Paclitaxel. The 
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significant differences in overall survival and chemosensitivity indicate that this previously 

unrecognized NEFM-subnetwork may be a biomarker for sarcoma treatment.

Set2Gaussian finds concise previously defined gene sets for GSEA

With the rapid development of sequencing technology, high-throughput experiments have 

been used to generate large numbers of gene sets or pathways. Given a newly generated gene 

set, the immediate question is its function. Gene set enrichment analysis (GSEA) is a 

method for finding gene sets that are significantly different between two biological states43. 

Additionally, GSEA is extensively used to find significantly enriched gene sets for a novel 

gene set, from a large collection of previously defined gene sets44 which are obtained from 

gene set databases such as MSigDB3. While GSEA provides a list of possible enriched gene 

sets, it does not resolve or de-duplicate these gene sets. However, gene set databases are 

continually growing, inevitably leading to a substantial amount of redundant information in 

previously defined gene sets. The redundancy not only slows down the enrichment analysis 

but also masks the true signal. Hence, there would be great potential value to decrease the 

number of previously defined gene sets and keep only the most informative and 

representative sets. Notably, data-reduction techniques have been applied to other 

computational biology tasks and obtain promising results45,46. Thus, we investigated 

whether representations generated by Set2Gaussian can be used to effectively downsize 

existing previously defined gene sets. To filter existing gene sets, we first used Set2Gaussian 

to project all gene sets of NCI, MSigDB, and Reactome into the same low-dimensional 

space and then selected the ones that are close to a large number of genes (see Methods).

Our results are summarized in Figure 4 a,b,c. We found that using previously defined gene 

sets created by Set2Gaussian achieved the best performance for GSEA. Specifically, we 

found significant enrichment for 72.1% of queried gene sets, which was significantly larger 

than 68.5% of all, 50.5% of Standard, 16.4% of Proportional, and 15.1% of Hitting. A 

detailed comparison of Set2Gaussian with baselines is shown in Figure 4b,c, which 

demonstrates the number of significantly enriched gene sets for each cell line. For all cell 

lines, Set2Gaussian enriched for more gene sets in comparison to Standard. And for 60 

among 69 cell lines, Set2Gaussian enriched for more gene sets in comparison to All. We 

observed significant improvement across a large range of K from 100 to 1000 with a step 

size of 10 (all P-values < 0.05) (Figure 4d). At K > 700 gene sets, the improvement 

remained significant but started to decrease; we expected that this was because a K that was 

too large might include redundant gene sets in this collection. The highest percent 

improvement came from K=200 on 69 cell lines (P-value < 7e-10, Wilcoxon signed-rank 

test). In addition to increasing the number of enriched gene sets, Set2Gaussian-filtered 

previously defined gene sets also substantially enhanced the enrichment analysis 

computational speed in comparison to all previously defined gene sets (almost 65-fold). We 

provide Set2Gaussian-filtered previously defined gene sets in Supplementary Table 1, which 

covers a variety of biological processes and molecular functions, such as cytokine receptor 

interaction, cell cycle, and olfactory signaling pathway.
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Discussion

Tens of thousands of genes sets are discovered from high-throughput experimental screening 

assays, providing novel insights into the underlying biological processes and molecular 

functions. Set2Gaussian is developed to facilitate the usage of these gene sets by creating 

high-quality and compact gene set features that can be used as input for machine learning 

codes. Our analysis of 11,892 gene sets indicates that Set2Gaussian is able to accurately 

recover gene set members, thus substantially reducing noise in experimentally derived gene 

sets. An important output of Set2Gaussian is the Set2Gaussian-derived feature 

representation of these 11,892 gene sets, which is made available by us to facilitate future 

gene set-based analysis.

We further showed how Set2Gaussian can be applied to high-dimensional somatic mutation 

data. Set2Gaussian allows us to stratify tumors into biologically meaningful subtypes and 

obtain an unrecognized NEFM-subnetwork, whereas none of the compared methods is able 

to achieve. We validated the NEFM-subnetwork in an independent cohort and found that it 

could be used as the biomarker for Paclitaxel sensitivity. Finally, we used Set2Gaussian to 

enhance and accelerate the widely used GSEA, by reducing the redundancy in previously 

identified gene sets. Set2Gaussian reduces the number of previously identified gene sets 

from 11,892 to 200. These 200 most informative gene sets obtained better GSEA hits when 

we used them to analyze large-scale cell line perturbation experiments.

