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ABSTRACT: The Becke—Roussel (BR) potential [Phys. Rev.
A 1989, 39, 3761] was proposed as an approximation to the
Slater potential, which is the Coulomb potential generated by
the exact exchange hole. In the present work, a detailed
comparison between the Slater and BR potentials in solids is
presented. It is shown that the two potentials usually lead to
very similar results for the electronic structure; however, in a
few cases, e.g, Si, Ge, or strongly correlated systems like NiO,
the fundamental band gap or magnetic properties can differ
markedly. Such differences should not be neglected when the
computationally expensive Slater potential is replaced by the
cheap semilocal BR potential in approximations to the exact-
exchange Kohn—Sham potential, such as the one proposed by
Becke and Johnson [J. Chem. Phys. 2006, 124, 221101].

Ux,t — Ux,| in NiO

1. INTRODUCTION

The Kohn—Sham (KS) version of density functional theory"”
represents a favorable compromise between accuracy and
computational cost for the calculation of the structural and
electronic properties of molecules and solids.> ™ In particular,
the use of a semilocal approximation for the exchange-
correlation (xc) energy E,. = / £,(r)d®r and the multiplicative
KS xc potential v, (r) = 8E,/8p(r) (rungs one to three of
Jacob’s ladder®) allows one to treat systems containing
thousands of atoms, which is out of reach for methods using
nonlocal Hartree—Fock (HF) exchange and post-HF many-
body methods (e.g, perturbation theories or random-phase
approximation). The semilocal approximations lead to fast
calculations since the evaluation of &,(r) and v, (r) at a point r
requires the value of the electron density p(r), and eventually
its derivatives and the kinetic-energy density #(r), only at that
same point r. In the local density approximation®”® (LDA, first
rung of Jacob’s ladder), £,.(r) depends only on p(r), whereas in
the generalized gradient approximation”'® (GGA, second
rung), &.(r) depends additionally on Vp(r). A further
dependence on t(r) and/or V?p(r) leads to the meta-GGA
functionals (see, e.g, ref 11) of the third rung.

These semilocal methods lead to sufficiently accurate results
in many circumstances, but this is certainly not systematically
the case. For instance, the standard semilocal xc potentials (the
focus of this work) are particularly inaccurate for systems with
strongly correlated electrons such that the results are very often
qualitatively wrong.'” Improved results can be obtained by
calculating the exchange part v, of the KS xc potential exactly
(see, e.g., ref 13), which can be done by solving the equations
of the optimized effective potential method applied to the exact
exchange energy (EXX-OEP)."*'> However, this leads to
calculations that are computationally expensive and prone to
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instabilities, in particular because of the use of unoccupied
orbitals. Nevertheless, EXX-OEP can be very useful for the
construction of more accurate semilocal approximations for the
exchange potential. Accurate KS correlation potentials v,
derived from many-body theories can also be calculated (see,
e.g, refs 16 and 17); however, such calculations are even more
complex than for EXX.

Related to this, we will consider the exchange potential of
Becke and Roussel'® (BR) that was proposed as an
approximation to the Slater potential.'” The Slater potential,
which is the Coulomb potential due to the HF exchange hole, is
often used as the first term in (beyond semilocal)
approximations to the EXX-OEP like the Krieger—Li—Iafrate
approximation® (see ref 21 for a summary of such methods).
The construction of the BR potential starts with the modeling
of the exchange hole by using the electron density and its first
two derivatives as well as the kinetic energy density.'® This
leads to a potential that belongs to the family of semilocal meta-
GGA methods. Up to now, comparisons between the Slater and
BR potentials have been done by Becke and co-workers'*** for
spherical atoms (from He to Cd), Hefelmann and Manby™® for
molecules containing elements of the first and second periods,
and Karolewski et al.”* on the Be atom and C4Hg molecule. In
these studies, it was shown that the BR potential is a fairly good
approximation to the Slater potential. However, it is not clear if
this conclusion would remain valid in the case of more
complicated systems, e.g, molecules or solids with heavier
elements or magnetic systems. A more thorough comparison
between the Slater and BR potentials is also motivated by the
extensive use of the BR potential (instead of the much more
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expensive Slater potential) as the first term in the exchange
potential proposed by Becke and Johnson®* (BJ), which was
proposed as an approximation to the EXX-OEP in atoms.
Furthermore, a semilocal and accurate approximation to the
Slater potential could also lead to a cheap replacement to the
nonlocal HF exchange energy for total energy calcula-
tions.”** ™" Our goal for the present work is to obtain more
insight into the differences between the Slater and BR
potentials in solids and their consequences on the calculated
quantities like the KS fundamental band gap (defined as the
conduction band minimum CBM minus the valence band
maximum VBM) or magnetic moment.

The article is organized as follows. Section 2 gives a brief
presentation of the Slater and BR potentials. Then, the results
are presented and discussed in Section 3, and a summary of the
results is given in Section 4.

2. METHODS AND COMPUTATIONAL DETAILS

As a simplification of the HF method Slater (S) proposed
replacing the HF exchange potential vx » which is different for
each orbital ;,, by a common orbital- averaged potential (ly;, >/
P, are the weights)

% Iy, (0)1* HE
po- (l') X,10

g L ZHo

voo(r) = (r)

v () v, (')
j"(r) / lr — 1l &r
(1)

where N, is the number of occupied orbitals for the spin o.
From the expression of the HF exchange energy
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is the HF exchange hole (the depletion of spin-c density at r’
for a reference spin-c electron at r due to the Pauli exclusion
principle), we can see that the Slater potential can also be
interpreted as the Coulomb potential generated by the HF
exchange hole:

w0 = [ W

The Slater potential has been used as the leading term in
various approximations to the EXX-OEP (see refs 21 and
31—33 and references therein), whereas the remaining part v{5;?

