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a b s t r a c t 

Objectives: The emergence of SARS-CoV-2 variants of concern has led to significant phenotypical changes 

in transmissibility, virulence, and public health measures. Our study used clinical data to compare char- 

acteristics between a Delta variant wave and a pre-Delta variant wave of hospitalized patients. 

Methods: This single-center retrospective study defined a wave as an increasing number of COVID-19 

hospitalizations, which peaked and later decreased. Data from the United States Department of Health 

and Human Services were used to identify the waves’ primary variant. Wave 1 (August 8, 2020–April 1, 

2021) was characterized by heterogeneous variants, whereas Wave 2 (June 26, 2021–October 18, 2021) 

was predominantly the Delta variant. Descriptive statistics, regression techniques, and machine learning 

approaches supported the comparisons between waves. 

Results: From the cohort (N = 1318), Wave 2 patients (n = 665) were more likely to be younger, have 

fewer comorbidities, require more care in the intensive care unit, and show an inflammatory profile with 

higher C-reactive protein, lactate dehydrogenase, ferritin, fibrinogen, prothrombin time, activated throm- 

boplastin time, and international normalized ratio compared with Wave 1 patients (n = 653). The gradi- 

ent boosting model showed an area under the receiver operating characteristic curve of 0.854 (sensitivity 

86.4%; specificity 61.5%; positive predictive value 73.8%; negative predictive value 78.3%). 

Conclusion: Clinical and laboratory characteristics can be used to estimate the COVID-19 variant regard- 

less of genomic testing availability. This finding has implications for variant-driven treatment protocols 

and further research. 

Published by Elsevier Ltd on behalf of International Society for Infectious Diseases. 

This is an open access article under the CC BY-NC-ND license 

( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 
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� Summary: Laboratory and clinical characteristics differed between the Delta and 

re-Delta variant in hospitalized cases. The gradient boosting model predicted pa- 

ients with Delta-like characteristics with a high mean area under the receiver op- 

rating characteristic curve in a limited genomic sequencing setting. 
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ntroduction 

SARS-CoV-2, which causes COVID-19, has led to a significant 

lobal health crisis resulting in more than 5.8 million deaths as of 

ebruary 14, 2022 ( Coronavirus Resource Center, 2022 ). The high 

revalence and transmissibility of SARS-CoV-2 in a population al- 

ows adaptive mutations in the viral genome, mostly mildly delete- 

ious or neutral. A small number of these mutations may result in 

 significant phenotypical virus with an increase in transmissibil- 

ty, increase in virulence, or decrease in the effectiveness of pub- 

ic/social health measures ( Khateeb et al., 2021 ). The World Health 

rganization ( World Health Organization, 2021 ) defines them as 

ariants of concern (VOCs). Most countries have experienced many 

aves of this viral illness, generally coinciding with these new 

ariant strains ( Davies et al., 2021 ; Singh et al., 2021 ). 

Owing to high transmissibility, the Delta variant (Pango lineage 

.1.617.2) became the predominant variant in the United States in 

uly 2021 ( Centers for Disease Control and Prevention, 2021 ). Com- 

ared with the previous Alpha variant, the Delta variant was as- 

ociated with a two-fold increased risk of hospitalization within 

4 days of a positive test in England and Scotland ( GOV.UK Coro- 

avirus, 2021 ; Sheikh et al., 2021 a). In a retrospective study from 

ingapore, Ong et al. (2021) found five-fold increased odds of dis- 

ase severity with the Delta variant compared with the Alpha or 

eta variant sequences. However, it is challenging to extrapolate 

ata from other countries to the United States because of differ- 

nces in healthcare resource use, patient characteristics, and socio- 

ehavioral trends. 