One limitation of Set2Gaussian is that it requires an input network of genes to embed gene 

sets. In this work, we used the protein-protein interaction networks from the STRING 

database. Although it limits the applications of Set2Gaussian, the network provides 

additional information to the functional interdependencies between genes and has been 

extensively used to embed genes. In fact, biological networks have been massively generated 

these days from high-throughput experimental techniques11 and scientific papers47. Even 

when there is no existing network available, one can still create a network based on the co-

occurrence or mutual exclusivity in the gene set collection8. In addition, the quality of 

embeddings obtained by Set2Gaussian might be affected by noise in hub genes. Hub genes, 

which are genes that have a large number of neighbors in the network, could lead to biased 

diffusion states. Consequently, gene sets that have hub genes tend to have large variances 

and have less accurate low-dimensional representations.

Methods

Set2Gaussian framework

Problem definition. Let A ∈ Rn × n be the adjacency matrix of a given network G, where n is 

the number of genes. V  denotes the set of all genes. Let H = ℎ1, ℎ2, . . . , ℎm  be m gene sets 

defined on G, where each set of genes ℎi = v1, v2, . . . , v ℎi , ∀vi ∈ V . Set2Gaussian aims to 

find a low-dimensional multivariate Gaussian distribution N μℎ, Σℎ  for each gene set ℎ with 

mean μℎ ∈ Rd and covariance matrix Σℎ ∈ Rd × d, where d ≪ n.
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Random walk with restart from a gene set

In order to define the objective function, we first need to characterize the network topology 

that we want to preserve in the low-dimensional space. Here, we use the random walk with 

restart (RWR) to capture the network topology. RWR captures fine-grain topological 

properties that lie beyond direct neighbors12,13. When there are missing and spurious genes 

in a given gene set, RWR can correct the noise using network neighbors. RWR differs from 

the conventional random walk in that it introduces a predefined probability of restarting at 

the initial gene after every iteration.

Formally, we first calculate a transition matrix B, which represents the probability of a 

transition from gene i to gene j. B is defined as:

Bij =
Aij

Σj′Aij′
.

To run RWR from gene i, we define Si
t as an n -dimensional distribution vector in which 

each entry j contains the probability of gene j being visited from gene i after t steps. RWR 

from gene i with restart probability pS is defined as:

Si
t + 1 = 1 − pS SitB  + pSui,

where ui is an n-dimensional distribution vector with ui i = 1 and ui j = 0, ∀j ≠ i. We can 

obtain the stationary distribution Si
∞ of RWR at the fixed point of this iteration. Consistent 

with the previous work12,14,21,23, we define the diffusion state Si = Si
∞ of each gene i to be 

the stationary distribution of an RWR starting at each gene. Here, the restart probability 

controls the relative influence of global and local topological information in the diffusion, 

where a larger value places greater emphasis on the local structure.

To run RWR from gene set k, we define Qk
t  as an n-dimensional distribution vector in which 

each entry contains the probability of a gene being visited from gene set k after t steps. RWR 

from gene set k with restart probability pQ is defined as:

Qk
t + 1 = 1 −  pQ Qk

t B  + pQok,

where ok is an n-dimensional distribution vector with ok v   =   1
ℎk

,  ∀v ∈ ℎk  and 

ok v   =  0,  ∀v ∉ ℎk. We can obtain the stationary distribution Qk
∞ of RWR at the fixed point 

of this iteration. we define the diffusion state Qk = Qk
∞ of each gene set k to be the stationary 

distribution of an RWR starting at each gene in k uniformly. When genes in the set are rank-

ordered by importance, we can adjust ok according to the gene weights.
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Notably, a gene set could have missing or spurious genes. RWR can account for the noisy 

gene sets using network neighbors to characterize the network topology. The restart 

probability reflects our uncertainty of this gene set, where a smaller value encourages the 

gene set to extend its members with network neighbors. Set2Gaussian uses the diffusion 

state Si Qk) to represent the topological information of gene i (gene set k) in the network. 

