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Abstract: Entropy and relative entropy measures play a crucial role in mathematical information
theory. The relative entropies are also widely used in statistics under the name of divergence measures
which link these two fields of science through the minimum divergence principle. Divergence
measures are popular among statisticians as many of the corresponding minimum divergence
methods lead to robust inference in the presence of outliers in the observed data; examples include
the φ-divergence, the density power divergence, the logarithmic density power divergence and the
recently developed family of logarithmic super divergence (LSD). In this paper, we will present an
alternative information theoretic formulation of the LSD measures as a two-parameter generalization
of the relative α-entropy, which we refer to as the general (α, β)-entropy. We explore its relation
with various other entropies and divergences, which also generates a two-parameter extension of
Renyi entropy measure as a by-product. This paper is primarily focused on the geometric properties
of the relative (α, β)-entropy or the LSD measures; we prove their continuity and convexity in
both the arguments along with an extended Pythagorean relation under a power-transformation of
the domain space. We also derive a set of sufficient conditions under which the forward and the
reverse projections of the relative (α, β)-entropy exist and are unique. Finally, we briefly discuss
the potential applications of the relative (α, β)-entropy or the LSD measures in statistical inference,
in particular, for robust parameter estimation and hypothesis testing. Our results on the reverse
projection of the relative (α, β)-entropy establish, for the first time, the existence and uniqueness of
the minimum LSD estimators. Numerical illustrations are also provided for the problem of estimating
the binomial parameter.

Keywords: relative entropy; logarithmic super divergence; robustness; minimum divergence inference;
generalized renyi entropy

1. Introduction

Decision making under uncertainty is the backbone of modern information science. The works
of C. E. Shannon and the development of his famous entropy measure [1–3] represent the early
mathematical foundations of information theory. The Shannon entropy and the corresponding relative
entropy, commonly known as the Kullback-Leibler divergence (KLD), has helped to link information
theory simultaneously with probability [4–8] and statistics [9–13]. If P and Q are two probability
measures on a measurable space (Ω,A) and have absolutely continuous densities p and q, respectively,
with respect to a common dominating σ-finite measure µ, then the Shannon entropy of P is defined as

E(P) = −
∫

p log(p)dµ, (1)
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and the KLD measure between P and Q is given by

RE(P, Q) =
∫

p log
(

p
q

)
dµ. (2)

In statistics, the minimization of the KLD measure produces the most likely approximation as
given by the maximum likelihood principle; the latter, in turn, has a direct equivalence to the
(Shannon) entropy maximization criterion in information theory. For example, if Ω is finite and
µ is the counting measure, it is easy to see that RE(P, U) = log |Ω| − E(P), where U is the uniform
measure on Ω. Minimization of this relative entropy, or equivalently maximization of the Shannon
entropy, with respect to P within a suitable convex set E, generates the most probable distribution
for an independent identically distributed finite source having true marginal probability in E with
non-informative (uniform) prior probability of guessing [14,15]. In general, with a finite source,
RE(P, Q) denotes the penalty in expected compressed length if the compressor assumes a mismatched
probability Q [16,17]. The corresponding general minimizer ofRE(P, Q) given Q, namely its forward
projection, and other geometric properties ofRE(P, Q) are well studied in the literature; see [18–29]
among others.

Although the maximum entropy or the minimum divergence criterion based on the classical
Shannon entropy E(P) and the KLD measure RE(P, Q) is still widely used in major (probabilistic)
decision making problems in information science and statistics [30–43], there also exist many different
useful generalizations of these quantities to address eminent issues in quantum statistical physics,
complex codings, statistical robustness and many other topics of interest. For example, if we consider
the standardized cumulant of compression length in place of the expected compression length in
Shannon’s theory, the optimum distribution turns out to be the maximizer of a generalization of the
Shannon entropy [44,45] which is given by

Eα(P) =
1

1− α
log
(∫

pαdµ

)
, α > 0, α 6= 1 (3)

provided p ∈ Lα(µ), the complete vector space of functions for which the α-th power of their absolute
values are µ-integrable. This general entropy functional is popular by the name Renyi entropy of
order α [46] and covers many important entropy measures like Hartley entropy at α → 0 (for finite
source), Shannon entropy at α → 1, collision entropy at α = 2 and the min-entropy at α → ∞.
The corresponding Renyi divergence measure is given by

Dα(P, Q) =
1

α− 1
log
(∫

pαq1−αdµ

)
, α > 0, α 6= 1, (4)

whenever p, q ∈ Lα(µ) and coincides with the classical KLD measure at α → 1. The Renyi entropy
and the Renyi divergence are widely used in recent complex physical and statistical problems;
see, for example, [47–56]. Other non-logarithmic extensions of Shannon entropy include the classical
f -entropies [57], the Tsallis entropy [58] as well as the more recent generalized (α, β, γ)-entropy [59,60]
among many others; the corresponding divergences and the minimum divergence criteria are widely
used in critical information theoretic and statistical problems; see [57,59–70] for details.

We have noted that there is a direct information theoretic connection of KLD to the Shannon entropy
under mismatched guessing by minimizing the expected compressed length. However, such a connection
does not exist between the Renyi entropy Eα(P) and the Renyi divergence Dα(P, Q) as recently noted
by [17,71]. Herein, it has been shown that, for a finite source with marginal distribution P and a (prior)
mismatched compressor distribution Q, the penalty in the normalized cumulant of compression length is
notDα(P, Q); rather it is given byD1/α(Pα, Qα) where Pα and Qα are defined by

dPα

dµ
= pα =

pα∫
pαdµ

,
dQα

dµ
= qα =

qα∫
qαdµ

. (5)
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The new quantity D1/α(Pα, Qα) also gives a measure of discrimination (i.e., is a divergence) between
the probability distributions P and Q and coincides with the KLD at α→ 1. This functional is referred
to as the relative α-entropy in the terminology of [72] and has the simpler form

REα(P, Q) := D1/α(Pα, Qα)

=
α

1− α
log

∫
pqα−1dµ− 1

1− α
log

∫
pαdµ + log

∫
qαdµ, α > 0, α 6= 1.

(6)

The geometric properties of this relative α-entropy along with its forward and reverse projections have
been studied recently [16,73]; see Section 2.1 for some details. This quantity had, however, already been
proposed earlier as a statistical divergence, although for α ≥ 1 only, by [74] while developing a robust
estimation procedure following the generalized method-of-moments approach of [75]. Later authors
referred to the divergence proposed in [74] as the logarithmic density power divergence (LDPD)
measure. The advantages of the minimum LDPD estimator in terms of robustness against outliers
in data have been studied by, among other, [66,74]. Fujisawa [76], Fujisawa and Eguchi [77] have
also used the same divergence measure with γ = (α− 1) ≥ 0 in different statistical problems and
have referred to it as the γ-divergence. Note that, the formulation in (6) extends the definition of the
divergence over the 0 < α < 1 region as well.

Motivated by the substantial advantages of the minimum LDPD inference in terms of statistical
robustness against outlying observations, Maji et al. [78,79] have recently developed a two-parameter
generalization of the LDPD family, namely the logarithmic super divergence (LSD) family, given by

LSDτ,γ(P, Q) =
1
B

log
∫

p1+τdµ− 1 + τ

AB
log

∫
pAqBdµ +

1
A

log
∫

q1+τdµ,

with A = 1 + γ(1− τ), B = 1 + τ − A, τ ≥ 0, γ ∈ R.
(7)

This rich superfamily of divergences contain many important divergence measures including the LDPD
at γ = 0 and the Kullback-Leibler divergence at τ = γ→ 0; this family also contains a transformation
of Renyi divergence at τ = 0 which has been referred to as the logarithmic power-divergence family
by [80]. As shown in [78,79], the statistical inference based on some of the new members of this LSD
family, outside the existing ones including the LDPD, provide much better trade-off between the
robustness and efficiency of the corresponding minimum divergence estimators.

The statistical benefits of the LSD family over the LDPD family raise a natural question: is it
possible to translate this robustness advantage of the LSD family of divergences to the information
theoretic context, through the development of a corresponding generalization of the relative α-entropy
in (6)? In this paper, we partly answer this question by defining an independent information theoretic
generalization of the relative α-entropy measure coinciding with the LSD measure. We will refer to
this new generalized relative entropy measure as the “Relative (α, β)-entropy” and study its properties
for different values of α > 0 and β ∈ R. In particular, this new formulation will extend the scope
of the LSD measure for −1 < τ < 0 as well and generate several interesting new divergence and
entropy measures. We also study the geometric properties of all members of the relative (α, β)-entropy
family, or equivalently the LSD measures, including their continuity in both the arguments and a
Pythagorean-type relation. The related forward projection problem, i.e., the minimization of the
relative (α, β)-entropy in its first argument, is also studied extensively.

In summary, the main objective of the present paper is to study the geometric properties of the LSD
measure through the new information theoretic or entropic formulation (or the relative (α, β)-entropy).
Our results indeed generalize the properties of the relative α-entropy from [16,73]. The specific and
significant contributions of the paper can be summarized as follows.

1. We present a two parameter extension of the relative α-entropy measure in (6) motivated by the
logarithmic S-divergence measures. These divergence measures are known to generate more
robust statistical inference compared to the LDPD measures related to the relative α-entropy.
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2. In the new formulation of the relative (α, β)-entropy, the LSD measures are linked with
several important information theoretic divergences and entropy measures like the ones named
after Renyi. A new divergence family is discovered corresponding to α → 0 case (properly
standardized) for the finite measure cases.

3. As a by-product of our new formulation, we get a new two-parameter generalization of the Renyi
entropy measure, which we refer to as the Generalized Renyi entropy (GRE). This opens up a
new area of research to examine the detailed properties of GRE and its use in complex problems
in statistical physics and information theory. In this paper, we show that this new GRE satisfies
the basic entropic characteristics, i.e., it is zero when the argument probability is degenerate and
is maximum when the probability is uniform.

4. Here we provide a detailed geometric analysis of the robust LSD measure, or equivalently
the relative (α, β)-entropy in our new formulation. In particular, we show their continuity
or lower semi-continuity with respect to the first argument depending on the values of the
tuning parameters α and β. Also, its lower semi-continuity with respect to the second argument
is proved.

5. We also study the convexity of the LSD measures (or the relative (α, β)-entropies) with respect to
its argument densities. The relative α-entropy (i.e, the relative (α, β)-entropy at β = 1) is known
to be quasi-convex [16] only in its first argument. Here, we will show that, for general α > 0 and
β 6= 1, the relative (α, β)-entropies are not quasi-convex on the space of densities, but they are
always quasi-convex with respect to both the arguments on a suitably (power) transformed space
of densities. Such convexity results in the second argument were unavailable in the literature
even for the relative α-entropy, which we will introduce in this paper through a transformation
of space.

6. Like the relative α-entropy, but unlike the relative entropy in (2), our new relative (α, β)-entropy
also does not satisfy the data processing inequalities. However, we prove an extended
Pythagorean relation for the relative (α, β)-entropy which makes it reasonable to treat them
as “squared distances” and talk about their projections.

7. The forward projection of a relative entropy or a suitable divergence, i.e., their minimization
with respect to the first argument, is very important for both statistical physics and information
theory. This is indeed equivalent to the maximum entropy principle and is also related to the
Gibbs conditioning principle. In this paper, we will examine the conditions under which such a
forward projection of the relative (α, β)-entropy (or, LSD) exists and is unique.

8. Finally, for completeness, we briefly present the application of the LSD measure or the relative
(α, β)-entropy measure in robust statistical inference in the spirit of [78,79] but now with extended
range of tuning parameters. It uses the reverse projection principle; a result on the existence of
the minimum LSD functional is first presented with the new formulation of this paper. Numerical
illustrations are provided for the binomial model, where we additionally study their properties
for the extended tuning parameter range α ∈ (0, 1) as well as for some new divergence families
(related to α = 0). Brief indications of the potential use of these divergences in testing of statistical
hypotheses are also provided.

