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Abstract: Plant tannins, including hydrolysable and condensed varieties, are well known 

antioxidants in medicinal plants, foods, and edible fruits. Their diverse biological 

properties and potential for disease prevention have been demonstrated by various in 

vitro and in vivo assays. A number of ellagitannins, the largest group of hydrolysable 

tannins, have been isolated from dicotyledoneous angiosperms and characterized. This 

diverse class of tannins is sub-grouped into simple ellagitannins, C-glycosidic 

ellagitannins, complex tannins (condensates of C-glycosidic tannins with flavan-3-ol), 

and oligomers up to pentamers. This review outlines and describes the chemotaxonomic 

significance of structural features in various types of ellagitannins found in plants 

belonging to the Myrtaceae, Onagraceae, and Melastomataceae families, which are all 

included in the order Myrtales. Any biological activities that have been reported, 

including antitumor and antibacterial effects as well as enzyme inhibition, are  

also reviewed.  
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1. Introduction  

 

Plant tannins, one of the major groups of antioxidant polyphenols found in food and beverages, 

have attracted a lot of attention in recent years because of their multifunctional properties beneficial to 

human health. These diverse tannins may be divided into two large groups: condensed and 

hydrolysable. Condensed tannins are formed through the condensation of flavan-3-ols (catechins) and 

are often referred to as proanthocyanidins. Among the more than 500 hydrolysable tannins hitherto 

characterized, ellagitannins, which produce ellagic acid upon hydrolysis, constitute the largest group; 

the remaining group is gallotannins (galloylglucoses). The ellagitannins include: (1) monomeric 

ellagitannins, (2) C-glycosidic ellagitannins with an open-chain glucose core, (3) condensates of  

C-glycosidic tannins with flavan-3-ol (complex tannin), and (4) oligomers which are produced through 

intermolecular C-O or C-C bonds between monomers [1,2]. Unlike the condensed tannins that are 

widespread throughout the plant kingdom, ellagitannins have been found only in dicotyledoneous 

angiosperms. Among the plant families rich in ellagitannins are the Myrtaceae, Lythraceae, 

Onagraceae, Melastomataceae, and Combretaceae [3]. These families belong to the order Myrtales 

according to the plant classification systems of New Engler, Cronquist, and APGII (angiosperm 

phylogeny group) [4]. Ellagitannins have also been isolated from plant species of Trapaceae and 

Punicaceae, which belong to Myrtales in Cronquist’s and the New Engler’s systems. This review 

outlines and describes the chemotaxonomic significance of structural features found in various types of 

ellagitannins, focusing on representative examples found in the plants of Myrtales. Any observed 

antioxidative and antitumor effects of these ellagitannins are also reviewed.  

 

2. Monomeric Ellagitannins 

 

2.1. Simple Ellagitannins 

 

Ellagitannins are characterized by the presence of one or more hexahydroxydiphenoyl (HHDP) 

unit(s) on a glucopyranose core. The HHDP group is biosynthetically formed through intramolecular, 

oxidative C-C bond formation between neighboring galloyl groups in galloylglucoses [5]. They are 

easily hydrolysed, either enzymatically or with acid, to liberate a stable ellagic acid as the dilactone 

form of hexahydroxydiphenic acid. In addition to the HHDP group, other constituent acyl units in 

ellagitannins include a galloyl group and HHDP metabolites such as valoneoyl, 

dehydrohexahydroxydiphenoyl (DHHDP), and chebuloyl groups. Variations in the number and 

position of these acyl units on the glucose core provide a variety of analogs such as tellimagrandin I 

(1), and II (2), pedunculagin (6), casuarictin (7) [6], chebulagic acid (14), and chebulinic acid (15) [7] 

(Figure 1). Note that the chiral HHDP group at O-2/O-3 and O-4/O-6 of the glucose residue has an  

S-configuration, whereas that at O-3/O-6 has an R-configuration, as indicated by a positive and 

negative Cotton effect around 230 nm in their respective circular dichroism (CD) spectra [8].  

