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Abstract

unblinded safety data analysis.

confirm the signal with unblinded safety data.

could confirm the safety issue.

Background: Monitoring and reporting of drug safety during a clinical trial is essential to its success. More recent
attention to drug safety has encouraged statistical methods development for monitoring and detecting potential
safety signals. This paper investigates the potential impact of the process of the blinded investigator identifying a
potential safety signal, which should be further investigated by the Data and Safety Monitoring Board with an

Methods: In this paper, two-stage Bayesian hierarchical models are proposed for safety signal detection following a
pre-specified set of interim analyses that are applied to efficacy. At stage 1, a hierarchical blinded model uses
blinded safety data to detect a potential safety signal and at stage 2, a hierarchical logistic model is applied to

Results: Any interim safety monitoring analysis is usually scheduled via negotiation between the trial sponsor and
the Data and Safety Monitoring Board. The proposed safety monitoring process starts once 53 subjects have been
enrolled into an eight-arm phase Il clinical trial for the first interim analysis. Operating characteristics describing the
performance of this proposed workflow are investigated using simulations based on the different scenarios.

Conclusions: The two-stage Bayesian safety procedure in this paper provides a statistical view to monitor safety
during the clinical trials. The proposed two-stage monitoring model has an excellent accuracy of detecting and
flagging a potential safety signal at stage 1, and with the most important feature that further action at stage 2

Keywords: Two-stage monitoring, Bayesian hierarchical method, Blinded and Unblinded safety data

Background

Interest in monitoring and reporting drug safety during
the execution of a clinical trial and careful monitoring
throughout the development of a drug from pre-clinical
to post-marketing stages, has grown at a remarkable rate
in the past decade. This attentiveness to drug safety has
inspired statistical methods development for monitoring
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and detecting potential safety signals during trial execu-
tion. Proposed methods include Bayesian and frequentist
models for blinded and unblinded safety monitoring for
randomized clinical trials [1, 2].

Blinding is the process of concealing treatment-related
information from the people involved in a clinical trial,
such as the sponsors, participants, and researchers.
Blinding preserves the integrity of the study by minimiz-
ing the impact on study findings of conscious or uncon-
scious biases that might result from knowledge of
treatment [3, 4]. The disclosure of treatment group
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assignment during the trial is called unblinding. For
medical or safety reasons, unblinding a trial is some-
times necessary to protect study participants. The
unblinding process is generally pre-specified and detailed
in the study protocol [3-5].

Data and Safety Monitoring Boards (DSMBs) are inde-
pendent committees responsible for regular monitoring
and reporting of clinical trial safety data [6—8]. The Food
and Drug Administration (FDA) requires the formation
of a DSMB in all trials that assess new interventions [9,
10]. Furthermore, the FDA guidance of safety assessment
for the Investigational New Drug (IND) safety reporting
recommends that unblinding is allowed and needed to
identify the important safety information for serious ad-
verse events during an ongoing clinical trial [11]. “Flag-
ging” is the notification process that identifies a
potential safety concern in the novel treatment being
tested in a clinical trial [3, 4]. DSMBs play a critical role
in safety flagging; monitoring and reporting both the in-
terests of trial participants, and the scientific integrity of
clinical trials [5]. DSMBs regularly review blinded re-
ports and listings of safety data to make determinations
on whether the observed risk profile of the drug is differ-
ent than expected. However, the investigator needs to be
blinded to safety analyses throughout the conduction of
the clinical trial. This paper investigates the potential
impact of the process of the blinded investigator identi-
fying a potential safety signal that the DSMB should fur-
ther investigate with an unblinded safety data analysis.

The periodic safety reports reviewed by the investigator
include a full listing of all adverse events (AE), as well as
any serious adverse events (SAE) [12]. The report summa-
rizes a trial’s clinical safety endpoints and AEs in terms of
frequency of each event, the number of subjects having
the event, severity of the event, and relatedness of the
event to the study treatment. Because drug-related safety
issues might occur at any time during the execution of a
clinical trial, interim analyses of blinded safety data could
help prevent such safety problems from escalating to sig-
nificant concerns. Although blinded data analysis is less
informative and does not provide a definitive treatment ef-
fect estimate, blinded safety data monitoring could identify
potential safety issues ahead of scheduled DSMB meetings
and prompt decisions regarding an unblinded analysis.
For the purpose of accelerating the process of identifying
important safety information, one feasible approach is to
combine the blinded periodic safety monitoring with the
intended unblinded data analysis. Additionally, the moni-
toring and evaluating of unblinded safety data will be per-
formed based on the safety information from a blinded
safety monitoring. Therefore, a two-stage monitoring
method could be implemented to confirm and identify a
safety signal for unblinded safety data at stage 2 once the
potential AE(s) is flagged at stage 1.
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Bayesian hierarchical approaches can be used for both
blinded and unblinded data analysis by incorporating a
prior safety profile of the control group or background
rate of events and updating outcomes using accumulat-
ing data from the ongoing trial [13-15]. Prior assump-
tions on the safety profile must be made utilizing
historical information or epidemiologic data. In this
paper, a potential safety signal is identified by calculating
the proportion of AEs from the pooled blinded safety
data at stage 1. A blinded Bayesian hierarchical model
based on Ball’s method of identifying possible safety sig-
nals is applied to the pooled blinded safety data [15]. Be-
cause of the Bayesian paradigm and its associated
hierarchical models allow for automated adjustment for
multiplicity and could reduce the family-wise error rate
(FWER) in both stages, [16] a Bayesian hierarchical
model that simultaneously models all AEs is considered
[17-19]. A randomized clinical trial commonly refers to
a control group and one or multiple active treatment
groups with different dose levels. Therefore, at stage 2, a
Bayesian hierarchical logistic model applied to unblinded
data is used to simultaneously confirm whether the
flagged safety signals are indeed safety issues [14, 15].

Throughout the trial, periodic blinded monitoring of
events is conducted using Bayesian methods [16, 20].
Typically, investigators review blinded interim safety
monitoring reports consisting of the proportion of sub-
jects experiencing each AE with two-sided 95% credible
intervals. If a possible safety signal is detected during
blinded monitoring, a model-based estimate of the dose-
response relationship on the relative risk will be pro-
vided to the DSMB [15].