The jth entry Sij  Qkj  stores the probability that RWR starts at gene i (gene set k) and ends 

up at gene j in equilibrium.

Representing gene sets as multivariate Gaussian distributions

The diffusion states of each gene and each gene set are used to find the low-dimensional 

representation. Set2Gaussian embeds genes and gene sets in the same low-dimensional 

space, where each gene is represented as a single point and each gene set is represented as a 

multivariate Gaussian distribution parameterized by a mean vector and covariance matrix.

Set2Gaussian optimizes two criteria to find the low-dimensional representation: 1) genes 

with similar diffusion states should be close to each other in the low-dimensional space, and 

2) genes in a given gene set in the network should have higher probabilities in the Gaussian 

distribution of that gene set. The first criterion preserves the distance between genes and has 

been widely used in conventional node embedding approaches. The second criterion is 

unique to Set2Gaussian, and groups genes in the same set together as a multivariate 

Gaussian distribution. Through the use of the second criteria, Set2Gaussian explicitly 

leverages the prior knowledge that genes in the same set are likely to have similarities and 

thus should be closely located in the low-dimensional space. Formally, let Lgene and Lset
represent the loss function based on the above two criteria. The loss function can be defined 

as:

L: = Lgene + Lset .

To preserve the gene distance (criteria 1), we define Lgene as:

Lgene: = Σi = 1
n DKL Si Sl ,

where DKL is the Kullback-Leibler (KL) divergence48 and Slj is defined as:

Slj: =
exp xiTwj

Σj′exp xiTwj′
.

Here, xi is the representation of gene i in the low-dimensional space and wj is the context 

feature describing the network topology of gene j. If xi and wj are close in direction and 

have a large inner product, then it is likely that j is frequently visited in the random walk 

restarting from gene i. We optimize over w and x for all genes, using KL divergence as the 

objective function. One key improvement of Set2Gaussian is that all gene sets are trained 

jointly and the representation of genes is shared across all gene sets.
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Similar to previous work, we relax the constraint that the entries in Sl sum to one by 

dropping the normalization factor in the above equation21,23. As a result, Slj can be 

simplified as:

log Slj  = xiTwj .

This simplification substantially reduces the computational complexity while still achieving 

comparable performance21,23. Since Sl is no longer an n-dimensional probability simplex, 

we use the sum of squared errors instead of KL divergence as the new objective function. 

Therefore, Lgene is defined as:

Lgene: = Σi = 1
n Σj = 1

n log Sij  − xiTwj  2 .

Next, to preserve the distance between genes and gene sets, we define Lset as:

Lset: = Σk = 1
m DKL Qk Qk ,

where Qkj is defined as :

Qkj: =
fk j

Σj′fk j′ .

fk is the multivariate Gaussian probability density function and fk j  is the probability 

density of gene j:

fk j   =  
exp − 1

2 xj − μk
TΣk−1 xj − μk

2Π l Σk
.

Here, we can optimize over the mean vector μk and the covariance matrix Σk to obtain the 

multivariate Gaussian distribution of gene set k.

Same as the simplification in Lgene, we also drop the normalization factor in the above 

equation. As a result, Qkj is simplified as:

log Qkj = − 1
2 xj − μk

TΣk−1 xj − μk .

Notably, Qkj can also be viewed as the Mahalanobis distance of gene j from the mean μk and 

covariance matrix Σk. The Mahalanobis distance can account for different variances in each 

direction and reduces to Euclidean distance when Σ is an identity matrix. While matrix 

factorization approaches, such as singular value decomposition (SVD), also calculate a 

Wang et al. Page 11

Nat Mach Intell. Author manuscript; available in PMC 2021 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



diagonal matrix Σ, Set2Gaussian improves on this by optimizing different Σk for each gene 

set k in order to model the uncertainty of each gene set differently.

We then use the sum of squared errors as the objective function:

Lset = Σk = 1
m Σj = 1

n logQkj + 1
2 xj − μk

TΣk−1 xj − μk
2

.