Representative ellagitannin monomers thus far isolated from the Myrtaceae, Melastomataceae, 

Onagraceae, Trapaceae, Combretaceae, and Punicaceae families are summarized in Figure 1 and Table 1.  
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Figure 1. Structures of monomeric ellagitannins 1–15. 
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Table 1. Ellagitannin monomers found in the Myrtales. 

Tannin  1  2  3 4 5 6 7 8 9  10 11 12 13 14 15 

Plant source [Ref]  

Trapaceae 

Trapa japonica [9] +   +  + + 

Melastomataceae 

Bredia tuberculata [10]      + + 

Heterocentron roseum [11]   +    + 

Melastoma malabathricum [12]   +   + + 

M. normale [10]   +   + + 

Tibouchina semidecandra [13]       + + + 

Myrtaceae 

Callistemon lanceolatus [14]    +  +  + 

Eucalyptus alba [15] +   +  +  + 

E. consideniana [16] +  + +  + 

E. globulus [17] + 

E. rostrata [18] + 

E. viminalis [16] + +  +  + 

Myrtus communis [19] + + 

Pimenta dioica [20]  + +  + + 

Syzygium aqueum [21]  +    + + 

S. aromaticum [22] + + + +   + 

Onagraceae 

Epilobium angustifolium [23] +  + +  + 

Oenothera erythrosepala [24] +   + 

O. laciniata [25] + 

O. tetraptera [26]  + +  + 

Combretaceae  

Combretum glutinosum [27]         + + + 

C. molle [28]         + + 

Quisqualis indica [29] + +    +  + + + 

Terminalia arborea [30]          + +  +     +  + 

T. arjuna [31]        + + + 

T. brachystemma [32]         + 

T. calamansanai [33] +  +      +  + + 

T. catappa [34]  +        +  + + + + + + + 

T. chebula [35]         + +  + + + + 

T. citrina [36]         +     + 

T. macroptera [37]        + +   + + 

T. myriocarpa [38]        + + 

T. triflora [39]          + 

Punicaceae 

Punica granatum [40]  +  +   +  + + + 
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Ellagitannins having a 4C1-glucopyranose core, e.g., 1–8, have been isolated along with gallotannins 

from various other plant families and show little chemotaxonomic significance. The considerably rare 

tannins punicalagin (9) and punicalin (10), both of which contain a gallagyl unit and were first isolated 

from the pericarps of pomegranate (Punica granatum Punicaceae) [40], were a characteristic 

component in some Terminalia species. This supports the hypothesis that Punicaceae is 

chemotaxonomically proximate to Combretaceae as classified by Cronquist and Engler. The 

punicalagin analogs tergallagin (11) and terflavins A (12) and B (13) were also isolated from T. 

chebula [35] and T. catappa [34].  

Some Terminalia species produce ellagitannins with a 1C4-glucopyranose core and a unique 

chebuloyl group, such as chebulagic acid (14) and chebulinic acid (15). Although 14 and 15 have also 

been found in plants of the Geranium [41] and Euphorbia genera [42], their co-occurrence with 9 

and/or 10 is a chemotaxonomic feature of Terminalia. 

 

2.2. C-Glycosidic Ellagitannins 

 

C-Glycosidic ellagitannins have been found in many plant families, including Lythraceae, 

Myrtaceae, Combretaceae, Melastomataceae, and Punicaceae, as well as Fagaceae, Betulaceae, 

Casuarinaceae, Rosaceae, Theaceae, and Elaeagnaceae [1]. They are categorized into two types: 

castalagin-type, which contain a flavogalloyl unit participating in the C-glucosidic linkage, such as 

castalagin (16) and its C-1 epimer, vescalagin (18), and casuarinin-type, which contain an HHDP unit, 

such as casuarinin (20) and stachyurin (21). In addition to these tannins, their metabolites, i.e., 

grandinin (19), casuariin (22), and 5-desgalloylstachyurin (23), have been isolated from various plants 

of the Myrtales (Figure 2). Lagerstroemia flos-reginea and L. speciosa (Banaba) belonging to the 

family Lythraceae are particularly rich in C-glycosidic tannins including 16, 18, and 20–23 and 

casuarinin-type metabolites including punicacortein A (24) and lagerstroemin (29). Punicacortein A 

(24) and its analogs epi-punicacortein A (25) and punicacorteins B (26)–D (28) were isolated from 

Punica granatum. Tannins 27 and 28, which both contain a gallagyl unit, were obtained together with 

punicalagin (9) from Terminalia arborea and T. macroptera, respectively.  