= yEsXOBP _ 48 is often called the response (resp) term. It is
important to mention that the Slater potential does not reduce
to the correct limit™”® for the homogeneous electron gas given

by vLDA —(6p,/7)">, but to (3/ 2)A instead.'” Note that
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a(3/2)vy2%, where a is a parameter (see, e.g., refs 34 and 35), is
also known as the Slater (or Xa) potential.

It is clear from eqs 1 and 2 that the calculation of the Slater
potential is still rather expensive and leads to a computational
cost that is basically the same as the HF exchange energy.
Therefore, in ref 18, Becke and Roussel proposed a semilocal
form for the potential generated by the exchange hole. The
derivation begins with the modeling of the exchange hole with
semilocal quantities, namely, p and its two derivatives and the
positive-definite kinetic energy density t, = (1/2)2, 1
Vyii-Viy,,. Then, the potential generated by this approximate
exchange hole is given by

o) = b<>(1 )

The function x, in eq S can be calculated e1ther by solving at
each point of space the nonlinear equation'®

x,(r) e (/3 _ 2ﬂ2/3ﬂ5/3(1')
x,(r) — 2 3 Q) (6)
where
=L r) — r
Q(r) = 6(V p,(r) = 2yD,(r)) )
with
1 le (r)?
D 2t _
) = 200) — = .

or by using the analytical interpolation formula for x, proposed
in ref 27. After x, is calculated, b, in eq S is given by

1/3
=[5
©)

The value of ¥ in eq 7 should be 1 in principle; however, it was

shown that the potential generated by the exchange hole in the

homogeneous electron gas (i.e,, (3/2)v:0%) is recovered for y =

0.8.'* More recently, it has been reported that other values for y

may lead to better agreement with the Slater potential or the

EXX- S%P (when combined with some response term
resp)

The BJ potential,”> which reads

B _ ,S/BR 1] £o(r)
Vo(r) = vgp (1) + ﬂ\/;\/; (10)

has attracted considerable attention in recent years (see, e.g,
refs 24, 31, and 36—44). The second term in eq 10 was
proposed as a semilocal approximation to the response term
V5P and reduces to —(1/2)vi0* at the limit of a constant
electron density such that v,), reduces to vo" at this limit if y =
0.8 in eq 7. In ref 22, it was shown that the BJ potential visually
resembles very much the EXX-OEP in spherical atoms,
independently of which potential (Slater or BR) was used for
the first term. However, non-negligible differences between the
EXX-OEP and BJ eigenvalue spectra have also been
reported. 36374145 For large molecules and periodic solids, it
is obviously much more advantageous to use BR in eq 10 in
order to make the BJ potential fully semilocal, as has been done,
for instance, for the modified B] potential that has been used
for the calculation of band gaps in solids.’®*°™>" Other

xg(r) o % (®)
87p (r)
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Table 1. Space Group, Geometrical Parameters, and Core Electrons of the Solids Considered in This Work”

solid space group geometrical parameters core states
Ne Fm3m a = 4470 1s
Ar Fm3m a = 5260 [Ne]

Kr Fm3m a=5.598 [Ar]3d
Xe Fm3m a=6.130 [Kr]

C Fd3m a=3.568 1s

Si Fd3m a = 5430 [Ne]

Ge Fd3m a = 5.652 [Ar]

Se P3.21 a = 4366, c = 4954, x5, = 0.225 [Ar]

BN F43m a =3.616 B: 1s; N: Is

SiC F43m a = 4358 Si: [Ne]; C: 1s
GaAs F43m a=5.648 Ga: [Ar]; As: [Ar]
InP F43m a = 5.869 In: [Kr]; P: [Ne]
Cds F43m a=5818 Cd: [Ar]3d4s; S: [Ne]
LiH Fm3m a = 4.084
LiCl Fm3m a = 5.106 Cl: [Ne]
BeO P6ymc a=2.694, c = 4384, zo = 0.378 Be: Is; O: 1s
MgO Fm3m a = 4207 Mg: 1s; O: 1s

CsF Fm3m a = 6.030 Cs: [Kr]; F: 1s
BaO Fm3m a=15523 Ba: [Kr]4d; O: 1s
PbS Fm3m a= 5936 Pb: [Xe]4f; S: [Ne]
ScN Fm3m a = 4.500 Sc: [Nel; N: 1s
SrTiO; Pm3m a = 3.905 Sr: [Ar]3d; Ti: [Ne]; O: Is
MnO Fm3m, R3m a = 4.445 Mn: [Ne]3s; O: 1s
FeO Fm3m, R3m a=4334 Fe: [Ne]3s; O: 1s
CoO Fm3m, R3m a = 4254 Co: [Ne]3s; O: 1s
NiO Fm3m, R3m a=4171 Ni: [Ne]3s; O: 1s
Zn0O Péyme a=3258, c = 5220, zo = 0382 Zn: [Ar]; O: 1s
Cu,0 Pn3m a = 4.267 Cu: [Ne]3s; O: 1s
CeO, Fm3m a=5411 Ce: [Kr]4d; O: 1s

“The lattice parameters are in A, and the internal parameters are in internal units. For MnO, FeO, CoO, and NiO, the antiferromagnetic order leads
to a lowering of the symmetry (second indicated space group). The last column shows the electrons that were considered as core electrons, for which

a fully relativistic treatment (i.e., spin-orbit coupling included) is used.

implementations of the BJ potential or one of its variants using
the BR potential have been reported in refs 45 and 52—59,
whereas the Slater potential was used for the works in refs 31
and 39—44. In the following, the acronyms BJS and BJBR will
refer to eq 10 with the Slater and BR potentials, respectively.