Although we are primarily discussing the logarithmic entropies like the Renyi entropy and its
generalizations in this paper, it is important to point out that non-logarithmic entropies including
the f-entropy and the Tsallis entropy are also very useful in several applications with real systems.
Recently, several complex physical and social systems have been observed to follow the theory
developed from such non-logarithmic, non-additive entropies instead of the classical additive Shannon
entropy. In particular, the Tsallis entropy has led to the development of the nonextensive statistical
mechanics [61,64] to solve several critical issues in modern physics. Important areas of application
include, but certainly are not limited to, the motion of cold atoms in dissipative optical lattices [81,82],
the magnetic field fluctuations in the solar wind and related q-triplet [83], the distribution of velocity
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in driven dissipative dusty plasma [84], spin glass relaxation [85], the interaction of trapped ion with a
classical buffer gas [86], different high energy collisional experiments [87–89], derivation of the black
hole entropy [90], along with water engineering [63], text mining [65] and many others. Therefore, it is
also important to investigate the possible generalizations and manipulations of such non-logarithmic
entropies both from mathematical and application point of view. However, as our primary interest
here is in logarithmic entropies, we have, to keep the focus clear, otherwise avoided the description
and development of non-logarithmic entropies in this paper.

Although there are many applications of extended and general non-additive entropy and
divergence measures, there are also some criticisms of these non-additive measures that should
be kept in mind. It is of course possible to employ such quantities simply as new descriptors of
the complexity of systems, but at the same time, it is known that the minimization of a generalized
divergence (or maximization of the corresponding entropy) under constraints in order to determine
an optimal probability assignment leads to inconsistencies for information measures other than the
Kullback-Leibler divergence. See, for instance [91–96], among others. So, one needs to be very careful
in discriminating the application of the newly introduced entropies and divergence measures for
the purposes of inference under given information, from the ones where it is used as a measure of
complexity. In this respect, we would like to emphasize that, the main advantage of our two-parameter
extended family of LSD or relative (α, β)-entropy measures in parametric statistical inference is
in their strong robustness property against possible contamination (generally manifested through
outliers) in the sample data. The classical additive Shannon entropy and Kullback-Leibler divergence
produce non-robust inference even under a small proportion of data contamination, but the extremely
high robustness of the LSD has been investigated in detail, with both theoretical and empirical
justifications, by [78,79]; in this respect, we will present some numerical illustrations in Section 5.2.
Another important issue could be to decide whether to stop at the two-parameter level for information
measures or to extend it to three-parameters, four-parameters, etc. It is not an easy question to answer.
However, we have seen that many members of the two-parameter family of LSD measures generate
highly robust inference along with a desirable trade-off between efficiency under pure data and
robustness under contaminated data. Therefore a two-parameter system appears to work well in
practice. Since it is a known principle that one “should not multiply entities beyond necessity”, we will,
for the sake of parsimony, restrict ourselves to the second level of generalization for robust statistical
inference, at least until there is further convincing evidence that the next higher level of generalization
can produce a significant improvement.

2. The Relative (α, β)-Entropy Measure

2.1. Definition: An Extension of the Relative α-Entropy

In order to motivate the development of our generalized relative (α, β)-entropy measure, let us
first briefly describe an alternative formulation of the relative α-entropy following [16]. Consider
the mathematical set-up of Section 1 with α > 0 and assume that the space Lα(µ) is equipped with
the norm

|| f ||α =

{
(
∫
| f |αdµ)

1/α if α ≥ 1, f ∈ Lα(µ),∫
| f |αdµ if 0 < α < 1, f ∈ Lα(µ),

(8)

and the corresponding metric dα(g, f ) = ||g − f ||α for g, f ∈ Lα(µ). Then, the relative α-entropy
between two distributions P and Q is obtained as a function of the Cressie-Read power divergence
measure [97], defined below in (11), between the escort measures Pα and Qα defined in (5). Note that
the disparity family or the φ-divergence family [18,98–103] between P and Q is defined as

Dφ(P, Q) =
∫

qφ

(
p
q

)
dµ, (9)
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for a continuous convex function φ on [0, ∞) satisfying φ(0) = 0 and with the usual convention
0φ(0/0) = 0. We consider the φ-function given by

φ(u) = φλ(u) = sign(λ(λ + 1))
(

uλ+1 − 1
)

, λ ∈ R, u ≥ 0, (10)

with the convention that, for any u > 0, 0φλ(u/0) = 0 if λ < 0 and 0φλ(u/0) = ∞ if λ > 0.
The corresponding φ-divergence has the form

Dλ(P, Q) = Dφλ
(P, Q) = sign(λ(λ + 1))

∫
q

[(
p
q

)λ+1
− 1

]
dµ, (11)

which is just a positive multiple of the Cressie-Read power divergence with the multiplicative constant
being |λ(1 + λ)|; when this constant is present, the case λ = 0 leads to the KLD measure in a limiting
sense. Note that, our φ-function in (10) differs slightly from the one used by [16] in that we use
sign(λ(λ + 1)) in place of sign(λ) there; this is to make the divergence in (11) non-negative for all
λ ∈ R ([16] considered only λ > −1) which will be needed to define our generalized relative entropy.
Then, given an α > 0, [16,17] set λ = α−1 − 1(> −1) and show that the relative α-entropy of P with
respect to Q can be obtained as

REα(P, Q) = REµ
α(P, Q) =

1
λ

log [sign(λ)Dλ(Pα, Qα) + 1] . (12)

It is straightforward to see that the above formulation (12) coincides with the definition given in (6).
We often suppress the superscript µ whenever the underlying measure is clear from the context; in most
applications in information theory and statistics it is either counting measure or the Lebesgue measure
depending on whether the distribution is discrete or continuous.

We can now change the tuning parameters in the formulation given by (12) suitably as to arrive
at the more general form of the LSD family in (7). For this purpose, let us fix α > 0, β ∈ R and
assume that p, q ∈ Lα(µ) are the µ-densities of P and Q, respectively. Instead of considering the
re-parametrization λ = α−1 − 1 as above, we now consider the two-parameter re-parametrization
λ = βα−1 − 1 ∈ R. Note that, the feasible range of λ, in order to make α > 0, now clearly depends on
β through α = β

1+λ > 0; whenever β > 0 we have −1 < λ < ∞ and if β < 0 we need −∞ < λ < −1.
We have already taken care of this dependence through the modified φ function defined in (10)
which ensures that Dλ(·, ·) is non-negative for all λ ∈ R. So we can again use the relation as in (12),
after suitable standardization due to the additional parameter β, to define a new generalized relative
entropy measure as given in the following definition.

Definition 1 (Relative (α, β)-entropy). Given any α > 0 and β ∈ R, put λ = β
α − 1 (i.e., α = β

1+λ ).
Then, the relative (α, β)-entropy of P with respect to Q is defined as

REα,β(P, Q) = REµ
α,β(P, Q) =

1
βλ

log [sign(βλ)Dλ(Pα, Qα) + 1] . (13)

The cases β = 0 and λ = 0 (i.e, β = α) are defined in limiting sense; see Equations (15) and (16) below.

A straightforward simplification gives a simpler form of this new relative (α, β)-entropy which
coincides with the LSD measure as follows.

REα,β(P, Q) =
1

α− β
log

∫
pαdµ− α

β(α− β)
log

∫
pβqα−βdµ +

1
β

log
∫

qαdµ, (14)

= LSD
α−1, β−1

2−α
(P, Q).
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Note that, it coincides with the relative α-entropyREα(P, Q) at the choice β = 1. For the limiting cases,
it leads to the forms

REα,0(P, Q) =

∫
log(q/p)qαdµ∫

qαdµ
+

1
α

log
(∫

pαdµ∫
qαdµ

)
, (15)

REα,α(P, Q) =

∫
log(p/q)pαdµ∫

pαdµ
+

1
α

log
( ∫

qαdµ∫
pαdµ

)
. (16)

By the divergence property of Dλ(·, ·), all the relative (α, β)-entropies are non-negative and valid
statistical divergences. Note that, in view of (14), the formulation (13) extends the scope of LSD
measure, defined in (7), for τ ∈ (−1, 0).

Proposition 1. For any α > 0 and β ∈ R,REα,β(P, Q) ≥ 0 for all probability measures P and Q, whenever
it is defined. Further,REα,β(P, Q) = 0 if and only in P = Q[µ].

Also, it is important to identify the cases where the relative (α, β)-entropy is not finitely defined,
which can be obtained from the definition and convention related to Dλ divergence; these are
summarized in the following proposition.

Proposition 2. For any α > 0, β ∈ R and distributions P, Q having µ-densities in Lα(µ), the relative
(α, β)-entropyREα,β(P, Q) is a finite positive number except for the following three cases:

1. P is not absolutely continuous with respect to Q and α < β, in which caseREα,β(P, Q) = +∞.
2. P is mutually singular to Q and α > β, in which case alsoREα,β(P, Q) = +∞.
3. 0 < β < α and Dλ(Pα, Qα) ≥ 1, in which case alsoREα,β(P, Q) is undefined.

The above two propositions completely characterize the values and existence of our new relative
(α, β)-entropy measure. In the next subsection, we will now explore its relation with other existing
entropies and divergence measures; along the way we will get some new ones as by-products of our
generalized relative entropy formulation.

2.2. Relations with Different Existing or New Entropies and Divergences

The relative (α, β)-entropy measures form a large family containing several existing relative
entropies and divergences. Its relation with some popular ones are summarized in the following
proposition; the proof is straightforward from definitions and hence omitted.

Proposition 3. For α > 0, β ∈ R and distributions P, Q, the following results hold (whenever the relevant
integrals and divergences are defined finitely, even in limiting sense).

1. RE1,1(P, Q) = RE(P, Q), the KLD measure.
2. REα,1(P, Q) = REα(P, Q), the relative α-entropy.
3. RE1,β(P, Q) = 1

βDβ(P, Q), a scaled Renyi divergence, which also coincides with the logarithmic power
divergence measure of [80].

4. REα,β(P, Q) = 1
βDβ/α(Pα, Qα), where Pα and Qα are as defined in (5).

Remark 1. Note that, items 3 and 4 in Proposition 3 indicate a possible extension of the Renyi divergence
measure over negative values of the tuning parameter β as follows:

D∗β(P, Q) =
1
β
Dβ(P, Q), β ∈ R\{0}, D∗0 (P, Q) =

∫
q log

(
q
p

)
dµ.
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Note that this modified Renyi divergence also coincides with the KLD measure at β = 1. Statistical applications
of this divergence family have been studied by [80].

However, not all the members of the family of relative (α, β)-entropies are distinct or symmetric.
For example, REα,0(P, Q) = REα,α(Q, P) for any α > 0. The following proposition characterizes all
such identities.

Proposition 4. For α > 0, β ∈ R and distributions P, Q, the relative (α, β)-entropy REα,β(P, Q) is
symmetric if and only if β = α

2 . In general, we haveREα, α
2−γ(P, Q) = REα, α

2 +γ(Q, P) for any α > 0, γ ∈ R.

Recall that the KLD measure is linked to the Shannon entropy and the relative α-entropy is
linked with the Renyi entropy when the prior mismatched probability is uniform over the finite space.
To derive such a relation for our general relative (α, β)-entropy, let us assume µ(Ω) < ∞ and let U
denote the uniform probability measure on Ω. Then, we get

REα,β(P, U) =
1
β

[
log µ(Ω)− Eα,β(P)

]
, β 6= 0 (17)

where the functional Eα,β(P) is given in Definition 2 below and coincides with the Renyi entropy at
β = 1. Thus, it can be used to define a two-parameter generalization of the Renyi entropy as follows.