There are limited data regarding the clinical and biomarker 

haracterization of Delta and other variants in the United States. 

wing to limited US genomic surveillance (0.1-3.1% of positive 

ARS-CoV-2 tests) ( Paul et al., 2021 ), the emergence of a new 

OC wave may lag its identification occurring in a geographic lo- 

ale. Consequently, surrogate identifying of the emergence of a 

ew wave is needed. Laboratory markers may predict prognosis, 

ncluding lymphocytopenia, inflammatory markers (e.g., C-reactive 

rotein, ferritin), lactate dehydrogenase, high-sensitivity troponin 

, abnormal coagulation parameters, and others that are commonly 

ssociated with poor outcomes ( Poggiali et al., 2020 ; Henry et al., 

020 ; Sui et al., 2021 ). In this retrospective study, we aimed to

ompare the hospitalized patient characteristics of the Delta vari- 

nt surge with the pre-Delta variant surge in a single-center hos- 

ital in Florida to clinically define and distinguish the variants. 

ethods 

tudy Setting and Population 

This study was conducted at Mayo Clinic in Jacksonville, Florida, 

nd was deemed exempt from review by the institutional review 

oard (IRB 21-002944). Hospitalized patients with a positive na- 

opharyngeal polymerase chain reaction test or antigen for SARS- 

oV-2 on admission or during their hospital stay were reviewed. 

he vaccination status was assessed from our electronic medi- 

al record, which is updated from the Florida State Health Online 

racking System every 2 weeks for all patients > 5 years of age re-

iding in Florida. Vaccine breakthrough was defined as a positive 

olymerase chain reaction or antigen for SARS-CoV-2 obtained af- 

er 14 days from complete vaccination (after the second dose of a 

fizer, Moderna, or AstraZeneca vaccine or after the first dose of 

 Johnson & Johnson vaccine). The time of study predated the ap- 

roval of mRNA vaccine third dose and viral vector vaccine second 

ose (or “boosters”) in the United States ( US Food & Drug Admin- 

stration, 2021 ). 

A COVID-19 wave was defined as the period characterized by a 

teady increase in hospitalizations that may stabilize and decrease 
89 
ver time. A flattening of COVID-19 admissions for several weeks 

arked the end of a wave ( < 5 daily admits). For the Mayo Clinic,

lorida, Wave 1 started on August 8, 2020, and ended on April 1, 

021. Wave 2 started on June 26, 2021, and ended on October 18, 

021. Data from the United States Department of Health and Hu- 

an Services SARS-CoV-2 Interagency Group were used to identify 

he primary variant of each wave based on ecological data, as the 

apacity and resources to conduct viral genomic sequencing of spe- 

ific hospitalized patients were not available. Wave 1 comprised a 

eterogeneous group of SARS-CoV-2 variants. Wave 2 was predom- 

nantly characterized by the Delta variant representing > 50% of the 

equenced genome (June 26, 2021) and subsequently > 90% dur- 

ng peak hospital admissions. Therefore, a washout period of 12.2 

eeks was established between Wave 1 and Wave 2 to minimize 

arryover effects from previous variants. 