For the comparison of the Slater and BR potentials, we will
consider the set of nonmetallic solids listed in Table 1 along
with their space group and geometrical parameters. The solids
were chosen such that various types of bonding are
represented: ionic (e.g, MgO), covalent (e.g, Si), and van
der Waals (rare gases). MnO, FeO, CoO, and NiO are
antiferromagnetic (the ferromagnetic planes are stacked along
the [111] direction®), whereas all other solids are non-
magnetic. The differences between the Slater and BR potentials
will be measured by comparing the results obtained for the
electronic structure, total energy, electric-field gradient (EFG)
in Se and Cu,O, and magnetic moment in MnO, FeO, CoO,
and NiO.

The Slater and BR potentials will be compared both with and
without the second term of the BJ potential (see eq 10).
Furthermore, in order to give a better idea of how important
the discrepancies between Slater and BR are, the results
obtained with other exchange-only potentials will also be
shown. These potentials are the LDA*”® and various GGAs,
namely, the ones from Perdew et al.'’ (PBE), Engel and
Vosko®! (EV93), and Armiento and Kiimmel®” (AK13). Note
that the derivative discontinuity A, which accounts for
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the difference between the KS band gap (CBM minus VBM)
and the experimental band gap (ionization potential minus
electron affinity), is zero for the LDA, PBE, and EV93
potentials, but it is nonzero for the others.*”*> We also mention
that in ref 58 the BJ and AK13 potentials were (rigidly) shifted
such that they go to zero in the asymptotic region far from the
nuclei. Such a shift has an effect on properties (e.g., ionization
potential) that is calculated by using the absolute value of the
eigenvalues and not just the differences between them. Such a
shift would not change the results for the properties considered
in our work.

The calculations were done with the all-electron code
WIEN2Kk,® which is based on the full-potential linearized
augmented plane-wave method,””*® to solve the KS equations.
The implementation of the Slater potential has been done
without any approximation, and the sums over the occupied
orbitals in eq 1 include both the band and core electrons. As
was done previously for the implementation of the HF method
(see ref 69), the pseudocharge method,”””" combined with the
technique from refs 72 and 73 to treat the Coulomb singularity,
has been used to calculate the Slater potential. The computa-
tional parameters, like the size of the basis set, the number of k-
points for the integrations of the Brillouin zone, or those
specific to the calculation of the Slater potential, were chosen
such that the results are well-converged. For instance, the band
gaps should be converged within ~0.02 eV. The core electrons
(indicated in Table 1) were treated fully relativistically (i.e.,
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Table 2. Fundamental Band Gap (in V) Calculated with Different Exchange-Only Potentials®

solid LDA PBE EV93 AK13
Ne 10.80 11.00 10.72 20.07
Ar 7.82 8.38 8.95 15.16
Kr 6.39 7.02 7.74 12.80
Xe 545 6.07 6.82 10.68
C 4.00 4.46 4.60 4.78
Si 0.35 0.80 112 1.60
Ge 0 0 0.47 0.71
Se 0.97 112 135 1.56
BN 4.20 4.89 5.28 5.68
SiC 119 1.69 1.89 2.18
GaAs 0.30 0.47 1.05 143
InP 0.41 0.65 1.24 1.76
Cds 0.74 115 1.86 2.86
LiH 2.52 3.52 4.26 6.16
LiCl 5.88 6.63 7.60 9.80
BeO 7.41 8.05 8.62 9.40
MgO 4.57 5.09 5.54 6.68
CsF 4.75 5.44 6.08 8.15
BaO 1.69 2.12 2.52 3.49
PbS 0.11 0.52 0.98 1.60
ScN 0 0.10 0.35 0.70
SrTiO; 1.77 1.95 2.14 2.33
MnO 0.73 1.30 1.74 2.58
FeO 0 0 0.25 0.84
CoO 0 0.01 0.50 137
NiO 0.52 1.1 1.57 2.07
ZnO 0.53 0.94 1.38 2.06
Cu,O0 0.50 0.66 0.72 0.85
CeO, 2.03 2.05 2.11 2.16
ME —0.88 —0.48 —0.06 1.39
MAE 0.88 0.48 0.32 1.42

BR(0.8) S BJBR(0.8) BJS EXX-OEP
15.89 15.58 1320 12.89 14.15%, 14.79¢
9.99 9.95 921 9.23 9.61%, 9.65°
8.31 8.20 7.57 7.49 7.87°
7.03 6.88 6.40 6.34 6.69°
4.64 472 431 451 4.577
0.69 1.00 0.71 111 1187
0 0 0.25 0.67 0.89°
0.99 1.08 1.17 126
5.39 543 4.80 4.96 5437
2.14 223 1.67 1.87 2.29¢
0 0 0.76 125 1.72¢
0 0.14 0.82 137
0.93 1.39 1.36 175
2.58 2.58 3.50 3.51
6.66 6.70 6.77 6.84
8.97 8.97 8.31 8.39
5.50 5.49 5.46 5.49 6317
7.30 7.68 5.97 6.33
3.08 342 231 263
0.93 1.13 0.47 0.49
0 0 0.09 023 1.58°
1.40 1.49 201 215 4.20°
2.13 2.51 1.74 1.81 3.85
0 0 0.32 0.44 1.66"