This paper was originally motivated by the work of
Ball and Wen who developed Bayesian objective early
stopping rules for screening and monitoring safety in a
randomized clinical trial using blinded treatment infor-
mation [16, 20]. However, it is difficult for trial leader-
ship to make decisions about stopping a trial only using
blinded data. Therefore, this work proposes contribu-
tions to this area which include: 1) a potential Bayesian
framework with a two-stage process for safety signal de-
tection that facilitates decision-making using blinded
data and then confirms it with the unblinded data; 2)
and calculations of operating characteristics for this
workflow. Most trials focus on power and sample size
calculations (operating characteristics) for the primary
efficacy analysis. This work extends this focus to safety
by providing false positive and false negative rates for
the proposed safety signal identification framework.

Methods: two-stage Bayesian hierarchical models
Stage 1: Bayesian blinded safety monitoring

The stage 1 Bayesian blinded statistical monitoring
method assumes a randomized two-arm or multi-arm
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clinical trial. Subjects are continuously enrolled into the
trial, and the first interim analysis occurs after a total N
subjects have been enrolled into /+ 1 arms, with #, sub-
jects enrolled into the control arm, and ny, n,, ..., 1y sub-
jects enrolled into the treatment arms.

Beta-binomial model

According to Wen and Ball’s Beta-Binomial model, [16, 20]
the occurrence of the j AE among a total J types of AEs is
denoted by Yj; for the i™ dosage arm. In stage 1, Y; is de-
noted as the total number of subjects experiencing the ;™
AE reported in the pooled data, with the observed pooled
incidence rate equal to 77; = YW’ Let 7, represent the pre-
specified expected pooled incidence rate across all dose
levels of the /* AE. The aggregated total across all arms (Y)
is assumed to have a Binomial distribution with occurrence
probability 77; and N;=N. That is, Y; = > Yy forj=1,2,
...Jand i=0,1,2, ..., I, and the distribution of the j AE is
given by,

Yy~ Binomial(ﬂ/,N).

The occurrence probability 7z; has a Beta prior distri-
bution to facilitate a conjugate analysis. For example, as-
suming a Beta(1, 1) prior distribution for 7; results in a
Beta posterior distribution,

mj|Y;~Beta(Y;+1,N-Y;+1).

The j” AE may have a statistically significant safety
signal if the posterior probability of its incidence rate be-
ing higher than the pre-specified expected pooled inci-
dence rate exceeds a pre-specified critical value:

P(m; > my |Blinded Data) > P(Critical Value).

Bayesian hierarchical blinded model
Considering the various types of AEs recorded in a clin-
ical trial, multiplicity is a likely issue. Berry and Berry de-
veloped a Bayesian hierarchical model to handle
multiple AEs simultaneously [17]. For the hierarchical
model, it allows for the possible correlation between the
AEs through the specified hyperparameters. Addition-
ally, this approach allows for normal hierarchical models
on the real line as opposed to the (0, 1) constraint, com-
pared to the Beta-Binomial model. Therefore, the Beta-
Binomial model and the Bayesian hierarchical model are
combined to form the proposed Bayesian hierarchical
blinded model.

For the hierarchical model, define 7; as a combination
of control and treatment incidence rates, given by

;= Qcercer; + Qritre,

where Q, is the proportionate sample size of the control
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arm, Q. =%,and Qr =1-Q, = % is the proportion-
ate sample size of the treatment arm(s); ¢y, 77y, are
the incidence rates for the j AE in the control and
treatment arms, respectively. Note that the 77, does
not assume to be the same across treatment arms, it is a
pooled incidence rate for /” AE, and Q. is usually fixed
across different trial designs including designs that use
response adaptive randomization. Assume that the inci-
dence rate for the /” AE in the control arm is equal to
the expected pooled incidence rate, TCCtr; = T, - Then,
the 77, across the treatment arms could be expressed
by the difference between the pooled incidence rate 7;
and expected pooled incidence rate 7y,. Therefore, the
logistic transformation is applied, yielding

logit(m1y ;) = logit (mcy,) + d,

where d; is the log-odds ratio of the probability of a
safety event in the treatment relative to control for the
j™ AE. The incidence rate of an AE is the same for con-
trol and treatment arms when d; = 0. Priors are assigned
to d; using the following distribution:

d; NN(,ud,agl).

The hyperparameters for the normal prior distribution
of d; have fixed distributions:

Ha ™~ N(/’{dO’ 0'310) and UdNL[ngf(Uur Ub)’

where the hyperparameters 1, 0%, U,, U, are fixed
constants. In general, due to the limited data, the prior
information on d; is typically lacking. However, the d; is
still identifiable for two reasons. The first is because the
randomization allocation to the control arm is known
and fixed as proportionate sample size (Q., Qr) through-
out the trial. The second is that the control arms rates
priors are fixed at the expected incidence pooled rate.
Therefore, in order to have a weakly informative impact
on the prior distributions, and to carefully avoid overfit-
ting or underfitting of the model, the weakly informative
prior would be commonly recommended [21]. The spe-
cification of these hyperparameters depends on the ap-
plication and is further discussed in the application
section [22, 23].

Using the Bayesian hierarchical blinded model, poster-
ior samples can be generated via Markov chain Monte
Carlo (MCMC) methods, and the posterior probability
Pjs; of a safety signal at stage 1 is given by Pj, = P(
1yt > 7, |Blinded Data). After a specified number of
subjects have been enrolled into the trial, during the in-
terim safety analysis, the following decision rule can be
applied for each AE to flag potential safety signals:

p

js1 chritl )

assuming some pre-specified critical value Py, . If the
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posterior probability exceeds the pre-specified critical
value, an analysis of unblinded data can be performed to
confirm the safety issue.

Stage 2: Bayesian Unblinded safety monitoring

If at any point during stage 1 the blinded monitoring
flags a safety signal, the unblinded dose-response effect
for each AE will be modeled in stage 2 using a Bayesian
hierarchical logistic model. It should be noted that only
the AE(s) flagged at stage 1 will be unblinded and be
subject to stage 2 monitoring. Under the scenario of
various dose levels, assume the occurrence Y of the j*
AE at the i dosage has a Binomial distribution with oc-
currence probability 7z, Assuming the number of sub-
jects for the i dosage arm is represented by #;

Y ~ Binomial (nij, n,-).