tatistical Analysis 

Data were analyzed using a mixture of standard descriptive 

tatistics, regression techniques, and machine learning approaches 

o support comparing patient characteristics and hospital outcomes 

etween the 2 waves of patients. First, data were analyzed for dif- 

erences between waves using descriptive statistics. Absolute value 

tandardized mean differences > 10% were considered relevant dif- 

erences between the waves. Kruskal-Wallis rank-sum tests were 

sed to test for these differences more formally. Next, another goal 

as to determine whether more generalized, or clustered, combi- 

ations of variables could be associated with the waves. To ad- 

ress this, a gradient boosting machine (GBM) was estimated us- 

ng baseline comorbidities, patient characteristics, and laboratory 

alues performed closest to hospital admission. Rather than us- 

ng the GBM to predict a clinical outcome such as 28-day mor- 

ality, the GBM was trained to predict the COVID-19 variant type 

redominant in that wave. In this way, the GBM was used to ex- 

lore fundamental differences between patient cohorts with the 

ypothesis that the variants were unique while allowing for inter- 

ctions and non-linear associations in the modeling form. Labora- 

ory values had differing levels of missing rates in the 2 waves. To 

void missing data being used to predict wave likelihood, missing 

ata were imputed using the MissForest algorithm before model- 

ng. Data were split in a traditional train (80%) and test (20%) man- 

er. The GBM was then constructed using a cartesian grid search 

o find optimal tuning parameters (learning rate, column sampling, 

ow sampling, tree depth, and the number of trees) while using 

ve-fold cross-validation to assess model performance. The model 

ith the highest mean area under the curve across folds in the 

raining data set was selected as the final model. In the final test 

ata set, a receiver operating characteristic curve was generated, 

nd traditional binary classification summaries such as sensitivity 

nd specificity were used to assess model performance and mis- 

lassification in data not used during model development and se- 

ection. 

To assess the role of each variable included in the model, two 

 graphical representations of the fitted model were used: a vari- 

ble importance plot and a Shapley additive explanations (SHAP) 

lot. The variable importance plots provide a relative ranking of 

ow much each variable improved the model fit; however, the 

gure does not capture the direction and magnitude of numeric 

hanges in the variable with the classification outcome (i.e., wave). 

o summarize this latter impact in terms of both directions (e.g., 

he likelihood of the case being from Wave 2) and magnitude (e.g., 

ow much this likelihood or estimated probability changes over 

he domain of the observed values), SHAP plots were added. SHAP 

lots show both global and local trends in model predictions: at 

he global level, values are ordered based on feature importance; 

t the local level, large SHAP contributions indicate measurements 
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Figure 1. Epidemiologic curve showing 2 COVID-19 disease admission waves in Mayo Clinic, Florida . The number of new COVID-19 cases (y-axis) is shown as the absolute 

number of admissions per day. The blue-colored first wave comprises a heterogeneous array of SARS-CoV-2 variants, named Wave 1. The red-colored second wave shows 

Wave 2. A buffer period of 12.2 weeks was established after the end of the first wave. 
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hat had a high impact on individual predictions (far-left indicating 

reater likelihood of belonging to Wave 1 and far-right, Wave 2), 

nd color represents the relative magnitude of value for each vari- 

ble. Sensitivity and specificity are also reported after a threshold 

or 0.028 wave classification was selected to optimize F1 perfor- 

ance in training data. Given that the baseline laboratory markers 

f clotting, inflammation, and other assays were noted as impor- 

ant variables in the GBM fit, longitudinal analyses were conducted 

sing censored mixed models with a random intercept. Data were 

insorized at the 0 and 95th percentiles. For these models, the pa- 

ameters of primary interest were the model wave indicator, which 

uantified how much difference there was in laboratory values at 

dmission (time = 0), and the hospital day by wave interaction 

erm, which quantified differences in the rate of change in the lab- 

ratory values between waves throughout the hospital stay. 

Statistical analyses and graphical presentations were created us- 

ng R version 4.0.3 (Vienna, Austria). When P -values were reported 

o be interpreted, a P < 0.05 (2-sided) threshold was used to repre- 

ent statistical significance. 

esults 

The final sample (N = 1318) included 653 cases in the pre-Delta 

ariant Wave 1 and 665 cases in the Delta variant–dominant Wave 

. Figure 1 provides an overview of hospital admissions and iden- 

ifies cases that were included in each wave, as well as a buffer 

eriod in which we observed an overlap between the pre-Delta 

nd Delta variants. Descriptive statistics and tests for differences in 

aseline comorbidities and patient characteristics between waves 

re shown in Table 1 . Several differences in baseline comorbidities 

nd patient characteristics were observed, including age, race, eth- 

icity, and comorbidities such as hypertension, chronic kidney dis- 

ase, chronic obstructive pulmonary disease, coronary artery dis- 

ase, and congestive heart failure. Patients from Wave 2 were sig- 

ificantly younger, with fewer comorbidities and less immunosup- 

ression, than those from Wave 1. Wave 2 patients were more 

ikely to require intensive care but had lower unadjusted mortal- 

ty than those from Wave 1 ( Figure 2 ). 