The plant sources of C-glycosidic ellagitannins obtained from the order Myrtales are listed in Table 2. 

 

Table 2. C-Glycosidic ellagitannins in the order Myrtales. 

Family    Plant species    C-Glycosidic tannins    Ref. 
Combretaceae  Anogeissus acuminata 16, 17, 18, 19 [43] 

Anogeissus leiocarpus 16  [44] 
 Lumnitzera racemosa 16 [45] 
  Terminalia arjuna 16, 20, 22  [31] 
 Terminalia macroptera 27 [37] 
 Terminalia arborea 28 [30] 
  Thiloa glaucocarpa 16, 18, 20, 21 [46] 
Lythraceae  Lagerstroemia flos-reginea 16, 18, 20, 21, 22, 23, 24, 29  [47] 
  Lagerstroemia speciosa 16, 18, 19, 29 [48] 
Melastomataceae  Osbeckia chinensis 20, 22, 25 [49] 
  Tibouchina semidecandra 16, 18, 20 [13] 
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Table 2. Cont. 

Myrtaceae  Callistemon lanceolatus 20 [14] 
  Eucalyptus alba 21, 22 [15] 
  Eugenia grandis 16, 18 [50] 
  Kunzea ambigua 20 [51] 
  Melaleuca squarrosa 20, 21 [52] 
  Pimenta dioica 16, 18, 20, 22 [20] 
  Siphoneugena densiflora 16, 20 [53] 
  Syzygium aqueum 16, 18, 19 [21] 
  Syzygium aromaticum 20, 22 [22] 
 Punicaceae  Punica granatum 20, 22, 25, 26, 27, 28 [40] 
 Trapaceae  Trapa japonica 20 [9] 

 

Figure 2. Structures of C-glycosidic ellagitannins 16–29. 
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2.3. Complex Tannins 

 

Complex tannins (flavono-ellagitannins) are characterized by a unique C-C condensed structure of 

C-glycosidic tannins (vescalagin-type or stachyurin-type) with flavan-3-ol (catechin or epicatechin). 

Unlike the C-glycosidic tannins, these tannins have been found in a rather limited number of plant 

species belonging to the Combretaceae, Myrtaceae, Melastomataceae, Fagaceae, and Theaceae 

families [3].  

A typical example of a vescalagin-based complex tannin, acutissimin A (30) was first isolated from 

fagaceous plants and later found in the combretaceous plant, Anogeissus acuminata var. lanceolata [43], 

and the myrtaceous plant, Syzygium aqueum [21]. Another myrtaceous plant, Psidium guajava, 

reportedly produces a diversity of complex tannins including 30 and its analogs guajavin B (31), 

psidinins A (32) and B (34), and mongolicains A (33) and B (35); and the stachyurin-based analogs 

guajavin A (36), guavins A (38), C (39) and D (40), and psidinin C (41) [54] (Figure 3). Melastoma 

malabathricum, a member of the Melastomataceae, also produces metabolites from the stachyurin-

based complex tannins malabathrins A (43), E (42), and F (44) [55].  

A stachyurin-based congener, stenophyllanin A (37), was isolated from Melaleuca squarrosa 

(Myrtaceae) [52] and Melastoma malabathricum (Melastomataceae) [55]. 

Figure 3. (a) Structures of complex tannins 30–40. (b) Structures of complex tannins 41–44. 
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Figure 3. Cont. 
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Figure 4. General oligomerization mode for the types 1 and 2. (1) examples of coupling 

mode for formation of valeoyl or its equivalent unit by C-O coupling. (2) macrocyclic 

dimer (double coupling for HHDP and galloyl). 

 

 

 

 

 

 

  

 

 

 

 

 

 

  

Figure 5. Structures of C-glycosidic ellagitannin dimers 45–48. 
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Figure 6. (a) Structures of ellagitannin oligomers 49–59. (b) Structures of ellagitannin 

oligomers 60 and 61. 
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Figure 6. Cont. 