The logit function of ; is modeled with a linear pre-
dictor consisting of a fixed covariate effect of dose
strength (X)):

logit(ryj) = Boj + f1;X; for i=0,1,2, ..., Tand j=1,2, .., ].

In this model, the regression parameters Sy and f;;
represent the control group parameters (intercept) and
the regression parameters for the incremental effect of
dose, respectively. Note that the logistic model could
also be applied to a two-arm study. The hierarchical
priors for By; and f3y; are given by

logit(ﬁo;‘) ~ N(/"/)’o’azo);ﬁli ~ N(ﬂf’)l’aél)’

where the parameter y; = logit(my;) allows for varying
baseline incidence rates among the different types of
AEs, and.

pp, ~ N(py,07) and , g ~ Unif (Uy, Us); 05, ~ Unif (
Us, Uy).

The hyperparameters u,,0% and U, U,, Us, U, are
fixed constants and are discussed in the application
section.

The Bayesian hierarchical logistic model provides the
posterior probability that the slope coefficient for dose is
greater than 0; that is §;;> 0. Slopes larger than 0 indi-
cate a significantly increased occurrence probability of
the j” AE associated with the dose. The posterior prob-
ability Pjs, of a safety signal at stage 2 is given by

Pjg, = P(/)’lj > 0|Unblinded Dam).

Therefore, Pjs; is compared to a pre-specified stage 2
critical value P;,, and a safety signal is confirmed when

Pj52 2Pcrit;~
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Conduct of the trial
Given the models described in the previous section, we
propose that a clinical trial be conducted via the sequen-
tial steps presented in Fig. 1.

Details are shown in the following steps:

1) Enrolled subjects are randomly assigned to each
arm (either a simple two-arm trial or a multi-arm
trial).

2) Interim safety analysis occurs after N subjects have
been enrolled into 7+ 1 arms, with ny subjects
enrolled into the control arm and #y, n,, ..., 1;
subjects enrolled into treatment arms.

3) During stage 1, Y} subjects report experiencing AE j
at an interim point; that is, the observed pooled
incidence rate for AE j is equal to 77; = YT/, and 7y,
is the pre-specified expected pooled incidence rate
of this AE.

4) Based on the Bayesian hierarchical blinded model,
the posterior probability Pjs; of a safety signal at
stage 1 is given by P;g, = P(1ry; > 11|
Blinded Data). Pjs; is compared to the pre-
specified critical value Py;,. Once the model identi-
fies a potential safety signal, Pj, >Peyi,, the safety
data for the /" AE is unblinded and moved to stage
2.

5) During stage 2, only those AE(s) that have been
flagged at stage 1 are examined. The Bayesian
hierarchical logistic model provides the posterior
probability of a safety signal P;s; = P(81;> 0|
Unblinded Data), which is compared to the pre-
specified stage 2 critical value Pgy,. A safety issue
is confirmed when Pjg, > P,

6) Repeat at each interim point, updating 7; for stage
1. At any point a safety signal is detected, follow the
decision rules above to confirm the potential safety
issue.

Case study

Consider a multi-arm case study of the Hyperbaric Oxy-
gen Brain Injury Treatment (HOBIT) trial [24, 25].
HOBIT is a phase II clinical trial adaptive design for
selecting the optimal dose regimen of hyperbaric oxygen
(HBO) treatment, defined as the regimen (hyperbaric
oxygen with or without normobaric oxygen at different
pressure levels) which produces the greatest improve-
ment in the rate of good neurological outcome versus
standard care for subjects with severe traumatic brain
injury.

For the HOBIT trial, the randomization occurs via the
study-specific password-protected website accessed by
an authorized research coordinator or investigator at the
clinical site. Subjects are considered to be enrolled at the
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Stage 1: Blinded Monitoring
by Investigator

\

DEIERN Blinded Safety Data
e Two-arm or Multi-arm randomized clinical trials
* ¥j: Reported multiple types of adverse events

. P,-Sl: The posterior probability of a safety signal at
stage 1

Decision RYN

* Ppi¢,: The pre-specified critical value at Stage 1

/

No, if

Pjs, < Pcritl

Safe:
Currently, no safety issue.

Yes, if eacharm
s Bay;esnanl i-tl;c.era.r:hlcal Blindes tModel MBayesian Hierarchical Logistic Model
i INCORSETeE ?(.)0 CHRRGCHER (e o 3 * Bij: The slope coefficient of logistic regression model
* Ty The pre-specified expected pooled incidence Unblind « P - The posterior probability of a safety signal at
rate of jt" adverse event Safety Data Js2’

Fig. 1 The flowchart of the Two-stage Bayesian safety monitoring for blinded and unblinded data. The figure displays the process of Two-stage
Bayesian hierarchical monitoring, which starts with collecting the number of reported AE subjects in the pooled data, then goes through the
Bayesian hierarchical blinded model to detect the potential safety signals at stage 1 for blinded safety data. Then, the Bayesian hierarchical
logistic model is implemented to confirm the safety issue after the safety data being unblinded at stage 2

Stage 2: Unblinded Monitoring
by DSMB

-~

PEIER Unblinded Safety Data
¢ Two-arm or Multi-arm randomized clinical trials
* Y;j: Reported multiple types of adverse events for

stage 2

Decision E73Y

* Py, The pre-specified critical value at Stage 2

3

Yes, if
Pj52 = Pcrit2
No, if
Pis, < Perit, Unsafe:

Confirmed safety issue,
further actions needed.

time of randomization, regardless of whether or not they
start or complete study treatment. The trial uses the
intent-to-treat randomized sample, where subjects are
classified by the Oxygen Toxicity Units dose in which
they are randomized, regardless of the dose received.
The data for interim analysis (for efficacy) are collected
from the subjects who have been randomized for more
than 4 weeks from the time of the data freeze. In
addition, the interim analysis of safety monitoring occurs
after N =53 subjects have enrolled into the trial. In this
paper, the hypothetical scenarios of interim safety ana-
lysis occur after 53 subjects have enrolled into the trial,
with 11 subjects enrolled into the control arm and 6
subjects enrolled for each treatment arm. However, this
number changed to 56 with sample size modified to 9
for the “2.5 ATA + NBH” treatment arm, in the HOBIT
trial. The comparison of AEs is between the control arm
with seven treatment arms, where the sample size and
dosage for eight arms are given in Table 1.