Summing up two parts, the new loss function of our model is defined:

L = Σi = 1
n Σj = 1

n log Sij  − xiTwj  2 + Σk = 1
m Σj = 1

n logQkj + 1
2 xj − μk

TΣk−1 xj − μk
2

.

While the first term preserves gene distance in the network, the second term forces genes in 

the same set to form a multivariate Gaussian distribution. Therefore, these biologically 

meaningful gene sets are used as prior knowledge by Set2Gaussian to infer the embedding 

of genes. By contrast, other methods, such as average embedding, are unable to leverage this 

prior knowledge.

Low-rank approximation of the covariance matrix

Set2Gaussian has the following parameters: μ,  Σ,  x, and w. The parameters μ,  x, and w can 

be directly estimated with gradient descent. By contrast, since Σ is the covariance matrix of 

a multivariate Gaussian distribution, we need to assure that it is positive semi-definite. To 

achieve this, let Λk be the precision matrix of the multivariate Gaussian distribution for gene 

set k:

Λk: = Σk
−1 .

Instead of directly estimating the covariance matrix Σk, we estimate the precision matrix Λk

to avoid numerical problems that arise in matrix inversion. We define Ck ∈ Rd × d to force Λk
to be positive semi-definite:

Λk = Ck
TCk .

Since a matrix multiplied by its transpose is positive semi-definite, Λk is thus a positive 

semi-definite matrix. This further ensures that its inverse Σk is also a positive semi-definite 

matrix. Since there is no constraint on Ck, we can use gradient descent to estimate Ck. 

However, directly optimizing over Ck introduces a substantial memory complexity of 

O md2 , which counteracts a key benefit of using a low-dimensional representation. To 

address this problem, we propose to factorize Ck by using a low-rank approximation:

Ck = YkZk
T ,
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where Zk ∈ Rd × e,  Y k ∈ Rd × e, and e ≪ d. In our experiment, we found that setting e to 3 is 

expressive enough to obtain a good performance. This reduces Set2Gaussian’s parameters to 

μ,  Z,  Y ,  x, and w. We estimate these parameters using Adam to find a local optimum49.

After finding the low-dimensional representation using Set2Gaussian, we can calculate the 

distance between genes and gene sets in this space. The distance Dgene
k i  between gene i and 

gene set k is calculated according to the probabilistic density function of the multivariate 

Gaussian distribution for gene set k:

Dgenek i =  
exp − 1

2 xi − μk
TΣk−1 xi − μk

2Π l Σk
.

Using this formulation, the distance between a gene and a gene set depends not only on the 

mean vector μ (the location of this gene set) but also on the covariance matrix Σ. To 

calculate the distance Dset
k j  between gene set k and gene set j, we take the average 

asymmetric Kullback-Leibler divergence according to their Gaussian distributions:

Dsetk j =  DKL N μk, Σk N μj, Σj +  DKL N μj, Σj N μk, Σk ,

where DKL N μk, Σk N μj, Σj  is calculated as:

DKL N μk, Σk N μj, Σj =  12 tr Σj−1Σk + μj − μk
TΣj−1 μj − μk − L − log

Σk
Σj

.

Sources of gene sets and molecular networks

We considered three public gene set databases widely used in gene set and pathway 

analyses, The Reactome Knowledgebase (Reactome)4, National Cancer Institute Pathway 

Interaction Database (NCI)1 and The Molecular Signatures Database (MSigDB)3. Reactome 

is a manually curated pathway collection composed of classical intermediary metabolism, 

signaling transduction, transport, DNA replication, and other key cellular processes. The 

pathways are classified into a pathway hierarchy. We obtained the lowest level of Homo 

sapiens pathways from this pathway hierarchy, resulting in 1771 pathways. We obtained all 

223 pathways from NCI, which is a database of human cellular signaling and regulatory 

pathways that might be relevant to cancer research and treatment. We ignored interactions in 

these pathways from Reactome and NCI and used them as gene sets in our analysis. 

MSigDB contains annotated gene sets from eight sources, including oncogenic signatures, 

immunologic signatures, computationally inferred gene sets, curated gene sets, positional 

gene sets, gene ontology gene sets, motif gene sets, and hallmark gene sets. All sources 

except gene ontology gene sets were included in our analysis, resulting in 11892 gene sets.