0 0.24 0.69 1.20 262

0.58 1.28 1.76 2.50 4.10/, 3.547
2.58 277 1.41 1.53

1.40 1.40 0.73 0.73 1444

0.95 0.94 202 2.13

—0.04 0.07 —0.18

0.77 0.73 021

“The EXX-OEP results from previous works are also shown. The ME and MAE are with respect to BJS. “From ref 76. “From ref 77. “From ref 36.
“From ref 78./From ref 13 (LDA correlation potential”® was added to EXX-OEP).

including spin-orbit coupling), whereas a scalar-relativistic
74
treatment’” was used for the valence electrons.

3. RESULTS AND DISCUSSION

The calculations with the BR potential were done using y = 0.8
in eq 7, which as mentioned above, is the value that leads to (3/
2)vEDA in the limit of a constant electron density (as with the
Slater potential). The results obtained with other values for y
will be discussed later in the article. Before discussing the
results, we mention that in solids with an open shell of strongly
correlated electrons it is usually possible to stabilize more than
one solution, which is the case for FeO and CoO among the
solids in our test set. As has been already shown in ref 75 for
FeO, EV93 leads to two solutions of nearly equal total energy.
One solution has a nonzero fundamental band gap, whereas the
other is metallic. For AK13, BJS, and BJBR(0.8) (as well as
LDA+U), the solution with a gap is more stable (using the HF
total energy for BJS and BJBR(0.8) orbitals). For these
potentials, only the results for the insulating state will be
considered for the discussion below. With the other potentials
(LDA, PBE, Slater, and BR(0.8)), only the metallic state could
be stabilized. In the case of CoO, the most stable state is
insulating for all potentials except LDA and BR(0.8). For both
FeO and CoO, we have observed that the occupation matrix of
the 3d orbitals for the insulating state is rather similar among all
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potentials, but it is different from the occupation matrix of the
metallic state.

The results that will be discussed in this work are shown in
Tables 2—5 as well as graphically in Figures S1—S35 of the
Supporting Information, except for those obtained with the
Slater and BR potentials in order to use a reasonable scale for
the results for the core states and total energy because the
results obtained with these two potentials are very different
from the others.

3.1. Electronic Structure. Starting with the comparison of
the fundamental band gaps (Table 2) obtained with the Slater
and BR(0.8) potentials alone (i.e, not augmented with the
additional BJ term), we can see that these two potentials lead to
relatively similar values in many cases. Actually, the agreement
can be considered to be excellent for the rare-gas solids, C, Se,
BN, SiC, LiH, LiCl, BeO, MgO, SrTiO;, Cu,0, and CeO,. For
these systems, the disagreement is below 0.1 eV (slightly more
for Ne, which has a very large band gap). The largest
discrepancies between Slater and BR(0.8) are found for CsF,
MnO, NiO, and CdS (the Slater band gaps are larger by at least
0.4 eV), and for Si, the difference of 0.3 eV is also relatively
important since it represents ~30% of the band gap. InP and
CoO are described as (semi)metal with BR(0.8), whereas the
Slater potential leads to a nonzero band gap for these systems.
The results obtained with the Slater and BR(0.8) potentials
when they are combined with the second term in eq 10 show
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the same trends. However, in some cases, like C, Si, or BN,
slightly larger differences between BJS and BJBR(0.8) can be
noticed. Also, Ge, GaAs, InP, and CoO are described as
semiconductors by BJS and BJBR(0.8), and the discrepancies
between the two methods are above 0.4 eV. By considering the
BJS band gaps as reference, the best agreement is obtained with
the BJBR(0.8) potential, which leads to the lowest mean
absolute error (MAE) (Table 2) among all tested potentials.
Note, however, that the EV93, BR(0.8), and Slater potentials
lead to small mean error (ME) of ~0.05 eV, indicating that
these potentials do not show a particular trend to under- or
overestimate the band gap with respect to BJS.

From the results in Table 2, it is also interesting to note that
when the second term in eq 10 is added to the Slater or
BR(0.8) potential the band gap is increased in some cases but
decreased in others. GaAs, InP, LiH, CoO, NiO, and CeO, are
examples that show an increase of roughly 1 eV, whereas for
Ne, CsF, BaO, MnO, Cu,0, and ZnO, there is a decrease that
can also reach 1 eV. On the other hand, for Si, LiCl, and MgO,
there is very little change in the band gap.