Adverse event of special interest

The review of safety data focuses on the following AEs
potentially associated with hyperbaric oxygen treatment
or in the transfer of subjects to getting their treatments.

This subject population presents with significant mor-
bidity with respect to all the below AEs; as such, it is im-
portant to evaluate the presence of events concerning
temporal relationship to treatment (i.e., novel onset or
worsening) as well as its relationship across doses.
Therefore, the major individual AEs with clinical rele-
vance and expected event rate are listed in Table 2. Add-
itionally, the clinical information of each AE in Table 2
provides the simulation patterns from a modeling
perspective.

All the AEs of special interest are summarized by pre-
ferred term and associated system-organ class according
to the Medical Dictionary for Regulatory Activities
(MedDRA) adverse reaction dictionary and by treatment
group in terms of frequency of the event, number of
subjects having the event, time relative to
randomization, severity, and relatedness to the treat-
ment. Cumulative incidences of the specific AE related
to hyperbaric oxygen are compared across arms.

Simulation study

In the simulation study, an example is provided by fol-
lowing the HOBIT trial design to demonstrate the two-
stage safety monitoring process and decision criterion.
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Table 1 The dosage and sample size for each dose-response arm within HOBIT trial

Eight Arms Dose (Oxygen Toxicity Units) Sample Size

(N=53)

1 Control (1.0 ATA) 0.0 11

2 1.5 ATA 2.60 6

3 2 ATA 417 6

4 NBH (100% FiO2 at 1.0 ATA) 540 6

5 2.5 ATA 5.92 6

6 1.5 ATA +NBH 6.20 6

7 2 ATA+NBH 7.76 6

8 2.5 ATA + NBH 9.52 6

As considered and discussed by Berry et al. and Gajewski
et al. about the strategy to select the specification of the
hyperparameters, the selection is determined by out-
come type and expectation of the dose-response for the
particular application [21, 24]. Therefore, in our applica-
tion of the HOBIT trial, with the aim to minimize the
informative impact on the prior distribution, and to
avoid overfitting or overfitting for the model, [24] the
hyperparameters described in Section 2 are assumed fol-
low the fixed values: p,y = 0,03, =22, U, =0,U, =3
for the blinded model, and y; = 0,0? =2 and U, =0,

U, =3, Us =0, U, = 3 for the unblinded model. Addition-
ally, the 7; are defined as a combination of control inci-
dence rate plus the all-treatment incidence rate, ;= Q.
7y + Qe Ty Where Q. =0.2, Qr=0.8 were given by
protocol information.

In order to understand the operating characteristics,
several patterns of AEs are simulated. The simulation
calculations for the two-stage Bayesian monitoring
models were applied by MCMC methods, with the code
presented in the Additional file 1. The results are based
on 10,000 iterations of the study, each generated using

Table 2 The most common AEs and the expected temporal and dose relationship

Adverse Event

Clinical Relevance

Expected Event
Rate (7my)

Pneumothorax
Induced by HBO therapy

Signs of Pulmonary Dysfunction

Pneumonia

Critical decreased CPP
(<60 mmHg)

Critical hypotension
(MAP< 70 mmHg)

Seizures during HBO treatment

Hypercarbia during transportation
(PaCO2 > 45 mmHq)

Abnormal collection of air in the pleural space between the lung and the chest wall,
can result in steadily worsening oxygen supply. This is a pressure related phenomenon
that can also be caused by major trauma or medical procedure. As an AE it is expected to
increase as a function of dose atmospheres, but not duration of exposure or number of days
treatment. This is expected to occur during the dive and would result in aborting the
treatment.

Signs of pulmonary dysfunction, including PaO2/FiO2 < 200 or requiring PEEP > 10 cm of water
to maintain a PaO2/FiO2 ratio of > 200. This is an adverse event which may be related to
total oxygen toxicity exposure and as such should increase with dose and number of
treatments. Symptoms are expected to progressively worsen over subsequent dives.

This is an adverse event which is related to total oxygen toxicity exposure and as such
should increase with dose and number of treatments. Symptoms are expected to progressively
worsen over subsequent dives.

This AE is not specific to HBO therapy, but is associated with poor outcome (reperfusion). It is
expected to be the same in all groups but could demonstrate differences if the process of
transferring to the dive chamber causes increased AEs. This should be analyzed as active vs.
control.

This AE is not specific to HBO therapy, but can be related to transfer from critical care unit (e.g.
disconnecting and reconnecting of lines). It is expected to be the same in all groups but could
demonstrate differences if the process of transferring to the dive chamber causes increased
AEs. This should be analyzed as active vs. control.

These are expected to occur immediately proximal to treatment as a function of dose
oxygen toxicity (rather than cumulative exposure). It is possible to have multiple episodes
of AE. Subjects with a baseline propensity to seize may elevate the numerator for this AE.

This AE is not specific to HBO therapy, but related to transfer from critical care unit (e.g.
disconnecting and reconnecting of lines). It is expected to be the same in all groups but could
demonstrate differences if the process of transferring to the dive chamber causes increased
AEs. This should be analyzed as active vs. control.

2%

25%

40%

75%

75%

1%

10%
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10,000 posterior samples after 1000 observations of
burn-in.

Two-stage Bayesian hierarchical safety monitoring models
Two approaches—a Beta-Binomial independent model
and the hierarchical model—are applied to compare the
family-wise error rate for blinded stage 1 safety data
[26]. Table 3 provides the model comparisons for hypo-
thetical observed event rates with the probability of
flagged trials for the AE of special interest. Here, the g
is the true incidence rate for the specific AE and does
not assume to be the same for all non-control arms. For
the case study at blinded stage, the simulated incidence
rate were generated unequally under various scenarios.
The choice of critical value should be pre-specified and
depend on the severity of the AE and should be decided
upon by investigators based on their experience. For the
first interim analysis, a sample size N = 53 and a stage 1
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critical value of 0.9 are assumed. For each specific AE,
we assume the observed incidence rate varies under dif-
ferent scenarios, from the expected rate (safe rate) to a
higher rate (unsafe rate). Based on the true incidence
rate and the expected event rate, the proportion of
flagged trials are given in Table 3.