Definition 2 (Generalized Renyi Entropy). For any probability measure P over a measurable space Ω,
we define the generalized Renyi entropy (GRE) of order (α, β) as

Eα,β(P) =
1

β− α
log

[
(
∫

pαdµ)
β(∫

pβdµ
)α

]
, α > 0, β ∈ R, β 6= 0, α; (18)

Eα,α(P) = −
∫

log(p)pαdµ∫
pαdµ

+
1
α

log
(∫

pαdµ

)
, α > 0. (19)

Note that, at β = 1, we have Eα,1(P) = Eα(P), the usual Renyi entropy measure of order α.

The GRE is a new entropy to the best of our knowledge, and does not belong to the general
class of entropy functionals as given in [104] which covers many existing entropies (including most,
if not all, classical entropies). The following property of the functional Eα,β(P) is easy to verify and
justifies its use as a new entropy functional. To keep the focus of the present paper clear on the relative
(α, β)-entropy, further properties of the GRE will be explored in our future work.

Theorem 1 (Entropic characteristics of GRE). For any probability measure P over a finite measure space Ω,
we have 0 ≤ Eα,β(P) ≤ log µ(Ω) for all α > 0 and β ∈ R\{0}. The two extremes are attained as follows.

1. Eα,β(P) = 0 if P is degenerate at a point in Ω (no uncertainty).
2. Eα,β(P) = log µ(Ω) if P is uniform over Ω (maximum uncertainty).

Example 1 (Normal Distribution). Consider distributions Pi from the most common class of multivariate
(s-dimensional) normal distributions having mean µi ∈ Rs and variance matrix Σi for i = 1, 2. It is known that
the Shannon and the Renyi entropies of P1 are, respectively, given by

E(P1) =
s
2
+

s
2

log(2π) +
1
2

log |Σ1|,

Eα(P1) =
s
2

log α

α− 1
+

s
2

log(2π) +
1
2

log |Σ1|, α > 0, α 6= 1.
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With the new entropy measure, GRE, the entropy of the normal distribution P1 can be seen to have the form

Eα,β(P1) =
s
2
(α log β− β log α)

(β− α)
+

s
2

log(2π) +
1
2

log |Σ1|, α > 0, β ∈ R\{0, α},

Eα,α(P1) =
s
2
(1− log α) +

s
2

log(2π) +
1
2

log |Σ1|, α > 0.

Interestingly, the GRE of a normal distribution is effectively the same as its Shannon entropy or Renyi entropy
up to an additive constant. However, similar characteristic does not hold between the relative entropy (KLD) and
relative (α, β)-entropy. The KLD measure between two normal distributions P1 and P2 is given by

RE(P1, P2) =
1
2

Trace(Σ−1
2 Σ1) +

1
2
(µ2 − µ1)

TΣ−1
2 (µ2 − µ1) +

1
2

log
(
|Σ2|
|Σ1|

)
− s

2
,

whereas the general relative (α, β)-entropy, with α > 0 and β ∈ R\{0, α}, has the form

REα,β(P1, P2) =
α

2
(µ2 − µ1)

T [βΣ2 + (α− β)Σ1]
−1 (µ2 − µ1)

+
1

2β(β− α)
log
(

|Σ2|β|Σ1|α−β

|βΣ2 + (α− β)Σ1|α

)
− sα log α

2β(α− β)
.

Note that the relative (α, β)-entropy gives a more general divergence measure which utilizes different weights for
the variance (or precision) matrix of the two normal distributions.

Example 2 (Exponential Distribution). Consider the exponential distribution P having density pθ(x) =
θe−θx I(x ≥ 0) with θ > 0. This distribution is very useful in lifetime modeling and reliability engineering; it is
also the maximum entropy distribution of a non-negative random variable with fixed mean. The Shannon and
the Renyi entropies of P are, respectively, given by

E(P) = 1− log θ, and Eα(P) =
log α

α− 1
− log θ, α > 0, α 6= 1.

A simple calculation leads to the following form of the our new GRE measure of the exponential distribution P.

Eα,β(P) =
(α log β− β log α)

(β− α)
− log θ, α > 0, β ∈ R\{0, α},

Eα,α(P) = (1− log α)− log θ, α > 0.

Once again, the new GRE is effectively the same as the Shannon entropy or the Renyi entropy, up to an additive
constant, for the exponential distribution as well.

Further, if P1 and P2 are two exponential distributions with parameters θ1 and θ2, respectively, the relative
entropy (KLD) and the relative (α, β)-entropy between them are given by

RE(P1, P2) =
θ2

θ1
+ log θ1 − log θ2 − 1,

REα,β(P1, P2) =
α

β(α− β)
log [βθ1 + (α− β)θ2]−

1
α− β

log θ1 −
1
β

log θ2 −
α log α

β(α− β)
,

for α > 0 and β ∈ R\{0, α}. Clearly, the contributions of both the distribution is weighted differently by β and
(α− β) in their relative (α, β)-entropy measure.

Before concluding this section, we study the nature of our relative (α, β)-entropy as α → 0.
For this purpose, we restrict ourselves to the case of finite measure spaces with µ(Ω) < ∞. It is again
straightforward to note that lim

α→0
REα,β(P, Q) = 0 for any β ∈ R and any distributions P and Q on Ω.
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However, if we take the limit after scaling the relative entropy measure by α we get a non-degenerate
divergence measure as follows.

RE∗β(P, Q) = lim
α↓0

1
α
REα,β(P, Q) =

1
β2

[
log

∫ ( p
q

)β

dµ− β

µ(Ω)

∫
log
(

p
q

)
dµ− log µ(Ω)

]
,

for β ∈ R\{0}, and

RE∗0(P, Q) = lim
α↓0

1
α
REα,0(P, Q) =

1
2µ(Ω)

[∫
{log (p/q)}2 dµ− 1

µ(Ω)

{∫
log (p/q) dµ

}2
]

.

These interesting relative entropy measures again define a subfamily of valid statistical divergences,
from its construction. The particular member at β = 1 is linked to the LDPD (or the γ-divergence) with
tuning parameter −1 and can be thought of as a logarithmic extension of the famous Itakura–Saito
divergence [105] given by

DIS(P, Q) =
∫ ( p

q

)
dµ−

∫
log
(

p
q

)
dµ− µ(Ω). (20)

This Itakura–Saito-divergence has been successfully applied to non-negative matrix factorization in
different applications [106] which can be extended by using the new divergence familyRE∗β(P, Q) in
future works.

3. Geometry of the Relative (α, β)-Entropy

3.1. Continuity

We start the exploration of the geometric properties of the relative (α, β)-entropy with its
continuity over the functional space Lα(µ). In the following, we interchangeably use the notation
REα,β(p, q) and Dλ(p, q) to denote REα,β(P, Q) and Dλ(P, Q), respectively. Our results generalize
the corresponding properties of the relative α-entropy from [16,73] to our relative (α, β)-entropy or
equivalent LSD measure.

Proposition 5. For a given q ∈ Lα(µ), consider the function p 7→ REα,β(p, q) from p ∈ Lα(µ) to [0, ∞].
This function is lower semi-continuous in Lα(µ) for any α > 0, β ∈ R. Additionally, it is continuous in Lα(µ)

when α > β > 0 and the relative entropy is finitely defined.

Proof. First let us consider any α > 0 and take pn → p in Lα(µ). Then, ||pn||α → ||p||α. Also, |pα
n −

pα| ≤ |pn|α + |p|α and hence a general version of the dominated convergence theorem yields pα
n → pα

in L1(µ). Thus, we get

pn,α :=
pα

n∫
pα

ndµ
→ pα in L1(µ). (21)

Further, following ([107], Lemma 1), we know that the function h →
∫

φλ(h)dν is lower
semi-continuous in L1(ν) for any λ ∈ R and any probability measure ν on (Ω,A). Taking ν = Qα,
we get from (21) that pn,α/qα → pα/qα in L1(ν). Therefore, the above lower semi-continuity result
along with (9) implies that

lim inf
n→∞

Dλ(pn,α, qα) ≥ Dλ(pα, qα) ≥ 0, λ ∈ R. (22)
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Now, note that the function ψ(u) = 1
ρ log(sign(ρ)u + 1) is continuous and increasing on [0, ∞)

for ρ > 0 and on [0, 1) for ρ < 0. Thus, combining (22) with the definition of the relative (α, β)-entropy
in (13), we get that

lim inf
n→∞

REα,β(pn, q) ≥ REα,β(p, q), (23)

i.e., the function p 7→ REα,β(p, q) is lower semi-continuous.
Finally, consider the case α > β > 0. Note that the dual space of Lα/β(µ) is L α

α−β
(µ) since

α > β > 0. Also, for q ∈ Lα(µ), we have
(

q
||q||α

)α−β
∈ L α

α−β
(µ), the dual space of the Banach space

Lα/β(µ). Therefore, the function T : Lα/β(µ) 7→ R defined by

T(h) =
∫

h
(

q
||q||α

)α−β

dµ, h ∈ Lα/β(µ),

is a bounded linear functional and hence continuous. Now, take pn → p in Lα(µ) so that ||pn||α →
||p||α as n → ∞. Therefore,

(
pn
||pn ||α

)
→
(

p
||p||α

)
in Lα(µ) implying

(
pn
||pn ||α

)β
→
(

p
||p||α

)β
in Lα/β(µ).

Hence, by the continuity of T on Lα/β(µ), we get

T

((
pn

||pn||α

)β
)
→ T

((
p
||p||α

)β
)

, as n→ ∞.

However, from (14), we get

REα,β(pn, q) =
α

β(β− α)
log T

((
pn

||pn||α

)β
)
→ α

β(β− α)
log T

((
p
||p||α

)β
)

= REα,β(p, q). (24)

This proves the continuity ofREα,β(p, q) in its first argument when α > β > 0.

Remark 2. Whenever Ω is finite (discrete) equipped with the counting measure µ, all integrals in the definition
ofREα,β(P, Q) become finite sums and any limit can be taken inside these finite sums. Thus, whenever defined
finitely, the function p 7→ REα,β(p, q) is always continuous in this case.

Remark 3. For a general infinite space Ω, the function p 7→ REα,β(p, q) is not necessarily continuous for the
cases α < β. This can be seen by using the same counterexample as given in Remark 3 of [16]. However, it is yet
to be verified if this function can be continuous for β < 0 cases.

Proposition 6. For a given p ∈ Lα(µ), consider the function q 7→ REα,β(p, q) from q ∈ Lα(µ) to [0, ∞].
This function is lower semi-continuous in Lα(µ) for any α > 0 and β ∈ R.

Proof. Fix an α > 0 and β ∈ R, which in turn fixes a λ ∈ R. Note that, the relative (α, β)-entropy
measure can be re-expressed from (13) as

REα,β(p, q) =
1

βλ
log
[
sign(βλ)D−(λ+1)(qα, pα) + 1

]
. (25)

Now, consider a sequence qn → q in Lα(µ) and proceed as in the proof of Proposition 5 using ([107],
Lemma 1) to obtain

lim inf
n→∞

D−(λ+1)(qn,α, pα) ≥ D−(λ+1)(qα, pα) ≥ 0, λ ∈ R. (26)
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Now, whenever D−(λ+1)(qα, pα) = 1 with βλ < 0 or D−(λ+1)(qα, pα) = ∞ with βλ > 0, we get
from (25) and (26) that

lim inf
n→∞

REα,β(p, qn) = REα,β(p, q) = +∞. (27)

In all other cases, we consider the function ψ(u) = 1
ρ log(sign(ρ)u + 1) as in the proof of Proposition 5.