For the comparison with the EXX-OEP results (also shown
in Table 2 when available), it has already been shown'”””*"%!
that the LDA and PBE band gaps are much smaller. In passing,
we note that this underestimation by LDA/PBE is strongly
reduced if correlation from the random-phase approximation
(RPA-OEP) is added to the EXX-OEP'”* because, usually,
total (exchange and correlation) semilocal approximations are
more accurate than exchange or correlation alone. The EV93
and AK13 potentials systematically increase the band gap with
respect to LDA and PBE, and in all cases, the magnitude of the
band gap follows the order LDA < PBE < EV93 < AKI13.
However, from the comparison of the Slater/BR-based
potentials with EV93 and AK13, no systematic trend can be
observed, and their relative performances with respect to EXX-
OEP depend on the solid. For instance, for the rare-gas solids,
the Slater/BR-based potentials are the most accurate, whereas
AK13 leads to strong overestimations of the band gap by
several electron volts. For the transition-metal oxides, one or
another of the Slater/BR-based methods is closer to EXX-OEP,
whereas for Ge, GaAs, and MgO, AK13 leads to the best
agreement with EXX-OEP. Thus, overall, there is no method
that reproduces the EXX-OEP band gaps systematically better
than the others. It is noteworthy that for Cu,O the agreement
between the Slater/BR(0.8) and EXX-OEP potentials is
excellent, whereas in ref 36, a qualitative agreement with
EXX-OEP could be obtained only with the generalized BJ (gBJ)
potential including the universal correction (UC).* In the
present work, it is shown that adding the BJ term to the Slater
or BR(0.8) potential destroys the agreement with EXX-OEP
for Cu,O. For Si, Ge, GaAs, MnO, CoO, and NiO, it is clear
that the use of the Slater/BJS potential instead of BR(0.8)/
BJBR(0.8) leads to a much better agreement with EXX-OEP.

In order to provide some insight into the results discussed so
far for the fundamental band gap, we show in Figures 1 and 2
one-dimensional plots of the exchange potentials in Kr and
BaO, respectively. The electron densities of the VBM and CBM
are also shown. The trends in the band gap can be explained by
the following features in the potentials, which are rather similar
in various solids. With some exceptions, like transition-metal
oxides with a d—d band gap (see, e.g, ref 47 for a detailed
discussion on Cu,0), the VBM and CBM extend in different
regions of space, and, typically, the VBM is mainly located
around the atoms and in the bonding regions, whereas an
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Figure 1. Upper panel: Exchange potentials v, in Kr plotted from the
atom at (0,0,0) (d = 0) to the mid-distance to the atom at (1,0,0) (d =
5.598 A). The maximum positive values of v, for PBE, EV93, and
AK13 are 0.7, 1.5, and 15.7 Ry, respectively. Lower panel: Electron
density of the VBM and CBM (normalized to one electron) plotted
along the same path as that in the upper panel.

important part of the CBM is in the interstitial region, where
the VBM has essentially no contribution (see lower panels of
Figures 1 and 2). Therefore, in such situations, the band gap
should depend strongly on the change in the magnitude of the
potential when going from the valence region around the atoms
to the interstitial. In this respect, we can see that LDA shows
the smallest change and therefore the smallest band gaps. The
GGA potentials are more positive than LDA in the interstitial
region, which is the main source for the increase of the band
gap with respect to LDA. The same mechanism explains the
band gaps obtained with the BJS and BJBR(0.8) potentials,
since they are also more repulsive than LDA and PBE in a
rather large area of the interstitial as well as slightly more
attractive closer to the nuclei. In the case of BaO, for instance
(Figure 2), we can see that in the interstitial region the BJS
potential is more repulsive than BJBR(0.8), thus leading to an
upward shift of the CBM and a band gap larger by 0.3 eV. In ref
36, it was noted that in the interstitial region, the EXX-OEP
and BJ-based potentials are very similar and smooth, not
showing the large peaks observed in the EV93 and AKI13
potentials (and, to a lesser extent, also with PBE). Concerning
the Slater and BR(0.8) potentials, also shown in Figures 1 and
2, their shape looks rather similar to LDA since the intershell
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Figure 2. Upper panel: Exchange potentials v, in BaO plotted from the
Ba atom at (0,0,0) (d = 0) to the O atom at (1/2,1/2,1/2) (d = 4.783
A). The maximum positive values of v, for PBE, EV93, and AK13 are
0.2, 0.6, and 2.9 Ry, respectively. Lower panel: Electron density of the
VBM and CBM (normalized to one electron) plotted along the same
path as that in the upper panel.

peaks are also absent. However, these two potentials are more
negative by a factor of ~3/2, which has a stronger effect in the
high-density region close to the nuclei where the VBM is
located, thus leading to a band gap that is enlarged with respect
to LDA.

Previously,* it was shown that only the gBJ potential with
the universal correction (gBJUC) could lead to qualitative
agreement with EXX-OEP for the fundamental band gap and
EFG in Cu,O. This was explained by the similarities of the
EXX-OEP and gBJUC potentials in the relevant regions of
space (see Figure 8b of ref 36). As noticed above, the results
obtained with the Slater and BR(0.8) potentials agree closely
with EXX-OEP for the band gap and reasonably well for the
EFG (see below). Figure 3 shows that, indeed, the Slater and
BR(0.8) potentials (without the BJ response term) agree very
well with EXX-OEP near the Cu atom.