A comparison of laboratory assay values between the 2 waves 

s listed in Table 2 . The Wave 2 group was characterized by higher

alues of inflammatory biomarkers, including C-reactive protein 

CRP), ferritin, and lactate dehydrogenase (LDH) on admission. 

ther values found to be significantly different were serum cre- 

tinine, fibrinogen, international normalized ratio, activated par- 

ial thromboplastin time, prothrombin time, and segmented neu- 
90 
rophil count. An analysis of vaccine breakthrough cases between 

he waves was impossible because of a predominantly unvacci- 

ated Wave 1 (94.9%) group. 

The variable importance and SHAP plots are presented in 

igure 3 . An area under the curve of 0.854 (0.809, 0.899) (sensi- 

ivity: 86.4% [79.8%, 91.5%]; specificity 61.5% [52.1%, 70.4%]) in the 

est data set indicates a fundamental difference between cohorts 

 Figure 4 ). Notable variables with the highest predictive value in 

ur model, according to SHAP values, were prothrombin time, in- 

ernational normalized ratio, LDH, fibrinogen, age of the patient, 

hronic lung disease, and CRP. 

Censored mixed effects modeling of changes in laboratory data 

ver time identified a statistically significant difference in random 

ntercept estimates in 11 of 16 assays and random slope estimates 

interaction of wave and days from admission to testing) in 14 of 

6 assays (Supplementary Table 1). 

iscussion 

Throughout the COVID-19 pandemic, much attention has been 

irected to the SARS-CoV-2 virus as if it were a single entity. With 

he emergence of the Delta and now Omicron variants, it has be- 

ome clear that variants have the potential for differences in pa- 

ient trajectories and characteristics that warrant further consid- 

ration and clarification. Genomic surveillance would be the most 

recise means of identifying the spread of new viral variants, but 

his technology has limitations. As of mid-2021, the United States 

anked 33rd worldwide in genomic surveillance ( Crawford and 

illiams, 2021 ), and even when genomic testing is performed, 

here are often significant time delays with results. Test results 

ay also not be identifiable back to the individual patient level. 

ne goal of this study was to better quantify how a constellation of 

actors shifted in hospitalized patients as the predominant variant 

hanged in the community without access to individual patient–

evel genomic testing. 

The ability to predict the phenotype of the predominant viral 

ariant has implications for individual patient care as well as for 

ospitals and at the population level. The Delta variant–dominant 

ave 2 was characterized by more inflammation and higher in- 

ensive care needs than the pre-Delta variant–dominant Wave 1. 

nowing that a patient presents with Delta-like characteristics will 

llow better prognostication for that individual. If hospital cases 

ncrease with Delta-like characteristics, knowing this information 

ill allow hospitals to plan internally and in networks to prepare 

or high intensive care use in equipment, space, and staffing. At the 
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Table 1 

Patient characteristics, comorbidities, and outcomes stratified by wave. 

Wave 1 (n = 653) Wave 2 (n = 665) Total (N = 1318) Standardized difference a 

Age (years) 67 (20, 103) 60 (21, 101) 64 (20, 103) 32.6% 

Sex (male) 392 (60.0%) 388 (58.3%) 780 (59.2%) 3.4% 

Race 16.2% 

American Indian/Alaskan Native 1 (0.2%) 2 (0.3%) 3 (0.2%) 

Asian 38 (5.8%) 27 (4.1%) 65 (4.9%) 

Black or African American 61 (9.3%) 83 (12.5%) 144 (10.9%) 

Pacific Islander 1 (0.2%) 0 (0.0%) 1 (0.1%) 

White 533 (81.6%) 524 (78.8%) 1057 (80.2%) 

Other/Unknown 19 (2.9%) 29 (4.4%) 48 (3.6%) 

Ethnicity 9.7% 

Hispanic 27 (4.1%) 37 (5.6%) 64 (4.9%) 