Table 3 shows that as the observed incidence rate in-
creases, the proportion of flagged trials increases. For ex-
ample, based on historical data the expected event rate
of “Signs of Pulmonary Dysfunction” is 0.25 and the crit-
ical value at stage 1 is 0.9. Therefore, the Beta-Binomial
independent model decision rule is

P(m; > 0.25|Blinded Data)>0.9.

The Bayesian blinded hierarchical model decision rule
is given by

Table 3 The model comparison for hypothetical observed event rates with probability of flagged trials for the AE of special interest
between Beta-Binomial independent model and Bayesian hierarchical model

Example AEs Expected True Proportion of Flagged Trials
Event Proportion  After N = 53 Subjects Treated
Rate (my) (o) Beta-Binomial Independent Bayesian Blinded Hierarchical
Model Model
(Perit,y, = 0.9) (Peir, = 0.9)
Pneumothorax 2% 2% 0.14 0.02
Induced by HBO therapy 20 12% 100 093
2% 17% 1.00 1.00
Signs of Pulmonary Dysfunction 25% 25% 0.10 0.05
25% 35% 0.83 0.75
25% 40% 0.97 091
Pneumonia 40% 40% 0.09 0.06
40% 50% 0.76 0.72
40% 55% 0.96 0.90
Critical decreased CPP (< 60 mmHg) 75% 75% 0.10 0.07
75% 85% 0.89 0.87
75% 90% 1.00 0.99
Critical hypotension (MAP< 70 mmHg) 75% 75% 0.10 0.06
75% 85% 0.89 0.88
75% 90% 1.00 0.99
Seizures during HBO treatment 1% 1% 0.27 0.01
1% 11% 1.00 0.99
1% 16% 1.00 1.00
Hypercarbia during transportation (PaCO2 > 45 10% 10% 0.12 0.04
mmHg) 10% 20% 095 086
10% 25% 1.00 097
No Signal Pattern Family-Wise Error Rate (FWER)
Overall Safe: mo=rmmy 062 0.19
Adverse

Events
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P(myj > 0.25|Blinded Data)>0.9.

In this case, a safety signal would be flagged if the pos-
terior distribution provides evidence that the overall in-
cidence rate likely exceeds 0.25. Additionally, under the
scenario of no signal pattern, family-wise error rates are
calculated across all seven AEs. The Bayesian hierarch-
ical model is recommended for safety signal detection,
since it accounts for multiplicities and it reduces the
FWER because of the shrinkage at each AE type that is
induced by the hyperparameters. The hierarchical model
shows a smaller FWER compared to the Beta-Binomial
independent model, as well as the smaller proportion of
flagged trials.

Stage 2 includes all AEs that were flagged in stage 1.
After unblinding the safety data, the dose-response effect
of the AEs is modeled using Bayesian hierarchical logis-
tic regression. The logit function of incidence rate for
each arm was modeled using a linear predictor consist-
ing of a fixed covariate effect of dose strength (X;) for
each patient, where X; is summarized as oxygen toxicity
units/100 [24, 25].

The HOBIT trial is an eight-arm trial, and non-
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dosage increases. Five different scenarios are considered
and shown in Figs. 2, 3, 4, 5 and 6, where the average
signal corresponds to the blinded scenarios. These fig-
ures show the simulation study patterns of various non-
decreasing incidence rates as dosage increases for eight
arms. In addition, the proposed two-stage models could
be tested on the performance of detecting and confirm-
ing those safety issues under different AEs with varied
expected incidence rates. For each scenario, the x-axis
represents the dosage for each arm, and the y-axis indi-
cates the observed incidence rate ;. A scenario of no ef-
fect across all AEs is considered (Fig. 2), and a scenario
that assumes the same effect for all the AEs but with a
safety issue (Fig. 3) is also considered. The same effect
scenario was chosen to investigate the situation where
the hierarchical model does very well. This assumption
is relaxed in the next scenario. In another scenario, only
the first three AEs (Pneumothorax Induced by HBO
therapy, Signs of Pulmonary Dysfunction, and Pneumo-
nia) have a safety issue (Fig. 4). Under this case, the pro-
posed model is tested on a situation that only 3 AEs
have a safety issue with no issue for the rest. In the
HOBIT trial, as described in the Table 2, some AEs

decreasing incidence rates are assumed for each dose as  (Critical decreased CPP, Critical hypotension, and
N
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Fig. 2 The scenario | of no effect across all seven AEs under various flat incidence rate as dosage increases for eight arms. (The dashed line is the
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Fig. 3 The scenario Il of same effect across all seven AEs with safety issues under various increasing incidence rate as dosage increases for eight
arms. (The dashed line is the expected incidence rate for each AE)
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Hypercarbia during transportation) should be analyzed
as active vs. control because they could potentially have
a flat effect (e.g., in the logistic regression), thus these
are modeled separately at stage 2 in scenario IV (Fig. 5).
Additionally, a flat effect is considered where both the
control and treatment rates are the same but higher
compared to the expected incidence rate (Fig. 6). Under
this case, assume the control group has a higher inci-
dence rate than the expected, which is a safety issue.
Then the proposed model is applied to test the detection
and confirmation performance for this scenario.