Figure 4 shows the difference v,; — v, between the spin-up
and spin-down exchange potentials in NiO. The EXX-OEP
taken from ref 36 is also included for comparison. The
occupation of the Ni-3d states in NiO (spin-up full and t%g
occupied for the Ni atom at the left upper corner) is such that
the shape of v, ; — v, | reflects the empty eé orbitals. Depending
on the method, the band gap in NiO can be of d—d character,
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Figure 3. Exchange potentials v, in Cu,O plotted starting at a distance
of 1 A from the Cu atom at site (1/2,1/2,0) (d = 0) in the direction of
the O atom at site (3/4,3/4,3/4) (d = 3.538 A). The EXX-OEP from

ref 36 is also shown.

charge-transfer character, or a mixture of both. For instance
(see, e.g., refs 36 and 83), LDA/PBE, EXX-OEP, and the BJ-
based potentials lead to a d—d band gap, whereas with LDA+U
and the onsite-hybrid functionals, a mixed d—d/charge-transfer
band gap is obtained. The HF method leads to a band gap of
pure charge-transfer character.’®** As discussed in ref 36, the
more the angular e, character is pronounced, the larger the d—d
band gap should be. Indeed, from Figure 4, we can see that the
shape of v,; — v, on the Ni atom correlates rather well with
the results for the band gap in Table 2. For instance, the
potentials LDA, BJBR(0.8), BJS, and EXX-OEP (in this order)
lead to band gaps that are larger and larger by step of ~1 eV
(similarly for the magnetic moment, see below), whereas the
features of an e, orbital become more and more pronounced.
Note also that the LDA and BR(0.8) potentials look rather
similar and their band gaps differ by only 0.06 eV. In ref 36, an
excellent agreement with the EXX-OEP for NiO could be
obtained with the gBJ potential and with optimized parameters.
Concerning the core states, indicated in Table 1 (for LiH, the
Li-1s state was considered for the present analysis), we show in
the middle panel of Figures S1—S29 the mean absolute relative
error (MARE) (BJS is the reference) on the energy position of
the cores states with respect to the Fermi energy (set at the
VBM for solids with a nonzero band gap). In the vast majority
of cases, BJBR(0.8) (considering, for the moment, only the
results for y = 0.8) leads to the lowest MARE (below ~0.3—
0.4%). The MARE for the Slater and BR(0.8) potentials (not
shown) is larger than that for all other potentials by 1 order of
magnitude (in the range 2—6%), which is a consequence of the
too negative potential in the neighboring region of the nuclei,
leading to orbitals that are too localized around the nuclei (i.e.,
too deep in energy). This is the same problem that was
encountered with the gBJUC potential, as reported in ref 36.
3.2. Magnetic Moment and EFG. Turning now to
magnetic properties, Table 3 shows the spin magnetic moment
Us in the antiferromagnetic transition-metal monoxides, and
from the results, we can see that the trends among them are
different. For instance, although BR(0.8) leads to one of the
largest magnetic moment in MnO, it leads to the smallest value
in CoO and NiO. This observation should be due mainly to the
BJ response term that enhances magnetism more in CoO and
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EXX-OEP

BR(0.8) Slater

BJBR(0.8)

Figure 4. Two-dimensional plots of the difference between spin-up
and spin-down exchange potentials (v,; — v,;) in a (001) plane of
antiferromagnetic NiO. The contour lines start at —2 Ry (blue color)
and end at 2 Ry (red color), with an interval of 0.235 Ry. The Ni atom
with a full spin-up 3d shell is at the left upper corner. The plot for
EXX-OEP is taken from ref 36.

NiO, which have a nonspherical 3d shell, than in MnO, which
has a spherical 3d shell. Also, the agreement between the
BR(0.8) and Slater potentials is rather good for MnO (the
differences are of a few 0.01uyg), but it is not for FeO and NiO,
for which the discrepancies reach ~0.2i; when the B] response
term is not added. As is well-known,'*”>***57% the LDA and
standard GGAs like PBE strongly underestimate g with respect
to both experiment and EXX-OEP, which is a general problem
of systems with localized 3d electrons. The EV93, AK13, and

BJS/BJBR(0.8) potentials improve the results; however, the
values are still clearly underestimated with respect to EXX-OEP
as for the band gap. In ref 36, a magnetic moment of 1.864 for
NiO was obtained with the gB] potential.

The results for the EFG in Se and at the Cu site in Cu,O are
shown in Table 4. For both systems, the Slater and BR(0.8)
potentials lead to very similar values. However, for Cu,O, a
(moderate) discrepancy of 1.5 X 10*' V/m? between BJS and
BJBR(0.8) is obtained. Similarly, as for the band gap in Cu,O
discussed above, it was also shown in ref 36 that a good
agreement with the EXX-OEP value (—17.7 X 10*' V/m?)
could be obtained only with the gBJ potential including the
universal correction (=15 X 10?' V/m?), whereas the
magnitude of the EFG obtained with all other potentials tested
in ref 36 was below 10 X 10*' V/m” However, in the present
work, a magnitude well above 10 X 10 V/m? is obtained with
the Slater and BR(0.8) potentials, which is in line with the
agreement with EXX-OEP for the band gap.

3.3. HF Total Energy. Next, we consider the total energy as
a measure of the difference between the orbitals generated by
the various exchange potentials, and Table 5 shows the HF
total energies calculated with the various sets of orbitals. The
results show that, compared to the values obtained with the BJS
orbitals, the EV93 and BJBR(0.8) orbitals lead to differences
that are the smallest. The mean relative error (MRE) and mean
absolute relative error (MARE) are the smallest for BJBR(0.8),
which is followed rather closely by EV93. In some cases, like
the rare-gas solids, AK13 leads to somewhat larger differences,
but it improves overall upon LDA and PBE. As already
mentioned above, the Slater and BR(0.8) potentials (without
the BJ response term) localize the core orbitals too much;
therefore, the large contribution to the total energy coming
from the high-density region inside the atoms is very inaccurate,
leading to total energies that differ from all other methods by
0.2—2 Ry/cell.