This function is continuous and increasing whenever the corresponding relative entropy is finitely
defined for all tuning parameter values; on [0, ∞) for ρ > 0 and on [0, 1) for ρ < 0. Hence, again
combining (26) with (25) through the function ψ, we conclude that

lim inf
n→∞

REα,β(p, qn) ≥ REα,β(p, q). (28)

Therefore, the function q 7→ REα,β(p, q) is also lower semi-continuous.

Remark 4. As in Remark 2, whenever Ω is finite (discrete) and is equipped with the counting measure µ,
the function q 7→ REα,β(p, q) is continuous in Lα(µ) for any fixed p ∈ Lα(µ), α > 0 and β ∈ R.

3.2. Convexity

It has been shown in [16] that the relative α-entropy (i.e., REα,1(p, q)) is neither convex nor
bi-convex, but it is quasi-convex in p. For general β 6= 1, however, the relative (α, β)-entropy
REα,β(p, q) is not even quasi-convex in p ∈ Lα(µ); rather it is quasi-convex on the β-power transformed
space of densities, Lα(µ)β =

{
pβ : p ∈ Lα(µ)

}
, as described in the following theorem. Note that,

for α, β > 0, Lα(µ)β = Lα/β(µ). Here we define the lower level set Bα,β(q, r) =
{

p : REα,β(p, q) ≤ r
}

and its power-transformed set Bα,β(q, r)β =
{

pβ : p ∈ Bα,β(q, r)
}

, for any q ∈ Lα(µ) and r > 0.

Theorem 2. For any given α > 0, β ∈ R and q ∈ Lα(µ), the sets Bα,β(q, r)β are convex for all r > 0.
Therefore, the function pβ 7→ REα,β(p, q) is quasi-convex on Lα(µ)β.

Proof. Note that, at β = 1, our theorem coincides with Proposition 5 of [16]; so we will prove
the result for the case β 6= 1. Fix α, r > 0, a real β /∈ {1, α}, q ∈ Lα(µ), and p0, p1 ∈ Bα,β(q, r).

Then pβ
0 , pβ

1 ∈ Bα,β(q, r)β. For τ ∈ [0, 1], we consider pβ
τ = τpβ

1 + τ̄pβ
0 with τ̄ = 1− τ. We need to show

that pβ
τ ∈ Bα,β(q, r)β, i.e.,REα,β(pτ , q) ≤ r.

Now, from (14), we have

REα,β(p, q) =
1

βλ
log

∫ ( p
||p||α

)β ( q
||q||α

)α−β

dµ =
1

βλ
log

∫ ( pα

qα

)β/α

dQα. (29)

Since pβ
0 , pβ

1 ∈ Bα,β(q, r)β, we have

sign(βλ)
∫ ( pτ

||pτ ||α

)β ( q
||q||α

)α−β

dµ ≤ sign(βλ)erβλ, for τ = 0, 1. (30)

For any τ ∈ (0, 1), we get

sign(βλ)
∫ ( pτ

||pτ ||α

)β ( q
||q||α

)α−β

dµ = sign(βλ)
∫ (

τpβ
1 + τ̄pβ

0

||pτ ||βα

)(
q
||q||α

)α−β

dµ, [by definition of pτ]

≤ sign(βλ)erβλ τ||p1||
β
α + τ̄||p0||

β
α

||pτ ||βα
, [by (30)].

(31)
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Now, using the extended Minkowski’s inequalities from Lemma 1, given below, along with (31) and
noting that βλ = β(β− α)/α, we get that

sign(βλ)
∫ ( pτ

||pτ ||α

)β ( q
||q||α

)α−β

dµ ≤ sign(βλ)erβλ.

Therefore, by (29) and the fact that 1
ρ log(sign(ρ)u) is increasing in u, we finally getREα,β(pτ , q) ≤ r.

This proves the result for α 6= β.
The case β = α can be proved in a similar manner and is left as an exercise to the readers.

Lemma 1 (Extended Minkowski’s inequality). Fix α > 0, a real β /∈ {1, α}, p0, p1 ∈ Lα(µ), and τ ∈ [0, 1].
Define pβ

τ = τpβ
1 + τ̄pβ

0 with τ̄ = 1− τ. Then we have the following inequalities:

||pτ ||βα ≥ τ||p1||
β
α + τ̄||p0||

β
α , if β(β− α) > 0, (32)

||pτ ||βα ≤ τ||p1||
β
α + τ̄||p0||

β
α , if β(β− α) < 0. (33)

Proof. It follows by using the Jensen’s inequality and the convexity of the function xβ/α.

Next, note in view of Proposition 4 that, for any p, q ∈ Lα(µ), REα,β(p, q) = REα,α−β(q, p).
Using this result along with the above theorem, we also get the quasi-convexity of the relative
(α, β)-entropyREα,β(p, q) in q over a different power transformed space of densities. This leads to the
following theorem.

Theorem 3. For any given α > 0, β ∈ R and p ∈ Lα(µ), the function qα−β 7→ REα,β(p, q) is quasi-convex
on Lα(µ)α−β. In particular, for the choice β = α− 1, the function q 7→ REα,β(p, q) is quasi-convex on Lα(µ).

Remark 5. Note that, at α = β = 1, the RE1,1(p, q) coincides with the KLD measure (or relative entropy)
which is quasi-convex in both the arguments p and q on Lα(µ).

3.3. Extended Pythagorean Relation

Motivated by the quasi-convexity ofREα,β(p, q) on Lα(µ)β, we now present a Pythagorean-type
result for the general relative (α, β)-entropy over the power-transformed space. It generalizes the
corresponding result for relative α-entropy [16]; the proof is similar to that in [16] with necessary
modifications due to the transformation of the domain space.

Theorem 4 (Pythagorean Property). Fix an α > 0, β ∈ R with β 6= α and p0, p1, q ∈ Lα(µ). Define
pτ ∈ Lα(µ) by pβ

τ = τpβ
1 + τ̄pβ

0 for τ ∈ [0, 1] and τ̄ = 1− τ.

(i) SupposeREα,β(p0, q) andREα,β(p1, q) are finite. Then,REα,β(pτ , q) ≥ REα,β(p0, q) for all τ ∈ [0, 1],

i.e., the back-transformation of line segment joining pβ
1 and pβ

0 on Lα(µ)β to Lα(µ) does not intersect
Bα,β(q,REα,β(p0, q)), if and only if

REα,β(p1, q) ≥ REα,β(p1, p0) +REα,β(p0, q). (34)

(ii) SupposeREα,β(pτ , q) is finite for some fixed τ ∈ (0, 1). Then, the back-transformation of line segment

joining pβ
1 and pβ

0 on Lα(µ)β to Lα(µ) does not intersect Bα,β(q,REα,β(pτ , q)) if and only if

REα,β(p1, q) = REα,β(p1, pτ) +REα,β(pτ , q), (35)

and REα,β(p0, q) = REα,β(p0, pτ) +REα,β(pτ , q). (36)
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Proof of Part (i). Let Pτ,α to be the probability measure having µ-density pτ,α = pα
τ∫

pα
τdµ

for τ ∈ [0, 1].
Also note that, with λ = β/α− 1, we have

Dλ(Pα, Qα) = sign(βλ)

[∫ ( p
||p||α

)β

(qα)
−λ dµ− 1

]
, for p, q ∈ Lα(µ). (37)

Thus, (34) is equivalent to the statement

sign(βλ)||p0||
β
α

∫
pβ

1 (qα)
−λ dµ ≥ sign(βλ)

∫
pβ

1 (p0,α)
−λ dµ ·

∫
pβ

0 (qα)
−λ dµ. (38)

and we have

Dλ(Pτ,α, Qα) = sign(βλ)

[∫ ( pτ

||pτ ||α

)β

(qα)
−λ dµ− 1

]
= sign(βλ)

s(τ)
t(τ)

, (39)

where s(τ) =
∫

pβ
τ (qα)

−λ dµ and t(τ) = ||pτ ||βα . Now consider the two implications separately.

Only if statement: Now, let us assume thatREα,β(pτ , q) ≥ REα,β(p0, q) for all τ ∈ (0, 1). Then, we get
1
τ [Dλ(Pτ,α, Qα)− Dλ(P0,α, Qα)] ≥ 0 for all τ ∈ (0, 1). Letting τ ↓ 0, we get that

∂

∂τ
Dλ(Pτ,α, Qα)

∣∣∣∣
τ=0
≥ 0. (40)

In order to find the derivative of Dλ(Pτ,α, Qα), we first note that

s(τ)− s(0)
τ

=
1
τ

[∫
pβ

τ (qα)
−λ dµ−

∫
pβ

0 (qα)
−λ dµ

]
=
∫
(pβ

1 − pβ
0 ) (qα)

−λ dµ,

and hence

s′(0) = lim
τ↓0

s(τ)− s(0)
τ

=
∫
(pβ

1 − pβ
0 ) (qα)

−λ dµ. (41)

Further, using a simple modification of the techniques in the proof of ([16], Theorem 9), it is easy to
verify that the derivative of t(τ) with respect to τ exists and is given by

t′(τ) =
(∫

pα
τdµ

) (β−α)
α
∫

pα−β
τ (pβ

1 − pβ
0 )dµ.

Hence we get

t′(0) =

(∫
pα

0dµ

) (β−α)
α
∫

pα−β
0 (pβ

1 − pβ
0 )dµ =

∫
pβ

1 (p0,α)
−λ dµ− ||p0||

β
α . (42)

Therefore, the derivative of Dλ(Pτ,α, Qα) = sign(βλ)s(τ)/t(τ) exists and is given by
sign(βλ) [t(0)s′(0)− t′(0)s(0)] /t(0)2. Therefore, using (40), we get that

sign(βλ)t(0)s′(0) ≥ sign(βλ)t′(0)s(0), (43)

which implies (38) after substituting the values from (41) and (42).

If statement: Now, let us assume that (34)—or equivalently (38)—holds true. Further, as in the derivation
of (38), we can start from the trivial statement

REα,β(p0, q) = REα,β(p0, p0) +REα,β(p0, q),
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to deduce

sign(βλ)||p0||
β
α

∫
pβ

0 (qα)
−λ dµ = sign(βλ)

∫
pβ

0 (p0,α)
−λ dµ ·

∫
pβ

0 (qα)
−λ dµ. (44)

Now, multiply (38) by τ and (44) by τ̄, and add to get

sign(βλ)||p0||
β
α

∫
pβ

τ (qα)
−λ dµ ≥ sign(βλ)

∫
pβ

τ (p0,α)
−λ dµ ·

∫
pβ

0 (qα)
−λ dµ.

In view of (37), this implies that

REα,β(pτ , q) ≥ REα,β(pτ , p0) +REα,β(p0, q) ≥ REα,β(p0, q).

This proves the if statement of Part (i) completing the proof.

Proof of Part (ii). Note that the if statement follows directly from Part (i).
To prove the only if statement, we first show that REα,β(p1, q) and REα,β(p0, q) are finite since

REα,β(pτ , q) is finite. For this purpose, we note that pβ
1 ≤ τ−1 pβ

τ by the definition of pτ and hence
(p1/q)β ≤ τ−1(pτ/q)β. Therefore, we get(

p1,α

qα

)β/α

=

(
p1

q

)β ( ||q||
||p1||

)β

≤ 1
τ

(
pτ

q

)β ( ||q||
||p1||

)β

=
1
τ

(
pτ,α

qα

)β ( ||pτ ||
||p1||

)β

. (45)

Integration with respect to Qα and using (29), we getREα,β(p1, q) ≤ REα,β(pτ , q) + c < ∞, where c is
a constant. Similarly one can also show thatREα,β(p0, q) < ∞.