Results

The proposed safety monitoring process starts once 53
subjects have been enrolled into the trial for the first in-
terim analysis. The Bayesian hierarchical blinded model
is applied for detecting the potential safety signals at
stage 1 and moves to stage 2 once the model detects a
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safety signal. In stage 2, the confirmation of safety is
monitored using a Bayesian hierarchical logistic model.
The critical value for stage 1 is set to 0.9 following the
protocol and varied critical values for stage 2 from lib-
eral to conservative. Three critical values situations are
as follows: 1) Liberal: (0.9, 0.7), Medium: (0.9, 0.8), Con-
servative: (0.9, 0.9). Operating characteristics and FWER
results are given in Table 4 for (A) no effect scenario I,
Table 5 for the (B) same effect for all the AEs with safety
issue scenario II, and Table 6 for the (C) same effect for
three AEs with safety issue (No effect for the rest) sce-
nario III, Table 7 for the (D) three AEs with flat effect
relationships and same effect for the rest with safety is-
sues scenario IV, and Table 8 for the (E) flat effect where
both the control and treatment arms are the same but
higher than the expected incidence rate scenario V.

The summarized information of simulation scenarios
and results comparison is given in Table 9. The scenario

Table 4 The probability of flagged trials for the AEs under the no effect for scenario |

Example AEs
(True Proportion;

Blinded: Proportion
with signal for early

(Pcm]r Pcr/rz)

Expected Event Rate) termination 09,07) 05,08) 05, 09)
Unblinded: Termination
Proportion with confirmed
by unblinded data
Pneumothorax Blinded 0.02 0.02 0.01
i;‘f;;?%jg%therapy Unblinded 058 040 0.16
Overall Rate 0.01 0.01 0.00
Signs of Pulmonary Dysfunction Blinded 0.05 0.05 0.06
(= 25%; 7y = 25%) Unblinded 040 026 016
Overall Rate 0.02 0.01 0.01
Pneumonia Blinded 0.06 0.06 0.06
(= 40%;my = 40%) Unblinded 041 024 0.13
Overall Rate 0.03 0.02 0.01
Critical decreased CPP (< 60 mmHg) Blinded 0.06 0.06 0.07
(m=75%: 7= 75%) Unblinded 045 030 016
Overall Rate 0.03 0.02 0.01
Critical hypotension (MAP< 70 mmHg) Blinded 0.06 0.07 0.06
(= 75%: 7= 75%) Unblinded 044 031 016
Overall Rate 0.03 0.02 0.01
Seizures during HBO treatment Blinded 0.01 0.01 0.01
(=19 = 1%) Unblinded 053 040 0.1
Overall Rate 0.00 0.00 0.00
Hypercarbia during transportation Blinded 0.04 0.04 0.04
E;af?ég ;T‘; i”%';f)) Unblinded 041 027 014
Overall Rate 0.01 0.01 0.01
Family-Wise Error Rate (FWER)
Overall Blinded 0.18 0.17 0.19
E\Vdevftrsse Unblinded 057 044 025
Overall Rate 0.10 0.08 0.05
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Table 5 The probability of flagged trials for the AEs under the same effect for all the AEs with safety issue for scenario |l

Example AEs Blinded: Proportion (Prict, Perin)
(True Proportion; Expected Event Rate) with 'sigrl]al for early 09, 07) (09, 08) 09, 09)
termination
Unblinded: Termination
Proportion with confirmed
by unblinded data
Pneumothorax Blinded 0.28 0.27 0.28
'(';d:g;)d :Myfzs%therapya Unblinded 079 062 033
Overall Rate 0.23 0.17 0.09
Signs of Pulmonary Dysfunction® Blinded 0.55 0.54 0.54
(m=319%: 7 = 25%) Unblinded 076 063 042
Overall Rate 0.42 0.34 0.23
Pneumonia® Blinded 0.58 0.59 0.59
(= 48%: 1y = 40%) Unblinded 075 065 044
Overall Rate 0.44 0.39 0.26
Critical decreased CPP? (< 60 mmHg) Blinded 0.55 0.55 0.56
(7= 80%: 1y = 75%) Unblinded 076 060 039
Overall Rate 0.42 0.33 0.22
Critical hypotension® (MAP< 70 mmHg) Blinded 0.56 0.56 0.54
(= 80%: 1y = 75%) Unblinded 077 061 039
Overall Rate 0.43 0.34 0.21
Seizures during HBO treatment® Blinded 0.23 0.23 0.23
7= 19%:m = 1%) Unblinded 079 061 031
Overall Rate 0.19 0.14 0.07
Hypercarbia during transportation® Blinded 044 043 043
EEE’:C%ZOZ ﬁj T%;g) Unblinded 077 062 040
Overall Rate 0.33 0.26 0.17

(Assume the AE with ? has a safety issue)

I can be treated as baseline proportions of no effect for all
the AEs, then compared to scenario II, the proportions in-
crease a lot as all the AEs have safety issues in scenario II.
In scenario III, the first three AEs show higher propor-
tions and the rest keep smaller proportions, since the first
three AEs have safety issue in the scenario III. The differ-
ence between scenario II and scenario IV is that AE4,
AE5, and AE7, these three AEs could be analyzing with
active vs. control pattern, then we change their incidence
rate as flat effect relationship. By comparing scenarios II
and IV, the proportions of those flat effect relationship
AEs decrease, and the rest AEs proportions are much
similar. Based on the scenario 11, scenario V is considered
where all the AEs have a flat effect where both the control
and novel therapies treatment are the same but higher
compared to the expected incidence rate. The proportions
indicate the safety issue, and one interesting finding is that
the model flags potential signals at the blinded stage but
not at the unblinded stage with fewer proportions com-
paring to other scenarios.

At stage 1, by setting the pre-specific critical value to
0.9, the proportion of flagged trials is very similar within

each AE; and at stage 2, as the critical value varies from
0.7 (liberal) to 0.9 (conservative), the proportion of
flagged trials decreases. Therefore, the overall proportion
is calculated by multiplying the proportions of both
stage 1 and stage 2, and the overall proportion decreases
as the critical value changes.