Protein-protein interaction networks from the STRING database11 were used for the PPI 

network structure. STRING uses a Bayesian integration algorithm to integrate many 
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different types of evidence for protein-protein interactions, including literature curation, 

computationally predicted interactions, interactions transferred from model organisms by 

orthology, interactions computed from genomic features such as gene-gene fusion events, 

and interactions based on functional or co-expression similarity. We downloaded the 

STRING v10, which has 15,108 genes and 3,621,168 edges. Each edge is associated with a 

confidence score between 0 and 1 assigned by the Bayesian integration algorithm.

Source of tumor somatic mutation, drug sensitivity, and differentially expressed gene sets

The Genomics of Drug Sensitivity in Cancer (GDSC) compound screening dataset spanned 

990 human cancer cell lines39. We downloaded the compound response data, and gene 

expression profiles, and corresponding tissue of origin of the 990 cancer cell lines. To 

examine the identified sarcoma subnetwork, we used all 16 soft tissue cell lines that were 

screened under the exposure to Paclitaxel.

We downloaded somatic mutation profiles of TCGA sarcoma tumors from the GDAC 

Firehose website (http://gdac.broadinstitute.org, February 11th 2016)50. In each tumor, a 

gene was classified as either wild type (0) or altered (1), where altered is any non-silent 

mutation. We excluded tumors with less than 10 mutations, leaving a total of 237 tumors 

with 10,618 mutations in 15,108 genes. The survival of patients with these tumors was 

downloaded from TCGA.

The LINCS project consists of gene expression profiles of human cell lines exposed to 

perturbations51. These perturbations included treatment with more than 20,000 unique 

compounds and 69 cell lines. For each cell line, we first randomly selected 200 perturbation 

experiments from LINCS level 4 signature which normalized across samples based on two 

or more characteristics. We then obtained a gene set from each experiment by filtering for 

genes with an absolute level 4 signature scores greater than 2, resulting in 13,800 gene sets 

across 69 cell lines.

Gene set member identification

Intuitively, when projecting gene sets and genes into the same low-dimensional space, a 

gene set should be closer to its member genes than others in the low-dimensional space. As a 

result, we anticipate that a good gene set representation can accurately identify gene set 

members according to the distance between a gene set and a candidate gene in this space. 

We are not aware of any other methods for learning compact gene set representations; thus, 

for comparison, we proposed four competitive approaches. These approaches were derived 

according to the existing literature of aggregating set information in other research 

areas26,27,52. Pooling methods relied on a two-step optimization approach. In the first stage, 

these methods used an existing network embedding approach to obtain the embedding vector 

of genes in the network. In the second stage, these methods used the mean (Mean), max 

(Max), or weighted mean (Weighted mean) of the embedding vectors of gene set members 

to represent that gene set. Weighted mean used the random walk diffusion score as the 

weight for each gene set member. Because all of these three pooling-based approaches used 

a single vector to represent a gene set, they could not model the uncertainty in each 

dimension. Moreover, such two-stage optimization approaches might lead to suboptimal 
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results. Hypergraph embedding (Hypergraph) jointly optimized the gene and gene set 

embedding in a newly constructed hypergraph. In this method, each gene set was added as a 

new node to the original network that was connected to its member genes. Network 

embedding was applied to this heterogeneous network to embed gene set nodes and gene 

nodes into the same low-dimensional space. Similar to these methods, our approach took 

protein-protein interaction networks as input and generated embedding representations for 

all gene sets and genes. We evaluated Set2Gaussian on three gene set collections (NCI, 

Reactome, and MSigDB), each was further grouped into three categories according to the 

number of genes in the gene set (small [3–10], medium [11–30], and large [31–1000]). We 

chose the cutoffs that enabled the numbers of gene sets in each category close to each other. 

We used the Area Under Precision-Recall Curve (AURPC) as the evaluation metric which 

was shown to be a robust metric on different sparsity levels 53.