(b)  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.2. Oligomers from the Lythraceae and Onagraceae 
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leaves of Melaleuca squarrosa, an evergreen shrub indigenous to southeastern Australia, are rich in  

C-glycosidic ellagitannins including several new oligomers such as melasquanins A (62), B (63), C 

(64), and D (65), in addition to the previously reported alienanin B (66), and casuglaunins A and B 

(67) [52] (Figures 7–9). These oligomers may be biosynthesized through C-C bond formation 

facilitated by a nucleophillic attack (a–d) of the aromatic acyl ring of casuarinin (20) on β-site of the 

C-1 benzylic cation from stachyurin (21) (Figure 8) in a similar manner to that described in  

Sections 2–3.  

Figure 7. (a) Structures of ellagitannin oligomers 62 and 66. (b) Structures of ellagitannin 

oligomers 63–65. 
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Figure 8. Coupling modes (a–d) to melasquanins A (62)–D (65). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9. Structures of ellagitannin oligomers 67 and 68. 
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The plant also yields a unique complex tannin dimer, cowaniin (68), first obtained from Cowania 

mexicana (Rosaceae) [64]. The chemical structure 68 inferred from spectral data was confirmed by 

conversion into 67 following an acid treatment. 

3.4. Oligomers from Melastomataceae 

A series of studies on plant species in six genera (Medinilla, Heterocentron, Tibouchina, Melastoma, 

Bredia, and Monochaetum) of the Melastomataceae has revealed more than 20 characteristic 

ellagitannin oligomers up to pentamers, e.g., nobotanins A–C and E–T. These oligomers share two 

common features: (1) they are essentially composed of two different monomers, casuarictin (7; C) and 

pterocaryanin C (69; PC), which are coupled alternatively to form the valoneoyl unit; and (2) the 

galloyl group of 69 can only participate in the formation of the valoneoyl group at O-5, whereas the 

HHDP groups of both monomers are susceptible to bond formation regardless of their positions [65] 

(Figure 10).  

Figure 10. Coupling mode of nobotanins. 
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These characteristics are chemotaxonomically significant relative to oligomers connected through 

the valoneoyl group, which are mostly constructed from a single monomeric component. The 

representative oligomers are nobotanins B (70; C-PC) [12], F (71; PC-C), and K (72; PC-C-PC-C), 

although 70 is the most abundant dimer in most species of this family. Nobotanin B (70) also seems to 

be a key compound from which trimers and tetramers are producible by further bonding with 7 and 69, 

as observed in nobotanins E (73; PC-C-PC) and K (72) [66] (Figure 10). The largest pentameric 

oligomers, melastoflorins A (74) through D (77), were isolated together with several dimers and 

tetramers from the Colombian shrub Monochaetum multiflorum [65] (Figure 11). 

Figure 11. (a) Structures of ellagitannin oligomers 72 and 73. (b) Structures of ellagitannin 

oligomers 74–77. 

(a) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

nobotanin E (73) 

O

CO
O
CO

HO

HO OHHO OH

O

O

O
HO

HO
HO

HO
OH

COOCH2

COO
O CO OH

OH

OH

O

CO
O
CO

HO

HO OHHO OH

OH

O

O CO OH

OH

OHCH2O

CO

OH

OH

OH
O

OHHO

OH

OC

O

CO
O
CO

HO

HO OHHO OH

OH

O

O CO OH

OH

OHCH2O

CO

OH

OH

OH
O

HO

HO

OH

CO

 

O

CO
O
CO

HO

HO OHHO OH

O

O

O
HO

HO
HO

HO
OH

COOCH2

COO
O CO OH

OH

OH

O

CO
O
CO

O

HO OHHO OH

OH

O

O CO OH

OH

OHCH2O

CO

OH

OH

OH
O

OHHO

OH

OC

OHHO

HO

CO

OO

CO
O
CO

HO

HO OHHO OH

O

OH
HO

HO
HO

HO
OH

COOCH2

COO

OH

O

CO
O
CO

HO

HO OHHO OH

OH

O

O CO OH

OH

OHCH2O

CO

OH

OH

OH
O

HO

HO

OH

CO

nobotanin K (72) 



Int. J. Mol. Sci. 2010, 11             

 

 

94

Figure 11. Cont.  