For the safety analysis, the critical values needs to bal-
ance the false flagged rate and false non-flagged rate. For
example, scenarios I and II have proportions of flagged
trials that are respectively equal to 0.05 and 0.75, under
the pre-specific critical value of 0.9 for two-stage blinded
and unblinded analyses. Similarly, scenarios III, IV and
V have the proportions equal to 0.34, 0.66, 0.33 of
flagged trials respectively with the same two-stage pre-
specific critical values. In some instances, these operat-
ing characteristics may not change. However, in other
instances, the proposed approach may change with the
monitoring of efficacy. For example, if the treatment
truly has no impact on efficacy (e.g. under the null hy-
pothesis) there would be little impact on the first interim
analysis. However, suppose scenario II is true but the
drug has a true alternative hypothesis that has a
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Table 6 The probability of flagged trials for the AEs under the same effect for three AEs with safety issue (No effect for the rest) for

scenario I
Example AEs Blinded: Proportion (Peritrs Periea)
(True Proportion; Expected Event with 4sigr.1al for early 09,07) 09, 08) 09, 09)
Rate) termination
Unblinded: Termination
Proportion with confirmed
by unblinded data
Pneumothorax Blinded 0.10 0.10 0.11
i fgf;%therapya Unblinded 068 048 027
Overall Rate 0.07 0.05 0.03
Signs of Pulmonary Dysfunction® Blinded 036 036 036
(7= 31%: 1y = 25%) Unblinded 070 055 036
Overall Rate 0.25 0.20 0.13
Pneumonia® Blinded 041 040 041
(7= 48%: s = 40%) Unblinded 068 057 037
Overall Rate 0.28 0.23 0.15
Critical decreased CPP (< 60 mmHg) Blinded 0.15 0.16 0.15
(7= 75%: 1y = 75%) Unblinded 049 034 017
Overall Rate 0.07 0.05 0.02
Critical hypotension (MAP< 70 mmHg) Blinded 0.15 0.16 0.16
(m=75%: 7 = 75%) Unblinded 048 031 016
Overall Rate 0.07 0.05 0.03
Seizures during HBO treatment Blinded 0.05 0.05 0.05
(7= 191y = 1%) Unblinded 059 039 020
Overall Rate 0.03 0.02 0.01
Hypercarbia during transportation Blinded 0.10 0.11 0.10
e ) Unblinded 047 036 015
Overall Rate 0.05 0.04 0.02

(Assume the AE with ? has a safety issue)

probability of 0.3 of reaching the final success criteria.
This would be the case where the DSMB would be hard-
pressed to stop a promising treatment because of safety.
In fact, the probability of both a safety signal and efficacy
signal is 0.75 multiply by 0.3, which equals 0.225, clearly
not a negligible amount. The good news is in the sce-
nario [ for safety the identification of a false flagged trial
is 0.05 and under the null hypothesis for efficacy has a
probability of 0.01 of reaching the final success criteria.
The probability of both a safety signal and efficacy signal
is 0.0005.

The results show that the Two-stage Bayesian safety
monitoring model can detect and flag a potential safety
signal, and with the most important feature that further
action at stage 2 could confirm the safety issue. In
addition, the family-wise error rate is also applied to the
scenario I for no effect across all arms, [26] as shown in
Table 4. The FWER is around 0.18 at the blinded stage
1 and decreases from 0.57 to 0.25 as the critical value in-
creases at the unblinded stage 2, which the FWERs are
acceptable under the current sample size scenario. The

overall FWER across all seven AEs is relatively small,
with only 5% incorrectly flagged for both critical values
set to 0.9. That is, the two-stage model has an excellent
accuracy of safety signal detection and confirmation.

Discussion

Both sponsors and the DSMB often desire interim safety
monitoring for clinical trials. In this paper, a two-stage
Bayesian monitoring method is proposed to evaluate
whether the posterior probability of a safety signal ex-
ceeds a pre-specified critical value. The proposed two-
stage monitoring method not only combines the safety
monitoring for blinded and unblinded data, but it also
offers a comprehensive approach for detecting a poten-
tial safety issue of blinded data during stage 1 and per-
forming an analysis of unblinded data at stage 2 to
confirm the safety issue.

The Beta-Binomial model was originally proposed by
Ball, and further development of the Binomial model
was introduced in his recent safety monitoring paper as
well [27]. Although, other available statistical methods
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Table 7 The probability of flagged trials for the AEs under three AEs with flat effect relationships and same effect for the rest with

safety issues for scenario IV

Example AEs Blinded: Proportion (Priet, Perien)
(True Proportion; Expected Event Rate) with .sigljal for early 09, 07) 09, 08) 09, 09)
termination
Unblinded: Termination
Proportion with confirmed
by unblinded data
Pneumothorax Blinded 0.25 0.26 0.26
L;?;;?%f%merapya Unblinded 074 057 028
Overall Rate 0.19 0.15 0.07
Signs of Pulmonary Dysfunction® Blinded 053 0.53 053
(7= 31%: 1y = 25%) Unblinded 074 060 039
Overall Rate 0.39 0.31 0.21
Pneumonia® Blinded 0.56 057 0.58
(7= 48%: s = 40%) Unblinded 075 061 041
Overall Rate 0.43 0.35 0.24
Critical decreased CPP? (< 60 mmHg) Blinded 0.50 0.49 0.51
(m=80%: 711y = 75%) Unblinded 066 051 030
Overall Rate 0.33 0.25 0.15
Critical hypotension® (MAP< 70 mmHg) Blinded 049 0.50 051
(7= 80%: 1y = 75%) Unblinded 066 051 029
Overall Rate 0.32 0.26 0.15
Seizures during HBO treatment® Blinded 0.21 0.22 0.22
(7= 191y = 1%) Unblinded 074 056 028
Overall Rate 0.16 0.12 0.06
Hypercarbia during transportation® Blinded 039 039 038
) Unblinded 067 050 028
Overall Rate 0.26 0.19 0.11

(Assume the AE with ? has a safety issue)

have been developed and established for blinded safety
monitoring [28, 29]. We adhere to the Binomial blinded
safety monitoring model in this paper, since the follow-
up period was fixed and the AEs were counted once dur-
ing the study as indicated in the statistical analysis plan
of the HOBIT trial. However, other developed methods,
[28, 29] for example, the Poisson model account for ex-
posure time is also feasible and practical for the two-
stage Bayesian monitoring framework.