Mashup, a recently developed node embedding algorithm, was the underlying node 

embedding method for all comparison approaches21. Similar to Mashup’s approach, we used 

cosine similarity to calculate the proximity between a gene set and a gene in the low-

dimensional space. We set the dimension of Mashup as 500 which achieved the best 

performance in a range of dimensions from 100 to 1000 in our experiments. For our method, 

we set e to 3, d to 300 and pQ to 0.8. We observed that the performance of our method is 

stable for e between 1 and 5, d greater than 100, and pQ greater than 0.5.

Tumor stratification and subnetwork identification

Computationally, tumor stratification is performed by assessing the similarity between 

molecular profiles such as somatic mutation profiles. However, stratifying tumors based on 

somatic mutation is challenging due to the extreme sparsity and heterogeneity in somatic 

mutation profiles54. To address this sparsity and heterogeneity, a large number of network-

based approaches have been proposed to aggregate gene mutations into higher-level 

functions15,22,55.

Here, we asked whether Set2Gaussian could enhance tumor stratification accuracy and 

identify the underlying driver subnetworks. Formally, we modeled each tumor as a gene set 

denoted by the tumor’s set of mutations. We then used Set2Gaussian to project these gene 

sets into Gaussian distributions located in the same low-dimensional space. These low-

dimensional Gaussian distributions were later used as features to divide tumors into 

subtypes. By forcing each tumor’s mutation set to form a Gaussian distribution, 

Set2Gaussian might be less biased by noise from networks and passenger mutations; and 

therefore, identify clinically meaningful subtypes. We compared Set2Gaussian with three 

comparison tumor stratification approaches. Network-based stratification (NBS) used 

protein-protein interaction networks to aggregate mutation signals within network regions22. 

Mutation Profile directly clustered tumors based on the somatic mutation profile without 

considering the network structure56. Mutation Load clustered tumors according to the 

number of mutations in each tumor57. We applied Set2Gaussian and the three comparison 

methods to stratify 235 Sarcoma tumors from TCGA. We used the Protein-protein 

interaction networks from the STRING database to identify the submodule for Sarcoma. 
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Since the co-expression values between genes in the STRING network are measured based 

on another cohort, the same co-expression may not be observed on GDSC cell lines.

For tumor stratification, we obtained the implementation of NBS from a recent paper8. To 

cluster tumors, we adopted the same clustering approach as described in Wang et al.8 We 

first projected the representations of all tumors into a low dimensional space using truncated 

SVD. A tumor similarity matrix was then constructed by calculating the cosine similarity 

between the columns of truncated SVD. We adopted the k-means++ clustering algorithm to 

cluster tumors using the cosine tumor similarity matrix58. For K-means, the maximum 

number of iterations was set to 100 and the number of random starts was set to 200. 

Predefining the correct number of subtypes in a cancer cohort is difficult. Therefore, we 

compared a variety of subtypes from 2 to 6.

Identification of concise previously defined gene sets

Several computational approaches focused on either finding a subset of existing previously 

defined gene sets59 or dynamically selecting gene sets according to the queried gene set60,61. 

The key insight behind these approaches is to find gene sets that cover a large number of 

genes and reduce redundancy within selected gene sets. Therefore, greedy algorithms were 

used to select gene sets sequentially, leading to heuristic and sensitive results. For example, 

Stoney et al. proposed three set cover approaches based on different objectives: removal of 

pathway redundancy, controlling pathway size, and coverage of the gene set59. Intuitively, 

these informative gene sets can be effectively derived from the Gaussian distributions of 

Set2Gaussian, because these Gaussian distributions inherently capture the redundancy, size, 

and coverage of gene sets.

To generate such previously defined gene sets, we first used Set2Gaussian to project all gene 

sets of NCI, MSigDB, and Reactome into the same low-dimensional space. We then defined 

a gene set informative score for each gene set according to its distance to all existing genes. 

A gene set will have a higher informative score if it is close to a large number of genes. The 

intuition is that informative gene sets are surrounded by many genes and located in the dense 

region in the low-dimensional space. The top K gene sets with the highest informative scores 

then became the Set2Gaussian-filtered concise previously defined gene sets. We set K to 200 

and observed a stable performance of K from 100 to 1000, as demonstrated by our 

experiments.