Non-Hispanic 618 (94.6%) 614 (92.3%) 1232 (93.5%) 

Unknown 8 (1.2%) 14 (2.1%) 22 (1.7%) 

Chronic kidney disease 64 (9.8%) 44 (6.6%) 108 (8.2%) 11.6% 

Chronic lung disease 391 (59.9%) 507 (76.2%) 898 (68.1%) 35.6% 

Congenital heart disease 7 (1.1%) 6 (0.9%) 13 (1.0%) 1.7% 

Congestive heart failure 104 (15.9%) 72 (10.8%) 176 (13.4%) 15.0% 

Coronary artery disease 171 (26.2%) 119 (17.9%) 290 (22.0%) 20.1% 

Diabetes mellitus 174 (26.6%) 162 (24.4%) 336 (25.5%) 5.2% 

Hypertension 433 (66.3%) 342 (51.4%) 775 (58.8%) 30.6% 

Immunosuppression b 125 (19.1%) 84 (12.6%) 209 (15.9%) 17.9% 

Overall COVID-19 risk of complications score 4 (0, 10) 3 (0, 9) 4 (0, 10) 30.6% 

End stage renal disease 50 (7.7%) 38 (5.7%) 88 (6.7%) 7.8% 

Monoclonal antibodies 33 (5.1%) 32 (4.8%) 65 (4.9%) 1.1% 

Dialysis 23 (3.5%) 13 (2.0%) 36 (2.7%) 9.6% 

Transplant patient 92 (14.1%) 72 (10.8%) 164 (12.4%) 9.9% 

Solid organ transplant 68 (10.4%) 42 (6.3%) 110 (8.3%) 14.8% 

Solid organ transplant type 20.2% 

Heart 7 (10.3%) 4 (9.5%) 11 (10.0%) 

Kidney 35 (51.5%) 24 (57.1%) 59 (53.6%) 

Liver 10 (14.7%) 6 (14.3%) 16 (14.5%) 

Lung 15 (22.1%) 8 (19.0%) 23 (20.9%) 

Pancreas 1 (1.5%) 0 (0.0%) 1 (0.9%) 

Vaccination status 74.0% 

Unvaccinated 619 (94.8%) 474 (71.3%) 1093 (82.9%) 

Partially vaccinated 29 (4.4%) 40 (6.0%) 69 (5.2%) 

Breakthrough 5 (0.8%) 151 (22.7%) 156 (11.8%) 

Vaccine type at first immunization 27.9% 

Johnson & Johnson 1 (2.9%) 13 (6.8%) 14 (6.2%) 

Moderna 14 (41.2%) 57 (29.8%) 71 (31.6%) 

Pfizer 19 (55.9%) 121 (63.4%) 140 (62.2%) 

Reason for testing 60.6% 

N-Miss 468 164 632 

Asymptomatic 44 (23.8%) 19 (3.8%) 63 (9.2%) 

Symptomatic 141 (76.2%) 482 (96.2%) 623 (90.8%) 

Anti-spike antibody test 36.4% 

N-Miss 534 43 577 

Negative ( < 0.8 U/mL) 31 (26.1%) 268 (43.1%) 299 (40.4%) 

Positive ( ≥ 0.8 U/mL) 88 (73.9%) 354 (56.9%) 442 (59.6%) 

Positive anti-nucleocapsid antibody 17.1% 

N-Miss 101 206 307 

Negative 358 (64.9%) 334 (72.8%) 692 (68.4%) 

Positive 194 (35.1%) 125 (27.2%) 319 (31.6%) 

Critical care services 177 (27.1%) 261 (39.2%) 438 (33.2%) 26.0% 

Mechanical ventilation 52 (8.0%) 70 (10.5%) 122 (9.3%) 8.9% 

Length of stay (days) 10.4% 

N-Miss 0 2 2 

Median (range) 5 (1–193) 5 (1–155) 5 (1–193) 