(b) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4. Structure Determination of the Oligomeric Ellagitannins 

Structure elucidation of the oligomers has generally been achieved by (1) identification of their 

constituent units by methylation of the tannin followed by methanolysis or direct acid hydrolysis, (2) 

detailed spectroscopic analyses using MS, UV and NMR spectra including 2-dimensional 1H-1H  

(or 1H-13C) COSY and 1H-detected multi-bond heteronuclear multiple quantum coherence (HMBC), 

and (3) chemical confirmation of the structure presumed on the basis of the findings from the above (1) 

and (2) by the characterization of partial hydrolysates of smaller molecule in hot water as exemplified 

for nobotanin B (70) in Figure 12. Molecular weights up to 4,000 are nowadays determined with the 

aid of electrospray mass measurement in the presence of ammonium acetate, or FABMS ([M + H]+ or 

[M + Na]+). In the NMR analyses, HMBC provides a convenient and reliable way to determine the 

position of each acyl group on the glucose core by three-bond correlations between the aromatic proton 

and glucose proton through a common ester carbonyl carbon as illustrated for melasquanin A (62) in 

Figure 13. The atropisomerism of the chiral biphenyl moiety in the molecule is directly determined 

without any degradation reaction by circular dicroism (CD) spectrum in which positive or negative 

Cotton effect at around 230 nm is diagnostic for (S)- or (R)-configuration, respectively [8]. 
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Figure 12. Chemical degradation of nobotanin B (70). 

 

 

 

 

 

 

 

 

 

Figure 13. HMBC data for melasquanin A (62). 
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tannins to various biopolymers such as enzymes, and antioxidative effects based on radical scavenging, 

are key to their diverse biological effects [1]. A survey of the biological activity of the Myrtales 

tannins using the electronic search engines SciFinder Scholar and Science Direct revealed various 

antimicrobial, antitumor, enzyme-inhibitory, and immunomodulatory effects of ellagitannins 

encountered in species of Combretaceae, Lythraceae, Myrtaceae and Onagraceae, as shown in Table 3.  

Table 3. Biological activities of ellagitannins found in the Myrtales. 

Biological activity Compound (source)  Ref. 

 Anti-Herpes simplex virus type 2 activity  casuarinin (20) (Terminalia arjuna)   [67] 

 Apoptosis in human breast adenocarcinoma MCF-7 cells  casuarinin (20) [68] 

 Antileishmanial activity  casuarinin (20), castalagin (16)   [69] 

    castalagin (16) (Anogeissus leiocarpus)   [44] 

 Antihypertensive activity (rats)  castalagin (16) (Lumnitzera racemosa)   [45] 

 corilagin, chebulinic acid (15) 

  α-Glucosidase inhibitor  casuarictin (7) (Syzygium aromaticum)  [70] 

  chebulagic acid (14) (Terminalia chebula)  [71] 

 Dual inhibitor against COX and 5-LOX chebulagic acid (14) (T. chebula)   [72] 

  Anti-inflammation in LPS-induced RAW 264.7 cells chebulagic acid (14) (T. chebula)  [73] 

  Effect on carageenan-induced inflammation  punicalagin (9), punicalin (10) (T. catappa)   [74] 

 Antioxidant and hepatoprotective effects on  punicalagin (9), punicalin (10) (T. catappa)   [75] 

acetaminophen-induced liver damage in rats  

Effect against bleomycin-induced genotoxicity in  punicalagin (9) (T. catappa)  [76] 

Chinese hamster ovary cells 

Chemopreventive effect on H-ras-transformed NIH3T3 cells  punicalagin (9) (T. catappa)   [77] 

 Inhibitory effect on HIV-1 reverse transcriptase  punicalin (10), 2-O-galloylpunicalin (T. triflora)   [39] 

 Inhibitory effect on CCl4-induced hepatotoxicity  punicalagin (9) (T. myriocarpa)   [38] 

 Activators of glucose transport in fat cells  lagerstroemin (29), reginin A (49) (L. speciosa)  [78] 