Therefore, we can apply Part (i) to conclude that

REα,β(p1, q) ≥ REα,β(p1, pτ) +REα,β(pτ , q), and REα,β(p0, q) ≥ REα,β(p0, pτ) +REα,β(pτ , q). (46)

These relations imply that

sign(βλ)||pτ ||βα
∫

pβ
1 (qα)

−λ dµ ≥ sign(βλ)
∫

pβ
1 (pτ,α)

−λ dµ ·
∫

pβ
τ (qα)

−λ dµ, (47)

and sign(βλ)||pτ ||βα
∫

pβ
0 (qα)

−λ dµ ≥ sign(βλ)
∫

pβ
0 (pτ,α)

−λ dµ ·
∫

pβ
τ (qα)

−λ dµ. (48)

The proof of the above results proceed in a manner analogous to the proof of (38). Now, if either
of the inequalities in (46) is strict, the corresponding inequality in (47) or (48) will also be strict.
Then, multiplying (47) and (48) by τ and τ̄, respectively, and adding them we get (44) with a strict
inequality (in place of an equality), which is a contradiction. Hence, both inequalities in (46) must be
equalities implying (35) and (36). This completes the proof.

Note that, at β = 1, the above theorem coincides with Theorem 9 of [16]. However, for general
α, β as well, the above extended Pythagorean relation for the relative (α, β)-entropy suggests that it
behaves “like" a squared distance (although with a non-linear space transformation). So, one can
meaningfully define its projection on to a suitable set which we will explore in the following sections.

4. The Forward Projection of Relative (α, β)-Entropy

The forward projection, i.e., minimization with respect to the first argument given a fixed second
argument, leads to the important maximum entropy principle of information theory; it also relates to
the Gibbs conditioning principle from statistical physics [16]. Let us now formally define and study
the forward projection of the relative (α, β)-entropy. Let S∗ denote the set of probability measure on
(Ω,A) and let the set of corresponding µ-densities be denoted by S = {p = dP/dµ : P ∈ S∗}.
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Definition 3 (Forward (α, β)-Projection). Fix Q ∈ S∗ having µ-density q ∈ Lα(µ). Let E ⊂ S with
REα,β(p, q) < ∞ for some p ∈ E. Then, p∗ ∈ E is called the forward projection of the relative (α, β)-entropy
or simply the forward (α, β)-projection (or forward LSD projection) of q on E if it satisfies the relation

REα,β(p∗, q) = inf
p∈E
REα,β(p, q). (49)

Note that we must assume that, E ⊂ Lα(µ) so that the above relative (α, β)-entropy is finitely defined
for p ∈ E.

We first prove the uniqueness of the forward (α, β)-projection from the Pythagorean property,
whenever it exists. The following theorem describe the connection of the forward (α, β)-projection
with Pythagorean relation; the proof is same as that of ([16], Theorem 10) using Theorem 4 and hence
omitted for brevity.

Theorem 5. Consider the set E ⊂ S such that Eβ is convex and fix q ∈ Lα(µ). Then, p∗ ∈ E∩ Bα,β(q, ∞) is
a forward (α, β)-projection of q on E if and only if every p ∈ E∩ Bα,β(q, ∞) satisfies

REα,β(p, q) ≥ REα,β(p, p∗) +REα,β(p∗, q). (50)

Further, if (p∗)β is an algebraic inner point of Eβ, i.e., for every p ∈ E there exists p′ ∈ E and τ ∈ (0, 1) such
that (p∗)β = τpβ + (1− τ)(p′)β, then every p ∈ E satisfiesREα,β(p, q) < ∞ and

REα,β(p, q) = REα,β(p, p∗) +REα,β(p∗, q), and REα,β(p′, q) = REα,β(p′, p∗) +REα,β(p∗, q).

Corollary 1 (Uniqueness of Forward (α, β)-Projection). Consider the set E ⊂ S such that Eβ is convex and
fix q ∈ Lα(µ). If a forward (α, β)-projection of q on E exists, it must be unique a.s.[µ].

Proof. Suppose p∗1 and p∗2 are two forward (α, β)-projection of q on E. Then, by definition,
REα,β(p∗1 , q) = REα,β(p∗2 , q) < ∞. Applying Theorem 5 with p∗ = p∗1 and p = p∗2 , we get

REα,β(p∗2 , q) ≥ REα,β(p∗2 , p∗1) +REα,β(p∗1 , q).

Hence REα,β(p∗2 , p∗1) ≤ 0 or REα,β(p∗2 , p∗1) = 0 by non-negativity of relative entropy, which further
implies that p∗1 = p∗2 a.s.[µ] by Proposition 1.

Next we will show the existence of the forward (α, β)-projection under suitable conditions.
We need to use an extended Apollonius Theorem for the φ-divergence measure Dλ used in the
definition (13) of the relative (α, β)-entropy. Such a result is proved in [16] for the special case
α(1 + λ) = 1; the following lemma extends it for the general case α(1 + λ) = β ∈ R.

Lemma 2. Fix p0, p1, q ∈ Lα(µ), τ ∈ [0, 1] and α(1 + λ) = β ∈ R with α > 0 and define r satisfying

rβ =

τ

||p1||
β
α

pβ
1 + 1−τ

||p0||
β
α

pβ
0

τ

||p1||
β
α

+ 1−τ

||p0||
β
α

. (51)

Let pj,α = pα
j /
∫

pα
j dµ for j = 0, 1, and similarly qα and rα. Then, if β(β− α) > 0 we have

τDλ(p1,α, qα) + (1− τ)Dλ(p0,α, qα) ≥ τDλ(p1,α, rα) + (1− τ)Dλ(p0,α, rα) + Dλ(rα, qα), (52)

but the inequality gets reversed if β(β− α) < 0.
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Proof. By (37), we get

τDλ(p1,α, qα) + (1− τ)Dλ(p0,α, qα)− τDλ(p1,α, rα)− (1− τ)Dλ(p0,α, rα)

= sign(βλ)τ
∫ ( p1

||p1||α

)β [
(qα)

−λ − (rα)
−λ
]

dµ + sign(βλ)(1− τ)
∫ ( p0

||p0||α

)β [
(qα)

−λ − (rα)
−λ
]

dµ

= sign(βλ)||r||βα

[
τ

||p1||
β
α

+
1− τ

||p0||
β
α

] ∫ ( r
||r||α

)β [
(qα)

−λ − (rα)
−λ
]

dµ

= sign(βλ)||r||βα

[
τ

||p1||
β
α

+
1− τ

||p0||
β
α

]
Dλ(Rα, Qα).

Then the Lemma follows by an application of the extended Minkowski’s inequalities (32) and (33)
from Lemma 1.

We now present the sufficient conditions for the existence of the forward (α, β)-projection in the
following theorem.

Theorem 6 (Existence of Forward (α, β)-Projection). Fix α > 0 and β ∈ R with β 6= α and q ∈ Lα(µ).
Given any set E ⊂ S for which Eβ is convex and closed and REα,β(p, q) < ∞ for some p ∈ E, a forward
(α, β)-projection of q on E always exists (and it is unique by Corollary 1).

Proof. We prove it separately for the cases βλ > 0 and βλ < 0, extending the arguments from [16].
The case βλ = 0 can be obtained from these two cases by standard limiting arguments and hence
omitted for brevity.

The Case βλ > 0:

Consider a sequence {pn} ⊂ E such that Dλ(pn,α, qα) < ∞ for each n and Dλ(pn,α, qα) →
inf
p∈E

Dλ(pα, qα) as n→ ∞. Then, by Lemma 2 applied to pm and pn with τ = 1/2, we get

1
2

Dλ(pm,α, qα) +
1
2

Dλ(pn,α, qα) ≥
1
2

Dλ(pm,α, rm,n,α) +
1
2

Dλ(pn,α, rm,n,α) + Dλ(rm,n,α, qα), (53)

where rm,n is defined by

rβ
m,n =

τ

||pm ||
β
α

pβ
m + 1−τ

||pn ||
β
α

pβ
n

τ

||pm ||
β
α

+ 1−τ

||pn ||
β
α

. (54)

Note that, since Eβ is convex, rm,n ∈ Eβ and so rm,n ∈ E. Also, using the non-negativity of divergence,
(53) leads to

0 ≤ 1
2

Dλ(pm,α, rm,n,α) +
1
2

Dλ(pn,α, rm,n,α) ≤
1
2

Dλ(pm,α, qα) +
1
2

Dλ(pn,α, qα)− Dλ(rm,n,α, qα). (55)

Taking limit as m, n → ∞, one can see that
[

1
2 Dλ(pm,α, qα) +

1
2 Dλ(pn,α, qα)− Dλ(rm,n,α, qα)

]
→ 0

and hence [Dλ(pm,α, rm,n,α) + Dλ(pn,α, rm,n,α)] → 0. Thus, Dλ(pm,α, rm,n,α) → 0 as m, n → ∞ by
non-negativity. This along with a generalization of Pinker’s inequality for φ-divergence ([100],
Theorem 1) gives

lim
m,n→∞

||pm,α − rm,n,α||T = 0, (56)
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whenever λ(1 + λ) > 0 (which is true since βλ > 0); here || · ||T denotes the total variation norm.
Now, by triangle inequality

||pm,α − pn,α||T ≤ ||pm,α − rm,n,α||T + ||pn,α − rm,n,α||T → 0, as m, n→ ∞.

Thus, {pn,α} is Cauchy in L1(µ) and hence converges to some g ∈ L1(µ), i.e.,

lim
n→∞

∫
|pn,α − g|dµ = 0, (57)

and g is a probability density with respect to µ since each pn is so. Also, (57) implies that pn,α → g
in [µ]-measure and hence p1/α

n,α → g1/α in Lα(µ) by an application of generalized dominated
convergence theorem.

Next, as in the proof of ([16], Theorem 8), we can show that ||pn||α is bounded and hence
||pn||α → c for some c > 0, possibly working with a subsequence if needed. Thus we have pn =

||pn||α p1/α
n,α → cg1/α in Lα(µ). However, since Eβ is closed, we have E is closed and hence cg1/α = p∗

for some p∗ ∈ E. Further, since
∫

gdµ = 1, we must have c = ||p∗||α and hence g = p∗α. Since pn → p∗

and p∗ ∈ E, Proposition 5 implies that

REα,β(p∗, q) ≤ lim inf
n→∞

REα,β(pn, q) = inf
p∈E
REα,β(p, q) ≤ REα,β(p∗, q),

where the second equality follows by continuity of the function f (u) = (βλ)−1 log(sign(βλ)u + 1),
definitions of pn sequence and (13). Hence, we must haveREα,β(p∗, q) = inf

p∈E
REα,β(p, q), i.e., p∗ is a

forward (α, β)-projection of q on E.

The Case βλ < 0:

Note that, in this case, we must have 0 < β < α, since α > 0. Then, using (29), we can see that

inf
p∈E
REα,β(p, q) =

1
βλ

log

[
sup
p∈E

∫ ( p
||p||α

)β ( q
||q||α

)α−β

dµ

]

=
1

βλ
log

[
sup
h∈Ẽ

∫
hgdµ

]
, (58)

where g =
(

q
||q||α

)α−β
∈ L α

α−β
(µ) and

Ẽ =

{
s
(

p
||p||α

)β

: p ∈ E, s ∈ [0, 1]

}
⊂ Lα/β(µ).