Deceased 109 (16.7%) 85 (12.8%) 194 (14.7%) 11.0% 

Categorical data are shown as count (percent). Numeric data are presented as median (range). 
a Standardized difference = difference in proportions divided by standard error; imbalance defined as absolute value greater than 10% 

(text in bold formatting). 
b Immunosuppression status was attributed to the following patients: diagnosed with human immunodeficiency virus infection, actively 

receiving chemotherapy, receiving immunosuppressive medications, or diagnosed with iatrogenic immunosuppression. 
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opulation level, a rise in Delta-like cases identified early would 

llow early adoption of public health measures to suppress the 

pread. In comparison, a non–Delta-like wave of cases in a highly 

accinated population would warrant a different public health re- 

ponse. As SARS-CoV-2 continues to mutate, VOCs will likely con- 

inue to spread. Public health strategies should be adaptable to not 

nly rising case counts but also the possibility that a variant will 

ause more severe disease. 
91 
We used a machine learning technique, gradient boosting, to 

xplore differences between waves. The GBM model identified 

ultiple inflammatory and clotting factor variables that meaning- 

ully shifted between the 2 waves. Certain markers were signifi- 

antly higher in wave 2, such as coagulation studies, segmented 

eutrophils, fibrinogen, LDH, ferritin, and CRP ( Table 2 ). CRP has 

een a surrogate marker for the degree of cytokines released in 

OVID-19, which is usually a higher level associated with a hy- 
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Figure 2. Patient characteristics and outcomes between Wave 1 and Wave 2. (a) Age; (b) chronic kidney disease; (c) chronic lung disease; (d) hypertension; (e) death; (f) 

intensive care unit; (g) mechanical ventilation; (h) length of hospital stay. 

Figure 3. Shapley additive explanations (SHAP) plot for the gradient boosting model. (a) The figure plots every patient in the analysis as a point. The y-axis lists the input 

variables. The x-axis is a metric of the SHAP value associated with each variable and patient within the dataset (i.e., points plotted for each case based on the impact on 

prediction). The points plotted on the far-left have a greater impact on Wave 1 prediction and points plotted on the right have a greater impact on Wave 2 prediction. The 

normalized value of observation is color-based (red = higher values; blue = lower values). (b) The bar graph shows the input variables’ importance for wave prediction. The 

scaled importance is color-based (red = higher importance; blue = lower importance). 
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erinflammatory cytokine storm ( Temesgen et al., 2022 ). Eleva- 

ions in these specific studies support the hypothesis that the 

elta variant is characterized by a relatively distinct, particularly 

yperinflammatory profile. Other similar markers in both Wave 1 

nd Wave 2 included lymphopenia and elevations of procalcitonin, 

L-6, d -dimer, and platelet count. Other studies have also indi- 

ated that absolute lymphopenia is not a predictor of outcomes 

y itself ( Verma et al., 2022 ). These indicators remain elevated 

n severe COVID-19 but do not differ between the waves ( Lopez- 

astaneda et al., 2021 ; Malik et al., 2021 ). 

Twohig et al. (2022) identified a higher risk of emergency 

are visits and hospital admission in unvaccinated patients in- 

ected with the Delta variant in the United Kingdom. In addi- 
92
ion, that study group reported that these patients were younger 

han those infected with the Alpha variant, similar to our findings. 

ng et al. (2021) , Luo et al. (2021) , and Fisman and Tuite (2021) re-

ort a higher likelihood of hospitalization, intensive care unit ad- 

ission, and/or death in patients infected with the Delta variant. 

ur study also demonstrates that Wave 2 patients, predominantly 

nfected with the Delta variant, were more likely to require in- 

ensive care unit admissions. However, fewer deaths were seen in 

ave 2 than in Wave 1. Several reasons may explain the lower 

umber of deaths in Wave 2. A higher proportion of completely 

accinated individuals were admitted during this period. Most of 

ur breakthrough patients were vaccinated with mRNA vaccines, 

hich have approximately 90% effectiveness against hospitaliza- 
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Table 2 

Laboratory assays stratified by wave. 