 Activation of insulin receptors  lagerstroemin (29)   [79] 

 Insulin-like glucose uptake-stimulatory/inhibitory and  lagerstroemin (29)   [80] 

adiposities differentiation inhibitory activity in 3T3-L1 cells  casuarinin (20), casuariin (22), stachyurin (21) 

 Host-mediated antitumor effect  oenothein B (54) (Oenothera erythrosepala)  [24] 

 Host-mediated antitumor  oenothein B (54) (Woodfordia fruticosa)   [56] 

   woodfordins A-C (53)  

 Inhibitor of deoxyribonucleic acid topoisomerase II  woodfruticosin [= woodfordin C (53)]   [81]  

  EBV DNA polymerase inhibitory effect  oenothein B (54) (Eugenia uniflora)   [82]  

   eugeniflorins D1, D2 (57) 

 5α-reductase, aromatase inhibitory effect  oenotheins A (59), B (54) (Epilobium sp)   [59] 

 Induction of neutral endopeptidase activity in PC-3 cells  oenothein B (54) (Epilobium angustifolium)  [83] 

 In vitro immunomodulatory effect on human mononuclear cells  cuphiin D1 (55) (Cuphea sp)   [84] 

 Induce apoptosis in HL-60 cells  cuphiin D1 (55)   [85] 

 Poly (ADP-ribose) glycohydrolase inhibition  nobotanins B (70), K (72) (Tibouchina sp) [86] 

L. speciosa: Lagerstroemia speciosa. 
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5.1. Casuarinin (20), Castalagin (21), and Related Tannins 

 

Kolodziej et al. [69] evaluated the in vitro antileishmanial activity of various types of tannins using 

Leishmania donovani. Although none of the tannins showed significant antiparasitic effects against the 

extracellular promastigote of L. donovani (EC50 > 25 μg/mL), all of the hydrolysable tannins, 

including oligomers, exhibited potent activity (EC50 < 0.4–12.5 μg/mL) against the intracellular 

amastigote form which resides within murine macrophage-like RAW 264.7 cells infected with L. 

donovani. Observed potencies were stronger or comparable to that of the reference compound, 

Pentosam® (EC50 7.9 μg/mL), which is therapeutically used as antileishmanial drug. Among the 

hydrolysable tannins, the most potent antileishmanial activity was exhibited by geraniin and related 

tannins (EC50 < 0.4 μg/mL). The C-glycosidic tannins casuarinin (20) and castalagin (16) also showed 

pronounced antileishmanial activities with EC50 values of 0.5 and 2.7 μg/mL, respectively. Note that 

most of these tannins, with the exception of oligomers, exhibited low cytotoxicity against murine host 

cells (EC50 > 25 μg/mL). Separate functional assays have shown that the amastigote-specific activity 

of these tannins is likely associated with immunomodulatory effects, such as macrophage activation to 

release cytokines, tumor necrosis factor (TNF)-α, and interferon (IFN)-γ. The degree of these 

immunomodulatory effects was highly correlated with the degree of intracellular Leishmania death. 

The search for antiparasitic substances in butanol extracts of Anogeissus leiocarpus and Terminalia 

avicennoides, which are used to treat some parasitic diseases in Africa, resulted in the characterization 

of castalagin (16) as a primary antileishmanial component with an EC50 ranging from 55 to greater 

than 150 μg/mL against the promastigote forms of four Leishmania strains [44].  

Casuarinin (20) isolated from Terminalia arjuna also exhibits in vitro antivirus effects against 

Herpes simplex virus type 2 (HSV-2) with an IC50 of 3.6 and 1.5 μM in XTT and plaque reduction 

assays, respectively. These effects were associated with the inhibition of viral attachment and cell 

penetration [67]. Lin et al. [68] also found that 20 induced apoptosis in human breast adenocarcinoma 

MCF-7 cells and in human non-small cell lung cancer cells A549 by blocking cell cycle progression in 

the G0/G1 phase. 

In the screening of spontaneously hypertensive rats, castalagin (16), chebulinic acid (15), and 

corilagin were identified as the major antihypertensive substances among the hydrolysable tannins 

isolated from the leaves of Lumnitzera racemosa (Combretaceae) [45].  