Now, since Eβ and hence E is closed, one can show that Ẽ is also closed; see, e.g., the proof of ([16],

Theorem 8). Next, we will show that Ẽ is also convex. For take s1

(
p1
||p1||α

)β
∈ Ẽ and s0

(
p0
||p0||α

)β
∈ Ẽ

for some s0, s1 ∈ [0, 1] and p0, p1 ∈ E, and take any τ ∈ [0, 1]. Note that

τs1

(
p1

||p1||α

)β

+ (1− τ)s0

(
p0

||p0||α

)β

= sτ

(
pτ

||pτ ||α

)β

,

where

pβ
τ =

τs1

(
p1
||p1||α

)β
+ (1− τ)s0

(
p0
||p0||α

)β

τs1

||p1||
β
α

+ (1−τ)s0

||p0||
β
α

, and sτ =

[
τs1

||p1||
β
α

+
(1− τ)s0

||p0||
β
α

]
||pτ ||βα .



Entropy 2018, 20, 347 19 of 32

However, by convexity of Eβ, pτ ∈ E and also 0 ≤ sτ ≤ 1 by the extended Minkowski inequality (33).

Therefore, sτ

(
pτ

||pτ ||α

)β
∈ Ẽ and hence Ẽ is convex.

Finally, since 0 < β < α, Lα/β(µ) is a reflexive Banach space and hence the closed and convex
Ẽ ⊂ Lα/β(µ) is also closed in the weak topology. So, the unit ball is compact in the weak topology by
the Banach-Alaoglu theorem and hence its closed subset Ẽ is also weakly compact. However, since g
belongs to the dual space of Lα/β(µ), the linear functional h 7→

∫
hgdµ is continuous in weak topology

and also increasing in s. Hence its supremum over Ẽ is attained at s = 1 and some p∗ ∈ E, which is
the required forward (α, β)-projection.

Before concluding this section, we will present one example of the forward (α, β)-projection onto
a transformed-linear family of distributions.

Example 3 (An example of the forward (α, β)-projection). Fix α > 0, β ∈ R\{0, α} and q ∈ Lα(µ)

related to the measure Q. Consider measurable functions fi : Ω 7→ R for i ∈ I, an index set, and the family
of distributions

L∗β =

{
P ∈ S∗ :

∫
fγdPβ = 0

}
⊂ S∗.

Let us denote the corresponding µ-density set by Lβ =
{

p = dP
dµ : P ∈ L∗β

}
. We assume that, L∗β is non-empty,

every P ∈ L∗β is absolute continuous with respect to µ and Lβ ⊂ Lα(µ).
Then, p∗ is the forward (α, β)-projection of q on Lβ if and only if there exists a function g in the

L1(Qβ)-closure of the linear space spanned by { fi : i ∈ I} and a subset N ⊂ Ω such that, for every P ∈ L∗β{
P(N) = 0 if α < β,
c
∫

N qα−βdPβ ≤
∫

Ω\N gdPβ if α > β,

with c =
∫
(p∗)αdµ∫

(p∗)βqα−βdµ
and p∗ satisfies

p∗(x)α−β = cq(x)α−β + g(x), if x /∈ N,

p∗(x) = 0, if x ∈ N.

The proof follows by extending the arguments of the proof of ([16], Theorem 11) and hence it is left as an exercise
to the readers.

Remark 6. Note that, at the special case β = 1, L∗1 is a linear family of distributions and the above example
coincides with ([16], Theorem 11) on the forward projection of relative α-entropy on L∗1 . However, it is still an
open question to derive the forward (α, β)-projection on L∗1 .

5. Statistical Applications: The Minimum Relative Entropy Inference

5.1. The Reverse Projection and Parametric Estimation

As in the case of the forward projection of a relative entropy measure, we can also define the
reverse projection by minimizing it with respect to the second argument over a convex set E keeping
the first argument fixed. More formally, we use the following definition.

Definition 4 (Reverse (α, β)-Projection). Fix p ∈ Lα(µ) and let E ⊂ S with REα,β(p, q) < ∞ for some
q ∈ E. Then, q∗ ∈ E is called the reverse projection of the relative (α, β)-entropy or simply the reverse
(α, β)-projection (or reverse LSD projection) of p on E if it satisfies the relation

REα,β(p, q∗) = inf
q∈E
REα,β(p, q). (59)
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We can get sufficient conditions for the existence and uniqueness of the reverse (α, β)-projection
directly from Theorem 6 and the fact that REα,β(p, q) = REα,α−β(q, p); this is presented in the
following theorem.

Theorem 7 (Existence and Uniqueness of Reverse (α, β)-Projection). Fix α > 0 and β ∈ R with β 6= α

and p ∈ Lα(µ). Given any set E ⊂ S for which Eα−β is convex and closed and REα,β(p, q) < ∞ for some
q ∈ E, a reverse (α, β)-projection of p on E exists and is unique.

The reverse projection is mostly used in statistical inference where we fix the first argument of a
relative entropy measure (or divergence measure) at the empirical data distribution and minimize the
relative entropy with respect to the model family of distributions in its second argument. The resulting
estimator, commonly known as the minimum distance or minimum divergence estimator, yields the
reverse projection of the observed data distribution on the family of model distributions with respect to
the relative entropy or divergence under consideration. This approach was initially studied by [9–13]
to obtain the popular maximum likelihood estimator as the reverse projection with respect to the
relative entropy in (2). More recently, this approach has become widely popular, but with more general
relative entropies or divergence measures, to obtain robust estimators against possible contamination
in the observed data. Let us describe it more rigorously in the following for our relative (α, β)-entropy.

Suppose we have independent and identically distributed data X1, . . . , Xn from a true distribution
G having density g with respect to some common dominating measure µ. We model g by a parametric
model family of µ-densities F = { fθ : θ ∈ Θ ⊆ Rp}, where it is assumed that both g and fθ have the
same support independent of θ. Our objective is to infer about the unknown parameter θ. In minimum
divergence inference, an estimator of θ is obtained by minimizing the divergence measure between (an
estimate of) g and fθ with respect to θ ∈ Θ. Maji et al. [78] have considered the LSD (or equivalently
the relative (α, β)-entropy) as the divergence under consideration and defined the corresponding
minimum divergence functional at G, say Tα,β(G), through the relation

REα,β

(
g, fTα,β(G)

)
= min

θ∈Θ
REα,β(g, fθ), (60)

whenever the minimum exists. We will refer to Tα,β(G) as the minimum relative (α, β)-entropy
(MRE) functional, or the minimum LSD functional in the language of [78,79]. Note that, if g ∈ F ,
i.e., g = fθ0 for some θ0 ∈ Θ, then we must have Tα,β(G) = θ0. If g /∈ F , we call Tα,β(G) as
the “best fitting parameter" value, since fTα,β(G) is the closest model element to g in the LSD sense.
In fact, for g /∈ F , Tα,β(G) is nothing but the reverse (α, β)-projection of the true density g on the
model family F , which exists and is unique under the sufficient conditions of Theorem 7. Therefore,
under identifiability of the model family F we get the existence and uniqueness of the MRE functional,
which is presented in the following corollary. Although this estimator was first introduced by [78] in
terms of the LSD, the results concerning the existence of the estimate were not provided.

Corollary 2 (Existence and Uniqueness of the MRE Functional). Consider the above parametric estimation
problem with g ∈ Lα(µ) and F ⊂ Lα(µ). Fix α > 0 and β ∈ R with β 6= α and assume that the model family
F is identifiable in θ.

1. Suppose g = fθ0 for some θ0 ∈ Θ. Then the unique MRE functional is given by Tα,β(G) = θ0.
2. Suppose g /∈ F . If F α−β is convex and closed and REα,β(g, fθ) < ∞ for some θ ∈ Θ, the MRE

functional Tα,β(G) exists and is unique.
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Further, under standard differentiability assumptions, we can obtain the estimating equation of
the MRE functional Tα,β(G) as given by[∫

f α
θ uθdµ

] [∫
f α−β
θ gβdµ

]
=

[∫
f α−β
θ gβuθdµ

] [∫
f α
θ dµ

]
, (61)

where uθ(x) = ∂
∂θ ln fθ(x). It is important to note that, at β = α = 1, the MRE functional T1,1(G)

coincides with the maximum likelihood functional since RE1,1 = RE , the KLD measure. Based on
the estimating Equation (61), Maji et al. [78] extensively studied the theoretical robustness properties
of the MRE functional against gross-error contamination in data through the higher order influence
function analysis. The classical first order influence function was seen to be inadequate for this purpose;
it becomes independent of β at the model but the real-life performance of the MRE functional critically
depends on both α and β [78,79] as we will also see in Section 5.2.

In practice, however, the true data generating density is not known and so we need to use some
empirical estimate in place of g and the resulting value of the MRE functional is called the minimum
relative (α, β)-entropy estimator (MREE) or the minimum LSD estimator in the terminology of [78,79].
Note that, when the data are discrete and µ is the counting measure, one can use a simple estimate
of g given by the relative frequencies rn(x) = 1

n ∑n
i=1 I(Xi = x), where I(A) is the indicator function

of the event A; the corresponding MREE is then obtained by solving (61) with g(x) replaced by rn(x)
and integrals replaced by sums over the discrete support. Asymptotic properties of this MREE under
discrete models are well-studied by [78,79] for the tuning parameters α ≥ 1 and β ∈ R; the same line
of argument can be used to extend them also for the cases α ∈ (0, 1) in a straightforward manner.

However, in case of continuous data, there is no such simple estimator available to use in
place of g unless β = 1. When β = 1, the estimating Equation (61) depends on g through the
terms

∫
f α−1
θ gdµ =

∫
f α−1
θ dG and

∫
f α−1
θ uθgdµ =

∫
f α−1
θ uθdG; so we can simply use the empirical

distribution function Gn in place of G and solve the resulting equation to obtain the corresponding
MREE. However, for β 6= 1, we must use a non-parametric kernel estimator gn of g in (61) to obtain
the MREE under continuous models; this leads to complications including bandwidth selection while
deriving the asymptotics of the resulting MREE. One possible approach to avoid such complications
is to use the smoothed model technique, which has been applied in [108] for the case of minimum
φ-divergence estimators. Another alternative approach has been discussed in [109,110]. However,
the detailed analyses of the MREE under the continuous model, in either of the above approaches, are
yet to be studied so far.

5.2. Numerical Illustration: Binomial Model

Let us now present numerical illustrations under the common binomial model to study the
finite sample performance of the MREEs. Along with the known properties of the MREE at α ≥ 1
(i.e., the minimum LSD estimators with τ ≥ 0 from [78,79]), here we will additionally explore their
properties in case of α ∈ (0, 1) and for the new divergencesRE∗β(P, Q) related to α = 0.

Suppose X1, . . . , Xn are random observations from a true density g having support χ =

{0, 1, 2, . . . , m} for some positive integer m. We model g by the Binomial(m, θ) densities fθ(x) =

(n
x)θ

x(1− θ)m−x for x ∈ χ and θ ∈ [0, 1]. Here an estimate ĝ of g is given by the relative frequency
ĝ(x) = rn(x). For any α > 0 and β ∈ R, the relative (α, β)-entropy between ĝ and fθ is given by

REα,β(ĝ, fθ) =
1
β

log

[
m

∑
x=0

(
n
x

)α ( θ

1− θ

)αx
(1− θ)mα

]
+

1
α− β

log

[
m

∑
x=0

rn(x)α

]

− α

β(α− β)
log

[
m

∑
x=0

(
n
x

)α−β ( θ

1− θ

)(α−β)x
(1− θ)m(α−β)rn(x)β

]
,
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which can be minimized with respect to θ ∈ [0, 1] to obtain the corresponding MREE of θ. Note that, it
is also the solution of the estimating Equation (61) with g(x) replaced by the relative frequency rn(x).
However, in this example, uθ(x) = x−mθ

θ(1−θ)
and hence the MREE estimating equation simplifies to

∑m
x=0 (

n
x)

α(x−mθ)
(

θ
1−θ

)αx

∑m
x=0 (

n
x)

α
(

θ
1−θ

)αx =
∑m

x=0(x−mθ)(n
x)

α−β
(

θ
1−θ

)(α−β)x
rn(x)β

∑m
x=0 (

n
x)

α−β
(

θ
1−θ

)(α−β)x
rn(x)β

. (62)

We can numerically solve the above estimating equation over θ ∈ [0, 1], or equivalently over the
transformed parameter p := θ

1−θ ∈ [0, ∞], to obtain the corresponding MREE (i.e., the minimum
LSD estimator).