Wave 1 (n = 653) Wave 2 (n = 665) Total (N = 1318) P -value a 

Activated partial thromboplastin Time 0.005 

N 334 469 803 

Median (range) 31.0 (17.0–225.0) 30.0 (17.0–300.0) 30.0 (17.0–300.0) 

C-reactive protein < 0.001 

N 617 639 1256 

Median (range) 53.8 (1.5–400.0) 71.2 (1.5–400.0) 63.2 (1.5–400.0) 

Creatinine 0.003 

N 626 623 1249 

Median (range) 1.0 (0.3–12.5) 0.9 (0.2–20.3) 1.0 (0.2–20.3) 

D-dimer 0.79 

N 615 636 1251 

Median (range) 825.0 (110.0–42000.0) 841.5 (110.0–42000.0) 831.0 (110.0–42000.0) 

Ferritin < 0.001 

N 604 611 1215 

Median (range) 365.5 (9.0–17569.0) 513.0 (5.0–30714.0) 433.0 (5.0–30714.0) 

Fibrinogen < 0.001 

N 391 514 905 

Median (range) 513.0 (108.0–1000.0) 567.0 (76.0–1000.0) 543.0 (76.0–1000.0) 

Interleukin-6 0.002 

N 541 599 1140 

Median (range) 38.0 (1.0–3543.0) 44.0 (1.0–4500.0) 41.0 (1.0–4500.0) 

International normalized ratio 0.010 

N 586 619 1205 

Median (range) 1.2 (0.8–5.4) 1.2 (0.9–5.2) 1.2 (0.8–5.4) 

Lactate dehydrogenase < 0.001 

N 597 621 1218 

Median (range) 268.0 (87.0–25000.0) 347.0 (65.0–3360.0) 299.0 (65.0–25000.0) 

Lymphocytes, absolute 0.18 

N 587 619 1206 

Median (range) 0.9 (0.1–94.1) 0.9 (0.1–105.1) 0.9 (0.1–105.1) 

Mean platelet volume 0.27 

N 605 643 1248 

Median (range) 10.3 (8.0–14.2) 10.2 (8.0–14.7) 10.2 (8.0–14.7) 

Neutrophils, percentage < 0.001 

N 587 619 1206 

Median (range) 74.8 (5.7–96.2) 78.3 (3.7–96.6) 76.6 (3.7–96.6) 

Neutrophils, absolute 0.007 

N 587 619 1206 

Median (range) 4.5 (0.3–32.3) 5.2 (0.6–23.1) 4.8 (0.3–32.3) 

Platelet count 0.18 

N 612 647 1259 

Median (range) 189.0 (2.0–1120.0) 195.0 (4.0–667.0) 193.0 (2.0–1120.0) 

Procalcitonin 0.42 

N 590 631 1221 

Median (range) 0.1 (0.0–96.9) 0.1 (0.0–140.6) 0.1 (0.0–140.6) 

Prothrombin time < 0.001 

N 586 619 1205 

Median (range) 13.2 (9.5–62.4) 12.6 (9.7–58.0) 12.9 (9.5–62.4) 

Laboratory assays at the first test during a patient’s admission. For values below the lower limit of detection, values were imputed to 

half the distance between 0 and the lower limit. For values above the upper limit of detection, values were winsorized at the upper 

limit. 
a P -values arise from Kruskal-Wallis rank-sum tests. Values in bold formatting are statistically significant (p < 0.05). 
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ion and death ( Nasreen et al., 2022 ; Sheikh et al., 2021b ). Besides

 higher cumulative number of vaccinated individuals during the 

mergence of the Delta variant, our analysis did not account for 

hanges in the treatment protocols during the pandemic. 