We recall that the EXX-OEP is, within the space of
multiplicative potentials, the one providing the orbltals that
minimize the HF total energy.'*'* In our previous work,*® we
proposed a set of parameters for the gBJ potential such that the
deviations from EXX-OEP are in the range 0.001—0.003 Ry/
cell (for C, Si, BN, and MgO), representing an improvement
with respect to the original BJBR(0.8), for which the
disagreement with EXX-OEP was more on the order of
0.01—0.02 Ry/cell. In the present work, we can see that the BJS
orbitals lead, in most cases (six exceptions), to total energies
that are lower than those from BJBR(0.8). Similarly, the EV93
and AK13 orbitals give lower total energies than BJS orbitals in
six or seven cases. Overall, in terms of total energy, the BJS
potential seems to be the closest to the EXX-OEP since it leads
to the lowest value for more than half of the solids. In
particular, it is important to note that the replacement of the
Slater potential in eq 10 by BR(0.8) leads, in general, to a

Table 3. Spin Magnetic Moment g (in ptg) of the Transition-Metal Atom in Antiferromagnetic MnO, FeO, CoO, and NiO

Calculated from Different Exchange-Only Potentials

solid LDA PBE EV93 AK13
MnO 4.18 423 4.30 4.39
FeO 341 3.44 3.48 3.51
CoO 2.44 2.46 2.53 2.59
NiO 1.30 143 151 1.58

BR(0.8) S BJBR(0.8) BJS EXX-OEP
4.39 443 425 428 4.81°
344 3.62 3.46 3.54 3.857
2.36 2.50 2.53 2.61 2.88%
1.17 1.39 1.53 1.63 1.89%1.91%

“From ref 13 (LDA correlation potential’® was added to EXX-OEP). “From ref 36.
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Table 4. EFG (in 10*' V/m?) of Se and Cu in Cu,O Calculated from Different Exchange-Only Potentials

solid LDA PBE EV93 AKI13
Se —49.1 -532 -55.5 —60.7
Cu,0 —49 -5.7 -68 -8.0

“From ref 36.

BR(0.8) S BJBR(0.8) BJS EXX-OEP
—68.0 —67.0 514 -50.8
—132 -133 -72 -5.7 -17.7¢

Table S. Total Energies (in Ry/Cell) Obtained by Evaluating the HF Total-Energy Expression (i.e., eq 2 for E, and No
Correlation) with Orbitals Generated from Various Exchange-Only Potentials”

solid LDA PBE EV93 AK13
Ne 0.018 0.007 0.002 —0.004
Ar 0.016 0.021 0.009 0.043
Kr 0.058 0.024 0.000 0.037
Xe 0.065 0.023 —0.001 0.044
C 0.038 0.022 0.012 0.025
Si 0.064 0.026 0.001 0.014
Ge 0.156 0.097 0.031 0.033
Se 0.207 0.108 0.020 0.053
BN 0.039 0.019 0.007 0.015
SiC 0.052 0.022 0.001 0.006
GaAs 0.156 0.093 0.031 0.032
InP 0.121 0.058 0.009 0.027
CdS 0.129 0.056 0.001 0.017
LiH 0.019 0.005 0.006 0.034
LiCl 0.046 0.013 0.001 0.045
BeO 0.083 0.024 —0.009 0.000
MgO 0.048 0.006 —0.020 —0.015
CsF 0.094 0.028 —0.010 0.024
BaO 0.101 0.035 —0.001 0.019
PbS 0.163 0.091 0.042 0.063
ScN 0.062 0.028 0.003 0.018
SrTiO; 0.187 0.073 0.003 0.048
MnO 0.236 0.093 —0.024 —0.058
FeO 0.717 0.496 0.114 —0.099
CoO 1.121 0.372 0.119 —0.009
NiO 0.628 0.321 0.132 0.030
ZnO 0.255 0.123 0.016 —0.012
Cu,O 0.383 0.156 0.009 —0.045
CeO, 0.120 0.053 0.015 0.052
MRE 10.3 3.9 19 8.5

MARE 10.3 3.9 2.4 9.1

BR(0.8) S BJBR(0.8) EXX-OEP” BJS
0.123 0.069 —0.012 —257.359
0.265 0225 0.007 —1057.361
0.656 0.578 0.004 —5577.773
1.000 0.924 0.006 —14894.471
0.182 0.115 0.004 —0.004 —151.588
0457 0.346 0.004 —0.014 —1158.334
1.263 1.091 0.026 —8390.306
1.959 1.705 0.030 —14571.924
0.170 0.106 0.000 —0.008 —158.615
0.309 0221 0.003 —655.021
1.249 1.077 0.024 —8404.414
1.180 1.050 0.022 —12444.585
1.120 0.998 0.016 —11984.420
0.024 0.022 0.000 —16.124
0262 0215 0.001 —937.133
0.292 0.172 —0.012 —359.099
0.264 0.163 —0.015 —0.031 —550.099
1111 0977 —0.003 —15773.653
1.159 1.014 0.005 —16422.281
2058 1.826 0.041 —42637.183
0.556 0.448 0.016 -1636.115
1.546 1217 0.019 —8512.403
1127 0.836 0.025 —4930.288
1.844 1.431 0.115 —5386.094
2284 1274 0.100 —5868.435
1.891 1.319 0.110 —0.298 —6377.441
1.246 0.962 —0.002 —7478.489
2.062 1.612 —0.058 —0.290 —13527.450
1.956 1711 0.029 —18023.332

35.0 25.6 0.1
35.0 25.6 0.8

“The results from ref 36 obtained with the EXX-OEP orbitals are also shown. For ease of comparison, we show the difference with respect to the
values obtained with the BJS orbitals shown in the last column. A negative value indicates a more negative total energy than with BJS orbitals. The

MRE and MARE (in pcm) are with respect to BJS. “From ref 36.

degradation of the results when compared with the EXX-OEP.
This conclusion is in line with the results from Becke and
Johnson,”* who showed that the BJS orbitals usually lead to
slightly lower HF total energies for isolated atoms. One of the
exceptions was the Ne atom, which is also in agreement with
our results for solid Ne.