We simulate random sample of size n from a binomial population with true parameter θ0 = 0.1
with m = 10 and numerically compute the MREE. Repeating this exercise 1000 times, we can obtain an
empirical estimate of the bias and the mean squared error (MSE) of the MREE of 10θ (since θ is very
small in magnitude). Tables 1 and 2 present these values for sample sizes n = 20, 50, 100 and different
values of tuning parameters α > 0 and β > 0; their existences are guaranteed by Corollary 2. Note that
the choice α = 1 = β gives the maximum likelihood estimator whereas β = 1 only yields the minimum
LDPD estimator with parameter α. Next, in order to study the robustness, we contaminate 10% of each
sample by random observations from a distant binomial distribution with parameters θ = 0.9 and
m = 10 and repeat the above simulation exercise; the resulting bias and MSE for the contaminated
samples are given in Tables 3 and 4. Our observations from these tables can be summarized as follows.

• Under pure data with no contamination, the maximum likelihood estimator (the MREE at α =

1 = β) has the least bias and MSE as expected, which further decrease as sample size increases.
• As we move away from α = 1 and β = 1 in either direction, the MSEs of the corresponding

MREEs under pure data increase slightly; but as long as the tuning parameters remain within a
reasonable window of the (1, 1) point and neither component is very close to zero, this loss in
efficiency is not very significant.

• When α or β approaches zero, the MREEs become somewhat unstable generating comparatively
larger MSE values. This is probably due to the presence of inliers under the discrete binomial
model. Note that, the relative (α, β)-entropy measures with β ≤ 0 are not finitely defined for the
binomial model if there is just only one empty cell present in the data.

• Under contamination, the bias and MSE of the maximum likelihood estimator increase
significantly but many MREEs remains stable. In particular, the MREEs with β ≥ α and the
MREEs with β close to zero are non-robust against data contamination. Many of the remaining
members of the MREE family provide significantly improved robust estimators.

• In the entire simulation, the combination (α = 1, β = 0.7) appears to provide the most stable
results. In Table 4, the best results are available along a tubular region which moves from the top
left-hand to the bottom right-hand of the table subject to the conditions that α > β and none of
them are very close to zero.

• Based on our numerical experiments, the optimum range of values of α, β providing the most
robust minimum relative (α, β)-estimators are α = 0.9, 1, 0.5 ≤ β ≤ 0.7 and 1 < α ≤ 1.5,
0.5 ≤ β < 1. Note that this range includes the estimators based on the logarithmic power
divergence measure as well as the new LSD measures with α < 1.

• Many of the MREEs, which belong to the optimum range mentioned in the last item and are close
to the combination α = 1 = β, generally also provide the best trade-off between efficiency under
pure data and robustness under contaminated data.
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In summary, many MREEs provide highly robust estimators under data contamination along
with only a very small loss in efficiency under pure data. These numerical findings about the finite
sample behavior of the MREEs under the binomial model and the corresponding optimum range of
tuning parameters, for the subclass with α ≥ 1, are consistent with the findings of [78,79] who used
a Poisson model. Additionally, our illustrations shed lights on the properties of the MREEs at α < 1
as well and show that some MREEs in this range, e.g., at α = 0.9 and β = 0.5, also yield optimum
estimators in terms of the dual goal of high robustness and high efficiency.

Table 1. Bias of the MREE for different α, β and sample sizes n under pure data.

β
α

0.3 0.5 0.7 0.9 1 1.1 1.3 1.5 1.7 2

n = 20

0.1 −0.210 −0.416 −0.397 −0.311 −0.277 −0.227 −0.130 0.021 0.024 0.122
0.3 2.218 −0.273 −0.229 −0.160 −0.141 −0.115 −0.096 −0.068 −0.036 0.034
0.5 −0.127 0.001 −0.125 −0.088 −0.082 −0.069 −0.058 −0.042 −0.032 −0.019
0.7 −0.093 −0.110 −0.010 −0.046 −0.044 −0.029 −0.023 −0.031 −0.023 −0.020
0.9 −0.066 −0.056 −0.028 −0.001 −0.015 −0.002 0.008 0.000 −0.006 −0.013

1 −0.041 −0.045 −0.017 0.005 −0.002 0.011 0.014 0.012 0.008 −0.003
1.3 −0.035 −0.013 0.023 0.036 0.030 0.039 0.088 0.039 0.035 0.021
1.5 −0.003 0.012 0.048 0.053 0.047 0.058 0.053 0.170 0.048 0.035
1.7 0.012 0.028 0.058 0.067 0.061 0.070 0.070 0.058 0.269 0.045

2 0.008 0.049 0.078 0.084 0.078 0.086 0.087 0.078 0.069 0.444

n = 50

0.1 −0.085 −0.301 −0.254 −0.183 −0.156 −0.106 −0.002 0.114 0.292 0.245
0.3 1.829 −0.176 −0.150 −0.078 −0.066 −0.042 −0.045 −0.014 0.005 0.030
0.5 −0.056 0.099 −0.054 −0.037 −0.033 −0.026 −0.019 −0.009 −0.007 −0.005
0.7 −0.009 −0.059 0.035 −0.012 −0.013 −0.005 −0.002 −0.009 −0.002 0.006
0.9 −0.031 −0.031 −0.009 0.012 0.002 0.013 0.021 0.015 0.008 0.004

1 0.014 −0.023 0.000 0.011 0.009 0.019 0.022 0.020 0.018 0.004
1.3 0.002 −0.004 0.022 0.034 0.027 0.030 0.084 0.034 0.035 0.028
1.5 0.009 0.023 0.038 0.044 0.037 0.042 0.034 0.174 0.040 0.032
1.7 0.028 0.029 0.049 0.054 0.047 0.050 0.047 0.036 0.277 0.039

2 0.040 0.051 0.065 0.068 0.059 0.063 0.060 0.051 0.041 0.464

n = 100

0.1 −0.028 −0.216 −0.175 −0.113 −0.103 −0.063 0.036 0.169 0.452 0.349
0.3 1.874 −0.135 −0.125 −0.052 −0.044 −0.022 −0.038 −0.023 0.009 0.024
0.5 −0.002 0.146 −0.034 −0.026 −0.025 −0.021 −0.019 -0.001 −0.008 −0.009
0.7 0.000 −0.042 0.045 −0.009 −0.013 −0.009 0.000 −0.009 −0.008 −0.001
0.9 0.007 −0.025 −0.015 0.001 −0.004 0.005 0.009 0.013 −0.001 −0.003

1 0.014 −0.010 −0.007 −0.001 −0.001 0.005 0.009 0.014 0.010 0.009
1.3 0.036 0.010 0.006 0.015 0.010 0.010 0.065 0.012 0.019 0.014
1.5 0.041 0.023 0.018 0.022 0.017 0.018 0.006 0.158 0.016 0.015
1.7 0.052 0.027 0.028 0.032 0.024 0.025 0.016 0.009 0.267 0.019

2 0.056 0.043 0.042 0.043 0.033 0.034 0.023 0.020 0.013 0.454
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Table 2. MSE of the MREE for different α, β and sample sizes n under pure data.

β
α

0.3 0.5 0.7 0.9 1 1.1 1.3 1.5 1.7 2

n = 20

0.1 0.347 0.251 0.222 0.145 0.122 0.106 0.098 0.242 0.206 0.240
0.3 7.506 0.147 0.100 0.069 0.063 0.059 0.059 0.062 0.098 0.169
0.5 0.238 0.076 0.067 0.051 0.049 0.047 0.050 0.055 0.064 0.101
0.7 0.177 0.091 0.056 0.045 0.044 0.043 0.045 0.055 0.056 0.071
0.9 0.163 0.085 0.061 0.045 0.042 0.043 0.047 0.053 0.058 0.064

1 0.171 0.085 0.064 0.045 0.042 0.045 0.048 0.053 0.058 0.063
1.3 0.148 0.082 0.065 0.052 0.046 0.046 0.061 0.055 0.058 0.065
1.5 0.146 0.085 0.069 0.056 0.050 0.050 0.051 0.087 0.061 0.065
1.7 0.150 0.085 0.070 0.060 0.053 0.055 0.055 0.056 0.134 0.066

2 0.132 0.091 0.076 0.065 0.059 0.060 0.060 0.060 0.061 0.265

n = 50

0.1 0.334 0.170 0.118 0.066 0.044 0.037 0.067 0.195 0.401 0.275
0.3 5.050 0.093 0.051 0.026 0.021 0.020 0.024 0.027 0.035 0.050
0.5 0.196 0.059 0.030 0.018 0.017 0.018 0.021 0.026 0.030 0.037
0.7 0.191 0.053 0.031 0.018 0.016 0.017 0.023 0.025 0.028 0.035
0.9 0.131 0.050 0.029 0.019 0.016 0.018 0.022 0.025 0.028 0.029

1 0.154 0.044 0.031 0.018 0.017 0.020 0.022 0.024 0.027 0.031
1.3 0.112 0.046 0.029 0.023 0.018 0.018 0.033 0.028 0.029 0.031
1.5 0.108 0.049 0.033 0.024 0.020 0.022 0.022 0.059 0.031 0.031
1.7 0.119 0.049 0.036 0.026 0.022 0.023 0.025 0.025 0.108 0.033

2 0.108 0.053 0.040 0.030 0.025 0.026 0.028 0.029 0.028 0.249

n = 100

0.1 0.295 0.139 0.085 0.038 0.022 0.022 0.068 0.201 0.583 0.403
0.3 4.770 0.075 0.039 0.016 0.011 0.011 0.017 0.019 0.023 0.035
0.5 0.189 0.061 0.022 0.011 0.009 0.012 0.016 0.017 0.022 0.023
0.7 0.141 0.038 0.024 0.010 0.009 0.010 0.014 0.017 0.018 0.021
0.9 0.123 0.035 0.021 0.011 0.009 0.011 0.012 0.015 0.019 0.021

1 0.122 0.036 0.019 0.010 0.009 0.011 0.013 0.016 0.017 0.020
1.3 0.114 0.035 0.019 0.012 0.009 0.010 0.021 0.016 0.017 0.019
1.5 0.105 0.037 0.019 0.012 0.010 0.011 0.012 0.045 0.017 0.020
1.7 0.097 0.034 0.021 0.014 0.011 0.012 0.014 0.014 0.092 0.020

2 0.088 0.039 0.023 0.016 0.012 0.013 0.013 0.016 0.016 0.227

Table 3. Bias of the MREE for different α, β and sample sizes n under contaminated data.

β
α

0.3 0.5 0.7 0.9 1 1.1 1.3 1.5 1.7 2

n = 20

0.1 −0.104 −0.382 −0.340 −0.243 −0.131 −0.071 0.090 0.188 0.295 0.379
0.3 3.287 −0.157 −0.187 −0.135 −0.113 −0.091 −0.045 0.013 0.107 0.237
0.5 2.691 1.483 −0.024 −0.067 −0.069 −0.043 −0.031 −0.010 −0.003 0.051
0.7 3.004 2.546 1.168 0.036 −0.017 −0.008 0.003 0.006 0.005 0.010
0.9 3.133 2.889 2.319 0.917 0.222 0.058 0.019 0.023 0.017 0.022

1 3.183 2.986 2.558 1.619 0.805 0.214 0.039 0.030 0.031 0.019
1.3 3.239 3.121 2.902 2.550 2.262 1.872 0.613 0.077 0.049 0.040
1.5 3.255 3.170 3.012 2.775 2.606 2.396 1.676 0.571 0.069 0.051
1.7 3.271 3.194 3.071 2.903 2.790 2.661 2.256 1.489 0.578 0.057

2 3.289 3.216 3.122 3.012 2.942 2.865 2.649 2.305 1.690 0.682
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Table 3. Cont.