Over the 2 years of the COVID-19 pandemic, the healthcare sys- 

em has realized that it needs to adapt to the various SARS-CoV- 

 variants based on the clinical characteristics of each strain, the 

opulation it involves, and the likelihood of mortality or morbidity. 

he vaccine’s effectiveness also plays a huge role in the outcomes 

f these patients. Early on in the pandemic, healthcare’s ability to 

andle patients’ needs other than for COVID-19 was negatively im- 

acted. With prediction modeling of future variants, decisions to 

aintain healthcare throughput can be better planned. The future 

f COVID-19 care, similar to the overall trend in healthcare, is per- 

onalization. The need of the hour is a targeted treatment to a par- 

icular phenotype of a patient based on the affecting genotype and 

he comorbidities of the patient. With genotyping of the COVID-19 

ariant not readily available, a model similar to what we demon- 
93
trated can quickly help identify the variant affecting the patient. 

e hope to stratify the model further with data from the Omicron 

ariant. 

imitations 

One of the central weaknesses of the study is the lack of a 

efinitive classification of the variants that infected the hospital- 

zed patients over the study period. This was in part due to the 

etrospective nature of the study and the evolving adoption of ge- 

omic sequencing for the variant. Thus, we have leveraged HHS.gov 

revalence data to classify which of the SARS-CoV-2 variants pre- 

ominated in given periods. Those data reflect variants sequenced 

rom a given region comprising multiple states. Different percent- 

ges of variants can exist within a region but are presumed to be 

nsignificant. Selection bias because of the study’s single-center na- 

ure and misclassification bias of the variants in the wave could 

xist. We attempted to address these limitations by including all 
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Figure 4. Model performance and diagnostic summaries for the gradient boosting model. 

The left panel shows a receiver operating characteristic curve along with associated diagnostic metrics. The blue circle represents the selected threshold, which was deter- 

mined by the optimal F1 score in the training data. The right panel is a confusion matrix displaying false and true negatives/positives and associated metrics of specificity, 

sensitivity, negative predictive probability (NPV), and positive predictive probability (PPV). In all cases, metrics are associated with test data that were not used during model 

development or selection. 
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atients within the study period. Furthermore, because of the ret- 

ospective nature of this study, we relied on the records docu- 

ented directly into the electronic health record. Although devel- 

ped using data partitioned off for model testing (“validation”), the 

BM was only trained on a single site without a separate prospec- 

ive validation study. In addition, the model is currently limited in 

hat it was trained only to discriminate the predominantly pre- 

elta variants from a predominantly Delta strain. Finally, tradi- 

ional diagnostic summary metrics do not account for misclassi- 

cation bias; additional thresholds could be explored to minimize 

etrics such as false-negative rates. Further research will be re- 

uired to determine whether the use of simple patient character- 

stics can readily identify changes in the predominant variant. No- 

ably, shifts in predominant SARS-CoV-2 variants would likely be 

ssociated with model drift and a decrease in model performance, 

ecessitating a classification model that is not strictly binary. 

onclusion 

The principal finding of our study is that a selection of read- 

ly obtainable laboratory studies and patient characteristics can be 

sed to differentiate between cases of patients with SARS-CoV-2 

nfection hospitalized during a pre-Delta–predominant wave ver- 

us a Delta-predominant wave. The importance of this finding is 

hat it may provide a future approach to developing simple statis- 

ical monitoring systems for future waves of infections. This may 

ddress the real-world challenges of sequencing the variant and 

dapting treatment accordingly. If a shift in patient characteristics 

s detected using readily obtainable data, genomic sequencing of 

ariants could be expedited and prioritized. A significant genotyp- 

cal shift resulting in VOCs may be readily apparent secondary to 

ncreased cases in the community and later seen as a wave in hos- 

ital admissions. As in-hospital COVID-19 cases decrease over time 

ecause of increased vaccine effectiveness or natural immunity, 

ess clinically impactful genomic mutations, and improvements in 

utpatient treatments, a predictive model such as ours may com- 
94 
are a patient’s phenotypical characteristics with known variants 

nd treat them accordingly. 
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