3.4. Influence of the Parameter y. In their work
comparing the Slater and BR potentials for atoms and
molecules, HeRelmann and Manby”” optimized for each system
the parameter y in eq 7. More specifically, they adjusted the
value of y such that the exchange energy (calculated according
to the last line of eq 2) yields the exact HF value. As mentioned
above, the gBJ potential proposed in ref 36 as an approximation
to the EXX-OEP contains three parameters (see ref 36 for
details), one of which is y that was varied between 0.4 and 1.4.
In a similar way, the effect of y in BJBR has been investigated in
the present work in order to see the extent to which the
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agreement with BJS could be improved with respect to the
standard value y = 0.8 used in this work so far. y has been varied
in steps of 0.1 between 0.4 and 1.4. With the BJBR(y) potential,
the results for the fundamental band gap, MARE on the core
states, and HF total energy are displayed in Figures S1—529 of
the Supporting Information (because, in most cases, the results
from BR(y) alone are very bad, they are not shown).

A concise summary of the observed trends is the following.
For most solids, an increase of y in BJBR(y) leads to an increase
of the band gap, with the exceptions of Ne, BaO, MnO, and
ZnO. In some cases, e.g, the rare gases, CsF or PbS, the
parameter y has little effect on the band gap. For about 10 of
the solids studied, a value of y larger than 1.2 leads to better
agreement with BJS, whereas for most other solids, a value
around y ~ 0.8 leads to a quite reasonable agreement with BJS.
For C, Si, Ge, InP, and NiO, a value of y above 1.4 would be
required for a perfect agreement for the band gap with BJS.
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Concerning the total energy (right panel of Figures $1—-529), it
is rather satisfying to see that for many of the solids (about 20
of them) the optimal value for y lies in the range 0.7—0.9,
enclosing the original value 0.8. Furthermore, for most of these
solids, a value for y in this range also leads to the most negative
total energy. This finding is at variance with the results from
Heflelmann and Manby,23 since, for most molecules, they
considered the optimized value of y to be in the range 1.1-1.3.
However, note that the molecules in their test set contain only
light atoms; furthermore, they used a different procedure for
optimizing y, as mentioned above. FeO, CoO, and NiO are the
worst cases, which would require a value larger than 1.4 in
order to reach both the best agreement with BJS and the lowest
total energy. The results for the MARE on the core states
(middle panel of Figures S1—S529) show that for about half of
the cases there is a very good correlation with the total energy
such that the agreement with BJS is reached for both quantities
with very similar values of y. This seems to be particularly the
case for solids containing heavy atoms, whose contribution to
the total energy comes mainly from their core states. As a
conclusion, a value of ~0.8 for y in the BJBR(y) potential seems
to be the most reasonable choice, overall.

Regarding the influence of the parameter y in BJBR(y) on
the magnetic moment g in MnO, FeO, CoO, and NiO, the
results are shown in Figures S30—S33. For MnO and FeO, pg
gets smaller when ¥ is increased, whereas the reverse occurs for
NiO. For CoO, the smallest value of yg is obtained with y = 0.9.
For MnO and FeO, a better agreement with BJS is obtained for
a small y, whereas NiO requires a value for y larger than 1.4.
Figures S34 and S35 show the results for the EFG in Se and
Cu,O, respectively, where we can see that for Se a perfect
match with the BJS potential is obtained for y = 0.9, whereas for
Cu,O, the discrepancy with respect to BJS is always larger than
1 X 10 V/m®

4. SUMMARY AND CONCLUSIONS

The BR potential leads to calculations that are 1 or 2 orders of
magnitude faster than those with the Slater potential; therefore,
it is tempting to use the former instead of the latter, especially
for applications on large systems. However, until now, no such
investigation on the differences between these two potentials in
solids has been done, and the present work attempts to fill the
gap. For this purpose, we have compared the results obtained
with the Slater and BR potentials for the electronic structure,
EFG, magnetic moment, and total energy. The test set consists
of semiconductors and insulators of various types.

The results indicate that, in many cases, the BR potential is a
good approximation to the Slater potential. In particular, for the
purpose of comparing the BJ potential with the EXX-OEP, it
does not really matter which version of BJ (i.e., BJS or BJBR) is
used. However, this is not systematically the case. For instance,
in the strongly correlated systems, FeO, CoO, and NiO, the
band gaps and/or the magnetic moments can differ
significantly. In addition, rather large differences in the band
gap were also observed for Si, Ge, and systems containing heavy
atoms like CsF, BaO, and CdS. Interestingly, in such cases, the
agreement with EXX-OEP is better when BJS is used. The
influence of the parameter 7 (in BJBR) on the results has also
been investigated, and the conclusion is that y = 0.8 is a rather
good (but not universal) choice, as no other value of y seems to
lead to better results on average.
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