Direction for future development include the Poisson
model framework, because of exposure-time is as critical
as a number of events for drug safety monitoring. In re-
cent research studies, the Poisson likelihood model was
often used in blinded safety analysis, while considering
the exposure time of AEs [28, 29]. Furthermore, it would
easily allow combining multiple studies with different
starting times during safety monitoring. Under the as-
sumption that the AE for a given patient occurs inde-
pendently and with a constant rate, a Poisson model
could be applied to monitor safety signal. In addition,
another development move from specifying a fixed

expected pooled incidence rate 1), for adverse events to
using an informative prior instead. This allows a fully
Bayesian treatment for two-stage safety monitoring. More-
over, regarding the criteria for the safety signal confirm-
ation at stage 2, the incremental effect of dose for the
current model, which is the slope, larger than 0 is the only
indicator for detecting a significantly increased occurrence
probability of the AE associated with the dose. One limita-
tion that the toxicity probability at the highest dose, which
is a sufficient indicator of safety signal confirmation cri-
teria, but not considered in current model. Therefore, the
toxicity probability of the highest dose could be included
for the future development.

With respect to the generalizability of the proposed
two-stage monitoring model, it could also provide sup-
port to cancer studies which have relatively small inci-
dence rates for some AEs. Future work could add the
evaluation of unblinded safety data conducted adjusting
for relative baseline covariates, such as age at baseline or
sex. The severity of an AE could also be built into the
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Table 8 The probability of flagged trials for the AEs under flat effect where both the control and treatment arms are the same but
higher than the expected incident rate for scenario V

Example AEs Blinded: Proportion (Priet, Perien)
(True Proportion; Expected Event Rate) with .S|g|jal for early 09, 07) 09, 08) 09, 09)
termination
Unblinded: Termination
Proportion with confirmed
by unblinded data
Pneumothorax Blinded 032 033 033
Induced by HBO therapy® )
(77 = 3%; 713y = 2%) Unblinded 045 0.24 0.09
Overall Rate 0.15 0.08 0.03
Signs of Pulmonary Dysfunction® Blinded 0.60 0.60 0.59
= [/ = 0y
(= 32%; 7y = 25%) Unblinded 040 025 0.12
Overall Rate 0.24 0.15 0.07
Pneumonia® Blinded 0.65 0.66 0.64
= 0/ = 0,
(= 49%; 71y = 40%) Unblinded 040 027 013
Overall Rate 0.26 0.18 0.08
Critical decreased CPP? (< 60 mmHg) Blinded 062 0.63 0.62
= Oy = (o)
=819y = 75%) Unblinded 042 028 013
Overall Rate 0.26 0.18 0.08
Critical hypotension® (MAP< 70 mmHg) Blinded 061 062 061
— Q104 — 750,
=819y = 75%) Unblinded 042 028 012
Overall Rate 0.26 0.17 0.07
Seizures during HBO treatment® Blinded 0.28 0.28 0.28
— 104 — 10
=19 =1%) Unblinded 044 026 009
Overall Rate 0.12 0.07 0.02
Hypercarbia during transportation® Blinded 049 049 049
(PaCO2 > 45 mmHg) )
(7= 14%: 71y = 10%) Unblinded 041 0.27 0.1
Overall Rate 0.20 0.13 0.05
(Assume the AE with ? has a safety issue)
Table 9 The summary table of simulation scenarios and results comparison
Scenarios AE #1 AE #2 AE #3 AE #4 AE #6 AE #7
Scenario | Safe Safe Safe Safe Safe Safe
(Safe: #1234567) ) )
Baseline proportions
Scenario |l Unsafe Unsafe Unsafe Unsafe Unsafe Unsafe
(Unsafe: #1234567 same effect) ) ) .
Compare to Baseline proportions scenario |
Proportions increase a lot (All effect scenario)
Scenario Ill Unsafe Unsafe Unsafe Safe Safe Safe
(Safe: #4,5,6,7; c to Baseli i o
Unsafe: #12,3 same effect) ompare to Baseline proportions scenario
Higher proportions Smaller proportions
Scenario IV Unsafe Unsafe Unsafe Unsafe Unsafe Unsafe
(Unsafe: #4,5,7 flat effect; Unsafe: #1,2,3,6 same effect) ) )
Comparing to scenario |l
Similar Proportion Similar Proportion
proportions decreases proportion decreases
Scenario V Unsafe Unsafe Unsafe Unsafe Unsafe Unsafe

(Unsafe: #1234567 flat effect; unsafe for control arms)

The model flags potential signals at the blinded stage but not at the unblinded stage with

fewer proportions comparing to other scenarios.
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model. Finally, because the performance of such models
depends on prior knowledge and researchers’ experience
about AE incidence rates, the model could consider the
selection of critical values and expected incidence rates
for decision criterion as well. In the current study, the
critical values for both stage 1 and stage 2 were set to
0.9 following the example study protocol, but future
studies could relax this value. Another interesting exten-
sion in stage 2 is to modify the structure of the model,
for example, either as random intercept/slope, or some
other models, such as non-linear dose level model,
Bayesian normal dynamic linear model (NDLM) and
EMAX models [24].

Conclusion

The Beta-Binomial model and Bayesian hierarchical
blinded model are considered and compared in stage 1,
and the Bayesian hierarchical model shows a lower family-
wise error rate than the Beta-Binomial model, thus illus-
trating how failing to properly account for multiplicities
can result in unreliable inference, while approximately
preserving the probability of correctly detecting AE types
with a safety signal. In the simulation study assuming no
safety signals, the FWER—the probability of at least one
safety signal among all AEs—was tightly controlled. Fur-
thermore, in the presence of a safety signal for some or all
AEs, the two-stage monitoring model successfully de-
tected and confirmed those safety signals.

In the event of a significant safety signal, the blinded ex-
ecutive team can request to be unblinded to safety data
only. If there is a significant trend but some arms appear
to be safe, the DSMB and study team can discuss which
arms to terminate. The interim monitoring and analysis of
safety data could help prevent safety problems from turn-
ing to significant concerns in an ongoing clinical trial.

In summary, the decision to terminate a trial due to
safety concerns is not a purely statistical one. This is one
reason the DSMB is not comprised entirely of statisti-
cians. The two-stage safety procedure in this paper pro-
vides a statistical view to monitor safety during the
clinical trials, but never represents the medical and clin-
ical decisions. More evaluation research and collabor-
ation with clinicians and safety team are needed, in
order to advance the safety detection and monitoring.
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