To evaluate our approach, we ran GSEA for a given new gene set by comparing it with 

previously defined gene sets. We compared five different previously defined gene sets: 

Set2Gaussian-derived previously defined gene sets (Set2Gaussian, 200 gene sets), standard 

set cover-derived previously defined gene sets (Standard, 291 gene sets)59, proportional set 

cover-derived previously defined gene sets (Proportional, 890 gene sets)59, hitting set cover-

derived previously defined gene sets (Hitting, 711 gene sets)59, and all previously defined 

gene sets by combining sets from NCI, Reactome and MSigDB (All, 13868 gene sets). 

previously defined gene sets of Standard set cover, proportional set cover, and hitting set 

cover are obtained from Stoney et al.59 which selected gene sets based on different 

objectives: removal of pathway redundancy, controlling pathway size and coverage of the 

gene set. Although a larger number of previously defined gene sets leads to a better chance 
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to find a significant enrichment, it is also more likely to commit a Type I error. Therefore, 

good previously defined gene sets should be able to find significant enrichment for more 

queried gene sets after correcting for Type I error using Bonferroni correction. We generated 

queried gene sets by mining large-scale gene expression data. In particular, we collected 69 

cell lines from a large gene expression compendium LINCS. For each cell line, we used 

differential expression analysis to identify 200 differentially expressed gene sets grouped by 

drug exposure across 41,729 small molecules. We then ran GSEA on these 13800 gene sets 

by comparing to the above five previously defined gene sets using Fisher’s exact test.
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Figure 1. 
Overview of Set2Gaussian. (a). 2-D t-SNE plot showing two very different gene sets 

embedded in the same point (0,0) by simply averaging embeddings of individual genes. (b). 

Pie chart showing the percent of 150 drug response correlated gene sets that are significantly 

enriched with different numbers of Gene Ontology functions (P-value < 0.05 after 

Bonferroni correction). (c). Flowchart showing Set2Gaussian embedding process and 

downstream applications. First, RWR is used to calculate the diffusion states of each gene 

and gene set. These diffusion states are then embedded into a low-dimensional space where 

genes are represented as single points and gene sets are represented as Gaussian 

distributions. These representations are then applied to a variety of gene set-based analyses.
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Figure 2. 
Application of Set2Gaussian to gene set member identification. Comparison of 

Set2Gaussian with four other approaches in identifying gene set members in NCI (a), 

Reactome (b), and MSigDB (c). Gene sets are grouped into three categories according to the 

number of genes in the gene set (small [3–10], medium [11–30], large [31–1000]). (d). 

Comparison of Set2Gaussian with Set2Gaussian-diag on NCI for medium gene sets ([11–

30]). Error bars represent the standard error on the mean.
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Figure 3. 
Application of Set2Gaussian to cancer subtyping. (a). Comparison of Set2Gaussian with 

other approaches in tumor stratification on 235 sarcoma tumors at varying numbers of 

subtypes. (b). KM-plot showing the clustering of tumors into 2 subtypes using all the genes. 

(c). NEFM-subnetwork identified by Set2Gaussian in sarcoma. (d). KM-plot showing the 

clustering of tumors into 2 subtypes by only using the NEFM-subnetwork. (e). Scatter plot 

showing the comparison between the expression values of FREM2 and the drug responses to 

Paclitaxel on 16 soft-tissue cell lines collected from CTRP. (f). Box plot showing the 
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Paclitaxel sensitivity of two groups of cell lines clustered by using the expression of NEFM-

subnetwork.
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Figure 4. 
Application of Set2Gaussian to finding concise gene sets. (a). Comparison of using five 

different previously defined gene sets in gene set enrichment analysis. (b). Comparison of 

using Set2Gaussian-filtered previously defined gene set to using all previously defined gene 

sets. Each point is a cell line, where x-axis (y-axis) shows how many gene sets of this cell 

line can find at least one significant enriched gene set from Set2Gaussian (all) previously 

defined gene sets. (c). Comparison of using Set2Gaussian-filtered previously defined gene 

set to using standard cover set-derived previously defined gene sets. (d). The number of 

significantly enriched gene sets at varying number of previously defined gene sets selected 

by Set2Gaussian. Error bars represent the standard error on the mean.
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