Chebulagic acid (14) from Terminalia chebula has been shown to reversibly and non-competitively 

inhibit α-glucosidase (maltase) activity, suggesting a potential for managing type-2 diabetes [71]. 

Other tannins that have been identified as α-glucosidase inhibitors are tellimagrandin I (1) and 

eugeniin (casuarictin) (7) from Syzygium aromaticum (Myrtaceae) [70]. Recently, Reddy et al. 

reported that 14 also exhibited potent anti-inflammatory effects in mouse macrophage cell line RAW 

264.7 that had been stimulated with LPS by inhibition of NF-κ.B activation and MAP kinase 

phosphorylation [73], and in COLO-205 cells by enzyme inhibition of COX and 5-LOX [72].  

  

5.2. Punicalagin (9) and Related Tannins 

 

Hepatoprotective effects of various tannins based on their ability to scavenge radical reactive 

oxygen species (ROS) have been demonstrated both in vitro and in vivo. For example, punicalagin (9) 
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and punicalin (10) from Terminalia species exhibited inhibitory effects on hepatotoxicity induced by 

acetaminophen [75] and CCl4 [38]. Other activities associated with the antioxidative effects of 

punicalagin (9) include the suppression of bleomycin-induced genotoxicity in cultured Chinese 

hamster ovary cells [76] and of the proliferation of H-ras-transformed NIH3T3 cells. These effects are 

due, in part, to decreases in intracellular superoxide levels, which may modulate downstream signaling 

of Ras protein [77].  

 

5.3. Lagerstroemin (29)  

 

Lagerstroemia speciosa (Lythraceae) has been used as an herbal medicine for the treatment of 

diabetes in the Philippines. Screening of the plant extract identified lagerstroemin (29), flosin B  

(C1-epimer of 29), and reginin A (49) as activators of glucose transport using rat fat cells, all of which 

are characteristic C-glycosidic ellagitannins of the plant [78]. The insulin-like activity of 29 was 

indicated by increases in glucose uptake by rat adipocytes, and by increased tyrosine-phosphorylation 

in Chinese hamster ovary cells expressing human insulin receptors [79]. In addition, casuarinin (20), 

stachyurin (21), and casuariin (22) as well as 29 were identified as active components in the 

stimulation of insulin-like glucose uptake and in the inhibition of adipocyte differentiation (20 and 29) 

in 3T3-L1 cells [80].  

 

5.4. Oenothein B (54) and Related Macrocyclic Oligomers 

 

Macrocyclic oenothin B (54) reportedly exhibited remarkable host-mediated antitumor activity with 

intraperitoneal injection several days before inoculation of sarcoma 180 tumor cells into the abdomen 

of mice [24]. Evaluation of activity was gauged by the number of survivors and the percent increase in 

life span (%ILS) 60 days after administration. Treatment with a 10 mg/kg dose of oenothein B (54) 

resulted in 4 survivors out of 6 mice and 196% ILS, the most potent results of among the 

approximately 100 polyphenols evaluated. This activity was related to an immunomodulatory effect 

consisting of macrophage activation and consequent release of cytokine interleukin-1β [87]. 

Woodfordin C (53) also exhibited a potent activity with 160% ILS and one survivor out of five mice 

after 60 days [56]. The potent activity of the oligomeric ellagitannins stands in contrast to the 

negligible activity observed with most of the monomeric hydrolysable tannins, proanthocyanidins, and 

related low-molecular weight polyphenols.  

Woodfruticosin (woodfordin C) (53) was also an effective inhibitor (IC50 2.5 μg/mL) of 

deoxyribonucleic acid topoisomerase II, the potency of which was 10-fold stronger than that of 

adriamycin and etoposide in molar concentrations [81].  

Eugeniflorin D1 and D2 (57) as well as oenothein B (54) obtained from the extract of Eugenia 

uniflora (Myrtaceae) were efficient inhibitors of Epstein-Barr virus (EBV) DNA polymerase, a key 

enzyme for replication of EBV associated with nasopharyngeal carcinoma [82].  