β
α

0.3 0.5 0.7 0.9 1 1.1 1.3 1.5 1.7 2

n = 50

0.1 0.384 −0.170 −0.189 −0.132 −0.054 0.024 0.104 0.171 0.261 0.382
0.3 3.549 0.000 −0.122 −0.086 −0.077 −0.053 −0.023 0.029 0.054 0.118
0.5 2.875 1.771 0.040 −0.048 −0.048 −0.029 −0.013 −0.015 −0.017 0.003
0.7 3.091 2.698 1.294 0.048 −0.010 −0.014 −0.001 0.004 0.001 −0.005
0.9 3.205 2.945 2.379 0.939 0.226 0.045 0.009 0.013 0.012 0.013

1 3.240 3.011 2.612 1.609 0.793 0.196 0.018 0.014 0.021 0.012
1.3 3.316 3.171 2.925 2.548 2.239 1.819 0.554 0.034 0.020 0.020
1.5 3.346 3.223 3.034 2.780 2.596 2.363 1.589 0.502 0.035 0.022
1.7 3.362 3.254 3.100 2.916 2.791 2.643 2.199 1.383 0.518 0.025

2 3.373 3.281 3.162 3.035 2.955 2.865 2.622 2.236 1.575 0.650

n = 100

0.1 0.610 −0.138 −0.105 −0.031 0.002 0.040 0.117 0.184 0.270 0.381
0.3 3.906 0.136 −0.071 −0.050 −0.052 −0.028 −0.028 −0.008 0.023 0.066
0.5 2.927 1.934 0.101 −0.034 −0.027 −0.016 0.006 0.000 −0.003 −0.008
0.7 3.122 2.761 1.348 0.066 0.004 −0.007 0.007 0.011 0.012 0.000
0.9 3.241 2.955 2.406 0.958 0.238 0.047 0.004 0.014 0.022 0.017

1 3.289 3.045 2.651 1.622 0.798 0.202 0.010 0.011 0.016 0.023
1.3 3.362 3.204 2.944 2.567 2.245 1.812 0.533 0.028 0.015 0.022
1.5 3.384 3.269 3.058 2.802 2.610 2.369 1.567 0.485 0.027 0.018
1.7 3.405 3.305 3.133 2.940 2.811 2.658 2.196 1.357 0.504 0.018

2 3.421 3.327 3.204 3.065 2.980 2.886 2.633 2.234 1.541 0.637

Table 4. MSE of the MREE for different α, β and sample sizes n under contaminated data.

β
α

0.3 0.5 0.7 0.9 1 1.1 1.3 1.5 1.7 2

n = 20

0.1 0.403 0.248 0.465 0.576 1.025 1.093 1.613 1.565 1.626 1.591
0.3 12.595 0.142 0.103 0.075 0.192 0.188 0.362 0.590 1.016 1.537
0.5 7.443 2.268 0.088 0.062 0.058 0.059 0.065 0.189 0.241 0.527
0.7 9.209 6.645 1.410 0.069 0.056 0.058 0.063 0.068 0.119 0.208
0.9 9.982 8.493 5.512 0.882 0.119 0.068 0.065 0.069 0.075 0.090

1 10.292 9.072 6.672 2.692 0.693 0.117 0.068 0.070 0.076 0.087
1.3 10.664 9.916 8.574 6.641 5.240 3.610 0.430 0.079 0.079 0.089
1.5 10.778 10.229 9.238 7.850 6.940 5.883 2.917 0.389 0.079 0.087
1.7 10.884 10.379 9.599 8.582 7.942 7.234 5.235 2.326 0.403 0.087

2 11.004 10.515 9.915 9.233 8.814 8.369 7.177 5.472 2.998 0.547

n = 50

0.1 1.552 0.815 0.741 0.703 0.966 1.190 1.129 1.224 1.165 1.210
0.3 14.969 0.105 0.047 0.030 0.078 0.075 0.280 0.559 0.566 0.881
0.5 8.345 3.190 0.049 0.025 0.021 0.022 0.025 0.029 0.035 0.184
0.7 9.634 7.335 1.694 0.031 0.020 0.022 0.027 0.029 0.033 0.039
0.9 10.353 8.723 5.712 0.898 0.077 0.027 0.028 0.030 0.032 0.039

1 10.578 9.126 6.871 2.619 0.645 0.067 0.027 0.030 0.033 0.039
1.3 11.069 10.129 8.608 6.548 5.064 3.359 0.329 0.033 0.034 0.038
1.5 11.263 10.457 9.268 7.787 6.801 5.648 2.576 0.279 0.032 0.038
1.7 11.371 10.655 9.676 8.567 7.854 7.051 4.908 1.968 0.298 0.037

2 11.449 10.833 10.060 9.275 8.793 8.276 6.947 5.079 2.560 0.461
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Table 4. Cont.

β
α

0.3 0.5 0.7 0.9 1 1.1 1.3 1.5 1.7 2

n = 100

0.1 2.102 0.399 0.808 0.945 0.924 0.929 0.891 1.012 1.233 1.120
0.3 17.185 0.141 0.033 0.018 0.013 0.014 0.018 0.142 0.258 0.453
0.5 8.624 3.768 0.056 0.015 0.011 0.015 0.017 0.018 0.022 0.028
0.7 9.809 7.646 1.828 0.024 0.011 0.013 0.018 0.019 0.020 0.023
0.9 10.559 8.764 5.812 0.927 0.070 0.018 0.017 0.020 0.021 0.023

1 10.870 9.312 7.058 2.648 0.645 0.057 0.017 0.019 0.021 0.023
1.3 11.342 10.306 8.691 6.619 5.068 3.312 0.297 0.020 0.020 0.023
1.5 11.494 10.727 9.379 7.880 6.845 5.646 2.484 0.251 0.021 0.021
1.7 11.632 10.960 9.848 8.675 7.932 7.101 4.866 1.873 0.272 0.022

2 11.739 11.102 10.297 9.422 8.910 8.363 6.973 5.040 2.420 0.430

5.3. Application to Testing Statistical Hypothesis

We end the paper with a very brief indication on the potential of the relative (α, β)-entropy or the
LSD measure in statistical hypothesis testing problems. The minimum possible value of the relative
entropy or divergence measure between the data and the null distribution indicates the amount of
departure from null and hence can be used to develop a statistical testing procedure.

Consider the parametric estimation set-up as in Section 5.1 with g ∈ F and fix a parameter value
θ0 ∈ Θ. Suppose we want to test the simple null hypothesis in the one sample case given by

H0 : θ = θ0 against H1 : θ 6= θ0.

Maji et al. [78] have developed the LSD-based test statistics for the above testing problem as given by

T(1)
n,α,β = 2nREα,β( fθ̂α,β

, fθ0), (63)

where θ̂α,β is the MREE with parameters α and β. [78,79] have also developed the LSD-based test for a
simple two-sample problem where two independent samples of sizes n1 and n2 are given from true
densities fθ1 , fθ2 ∈ F , respectively and we want to test for the homogeneity of the two samples trough
the hypothesis

H0 : θ1 = θ2 against H1 : θ1 6= θ2.

The proposed test statistics for this two-sample problem has the form

T(2)
n,α,β =

2n1n2

n1 + n2
REα,β( f(1) θ̂α,β

, f(2) θ̂α,β
), (64)

where (1) θ̂α,β and (2) θ̂α,β are the MREEs of θ1 and θ2, respectively, obtained from the two
samples separately Note that, at α = β = 1, both the test statistics in (63) and (64) become
asymptotically equivalent to the corresponding likelihood ratio tests under the respective null
hypothesis. Maji et al. [78,79] have studied the asymptotic properties of these two tests, which
have asymptotic null distributions as linear combinations of chi-square distributions. They have
also numerically illustrated the benefits of these LSD or relative (α, β)-entropy-based tests, although
with tuning parameters α ≥ 1 only, to achieve robust inference against possible contamination in the
sample data.

The same approach can also be used to develop robust tests for more complex hypothesis testing
problems based on the relative (α, β)-entropy or the LSD measures, now with parameters α > 0,
and also using the new divergencesRE∗β(·, ·). For example, consider the above one sample set-up and
a subset Θ0 ⊂ Θ and let we are interested in testing the composite hypothesis
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H0 : θ ∈ Θ0 against H1 : θ /∈ Θ0.

with similar motivation from (63) and (64), we can construct relative entropy or LSD-based test statistics
for testing the above composite hypothesis as given by

T̃n,α,β
(1)

= 2nREα,β( fθ̂α,β
, fθ̃α,β

), (65)

where θ̃α,β is the restricted MREE with parameters α and β obtained by minimizing the relative
entropy over θ ∈ Θ0 and θ̂α,β is the corresponding unrestricted MREE obtained by minimizing over
θ ∈ Θ. It will surely be of significant interest to study the asymptotic and robustness properties of
this relative entropy-based test for the above composite hypothesis under one sample or even more
general hypotheses with two or more samples. However, considering the length of the present paper,
which is primarily focused on the geometric properties of entropies and relative entropies, we have
deferred the detailed analyses of such MREE-based hypothesis testing procedures in a future report.

6. Conclusions

We have explored the geometric properties of the LSD measures through a new information
theoretic formulation when we develop this divergence measure as a natural extension of the relative
α-entropy; we refer to it as the two-parameter relative (α, β)-entropy. It is shown to be always
lower semicontinuous in both the arguments, but is continuous in its first argument only if α >

β > 0. We also proved that the relative (α, β)-entropy is quasi-convex in both its arguments after a
suitable (different) transformation of the domain space and derive an extended Pythagorean relation
under these transformations. Along with the study of its forward and reverse projections, statistical
applications are also discussed.

It is worthwhile to note that the information theoretic divergences can also be used to define
new measures of robustness and efficiency of a parameter estimate; one can then obtain the optimum
robust estimator, along Hampel’s infinitesimal principle, to achieve the best trade-off between these
divergence-based summary measures [111–113]. In particular, the LDPD measure, a prominent
member of our LSD or relative (α, β)-entropy family, has been used by [113] who have illustrated
important theoretical properties including different types of equivariance of the resulting optimum
estimators besides their strong robustness properties. A similar approach can also be used with
our general relative (α, β)-entropies to develop estimators with enhanced optimality properties,
establishing a better robustness-efficiency trade-off.

The present work opens up several interesting problems to be solved in future research as already
noted throughout the paper. In particular, we recall that the relative α-entropy has an interpretation
from the problem of guessing under source uncertainty [17,71]. As an extension of relative α-entropy,
a similar information theoretic interpretation of the relative (α, β)-entropy (i.e., the LSD) is expected
and its proper interpretation will be a useful development. Additionally, we have obtained a new
extension of the Renyi entropy as a by-product and detailed study of this new entropy measure and
its potential applications may lead to a new aspect of the mathematical information theory. Also,
statistical applications of these measures need to be studied thoroughly specially for the continuous
models, where the complications of a kernel density estimator is unavoidable, and for testing complex
composite hypotheses from one or more samples. We hope to pursue some of these interesting
extensions in future.
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The following abbreviations are used in this manuscript:

KLD Kullback-Leibler Divergence
LDPD Logarithmic Density Power Divergence
LSD Logarithmic Super Divergence
GRE Generalized Renyi Entropy
MRE Minimum Relative (α, β)-entropy
MREE Minimum Relative (α, β)-entropy Estimator
MSE Mean Squared Error
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