Using activity-guided fractionation for bioactive components of Epilobium species,  

Ducrey et al. [59] showed that oenothein A (59) and B (54) are potent inhibitors of 5α-reductase and 

aromatase, which are involved in the etiology of benign prostatic hyperplasia.  



Int. J. Mol. Sci. 2010, 11             

 

 

99

Biological studies of an oenothein B analog, cuphiin D1 (55), isolated from Cuphea hyssopifolia 

(Lythraceae) revealed antitumor effects through the induction of apoptosis in human promyelocytic 

leukemia (HL-60) cells and human cervical carcinoma (HeLa) cells [85]. Cuphiin D1 (55) was also 

shown to activate human peripheral blood mononuclear cells to release cytokines IL-1β, IL-2 and 

TNF-α [84].  

Many pathogenic bacteria, such as methicillin-resistant Staphylococcus aureus (MRSA), have 

acquired resistance to various clinical antibiotics. This worldwide problem is driving the development 

of new antibiotic drugs. Observed synergistic effects of certain polyphenols such as oenothein B (54) 

and tellimagrandin I (1) have been suggested as a means to restore the effectiveness of β-lactam 

antibiotics against MRSA. When used together with these tannins, the MICs of oxacillin against 

MRSA strains were markedly lowered to 1/250 or 1/500 [88]. These results may represent one 

strategy for overcoming emergent bacterial resistance. 

 

5.5. Nobotanins  

 

In a survey for new, natural anticancer chemotherapeutic drugs, some oligomeric ellagitannins 

showed promise as inhibitors of poly(ADP-ribose) glycohydrolase, which is associated with gene 

activation upon DNA repair, replication, and transcription [86]. During initiation of gene expression, 

DNA replication, and cell differentiation, poly(ADP-ribose) from specific chromosomal proteins is 

degraded primarily by poly(ADP-ribose) glycohydrolase to yield ADP-ribose and mono(ADP-ribosyl) 

proteins. It has been suggested that this degradation of poly(ADP-ribose) is an important factor in the 

regulation of gene activation. Ellagitannins showed an appreciable inhibitory effect with an IC50 of 

0.3–11.9 μM on poly(ADP-ribose) glycohydrolase purified from human placenta. Procyanidin 

oligomers and their constituent flavan-3-ols were inactive even at concentrations of 100 μM. Potent 

activity was exhibited by oligomeric ellagitannins, including dimers such as oenothein B (54)  

(IC50 4.8 μM) and nobotanin B (70) (IC50 4.4 μM), a trimer (nobotanin E (73), IC50 1.8 μM), and a 

tetramer (nobotanin K (72), IC50 0.3 μM).  

 

6. Conclusions 

 

A large number of ellagitannins have been isolated and characterized from a wide array of plant 

sources during the last several decades. The plants from which individual ellagitannins were first 

isolated belonged largely to the order Myrtales. Most notably, several Terminalia species of 

Combretaceae produce punicalagin and its congeners, all of which contain a unique gallagyl group, 

previously found only in Punica granatum (Punicacease). These findings imply a close 

chemotaxonomic relationship between these plants. Approximately 40% of the oligomeric 

ellagitannins characterized thus far were initially isolated from species of Onagraceae, Lythraceae, 

Myrtaceae, Trapaceae, and Melastomataceae, indicating that these plant varieties are good natural 

sources of these oligomers. In particular, macrocyclic tannins, which include oenothein B and its 

analogs, are characteristic of the Onagraceae, Lythraceae, and Myrtaceae. Various in vitro and in vivo 

assays have demonstrated diverse biological activities for these ellagitannins and indicate the potential 

of these materials as antioxidant food additives [89]. However, although there are several reports that 
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identify ellagitannin metabolites in animal urine and feces, e.g., ellagic acid derivatives (77, 78) [90] 

and compounds 79–84 [91], the bioavailability of these tannins in humans has not been  

studied extensively.  

Figure 14. Structures of metabolites from ellagitannins. 

 

 

 

 

 

 

 

Further studies in this field will include characterization of immunomodulating effects in the 

digestive tract that could clarify the role(s) of ellagitannins in human health and help explain their 

widespread use in traditional medicines. 
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