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We have combined ultrasensitive force-based spin detection with high-fidelity spin
control to achieve NMR diffraction (NMRd) measurement of ∼2 million 31P spins
in a (50 nm)3 volume of an indium-phosphide (InP) nanowire. NMRd is a technique
originally proposed for studying the structure of periodic arrangements of spins, with
complete access to the spectroscopic capabilities of NMR. We describe two experiments
that realize NMRd detection with subangstrom precision. In the first experiment, we
encode a nanometer-scale spatial modulation of the z -axis magnetization of 31P spins
and detect the period and position of the modulation with a precision of <0.8 Å. In
the second experiment, we demonstrate an interferometric technique, utilizing NMRd,
to detect an angstrom-scale displacement of the InP sample with a precision of 0.07 Å.
The diffraction-based techniques developed in this work extend the Fourier-encoding
capabilities of NMR to the angstrom scale and demonstrate the potential of NMRd as
a tool for probing the structure and dynamics of nanocrystalline materials.

magnetic resonance | scattering | MRI

Scattering techniques that employ coherent sources, such as X-rays, neutrons, and
electrons, are universal tools in many branches of natural science for exploring the structure
of matter. In crystalline materials, these approaches provide a direct and efficient means
of characterizing the periodicity of charge and magnetic order. MRI, like other scattering
approaches, is a reciprocal space technique, in which the measured signal is proportional
to the Fourier transform of the spin density. This similarity between MRI and scattering
was recognized very early in the development of MRI and led Mansfield and Grannell
in 1973 to propose NMR “diffraction” (NMRd) as a method for determining the lattice
structure of crystalline solids (1–3), taking advantage of the chemical specificity of NMR.

The main challenge to achieving atomic-scale NMRd lies in the difficulty of generating
a sufficiently large wavenumber k , capable of encoding a relative phase difference as large as
2π between adjacent spins on a lattice, separated by angstrom-scale distances. For example,
the largest encoding wavenumbers achieved in clinical high-resolution MRI scanners are
of order k/(2π)∼ 104 m−1, more than a factor of 105 smaller than what is needed
to measure typical atomic spacings in condensed-matter systems (4). Consequently,
while MRI has become a transformative technique in medical science, earning Sir Peter
Mansfield and Paul Lauterbur the Nobel Prize in Physiology and Medicine, the original
vision of NMRd as a method for exploring material structure has not yet been realized.

The realization of atomic-scale NMRd would be a powerful tool for characterizing peri-
odic nuclear spin structures, combining the spectroscopic capabilities of NMR with spatial
encoding at condensed matter’s fundamental length scale. NMRd is a phase-sensitive tech-
nique that permits real-space reconstruction of the spin density, without the loss of phase
information common to scattering techniques, such as X-rays, that measure the scattered-
field intensity (5). Being nondestructive and particularly sensitive to hydrogen, NMRd
could be of great importance in the study of ordered biological systems, such as protein
nanocrystals that are of great interest in structural biology (6, 7). Furthermore, the com-
bination of scattering with NMR’s rich repertoire of spectroscopic tools opens additional
avenues for spatially resolved studies of nuclear-spin Hamiltonians (e.g., chemical shifts or
spin–spin interactions), which are currently achieved only through increasingly complex
and indirect methods (8). Finally, NMRd could be used to study quantum many-body
dynamics on the atomic scale. NMR scattering experiments have previously been used in
the direct measurement of spin diffusion in CaF2 on the micrometer scale (9). Experiments
on many-body dynamics have also been conducted in engineered quantum simulators,
such as ultracold atoms (10–12), trapped ions (13–15), superconducting circuits (16–
18), and quantum dots (19). However, these measurements have thus far been limited
to small-scale quantum systems that are at most hundreds of qubits. Angstrom-scale
NMRd measurements would permit studying the dynamics of complex large-scale spin
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Fig. 1. Time evolution of a one-dimensional periodic lattice of spins, starting
from a uniform z state at τe = 0, under a linearly varying external field along
the lattice. Each time slice represents an ensemble nuclear spin state with a
well-defined k vector. The x, y, z coordinate axes on the left mark the Bloch
sphere directions for the spins represented by the cones. For τe > 0, the
spins dephase and the expectation value of the z-axis magnetization 〈Mz〉
drops to zero. Once the spins on adjacent lattice sites complete a full rotation
(Δϕ = 2π), the spins rephase and a diffraction echo in 〈Mz〉 appears.

networks in condensed-matter systems on length scales as short as
the lattice spacing.

Over the past two decades the principal technologies needed
to encode nuclear spin states with wavenumbers of order 1 Å−1

have been developed in the context of force-detected nanoMRI
(20–26). In this work, we report two experiments that utilize key
advances in nanoMRI technology—namely the ability to generate
large time-dependent magnetic-field gradients and the ability to
detect and coherently control nanoscale ensembles of nuclear
spins (27–31)—to generate encoding wavenumbers as large as
k/(2π)∼ 0.48 Å−1.

Our first experiment demonstrates the use of spatial spin-state
modulation that encodes position information the way it was
envisioned in the initial NMRd proposal. Phase-sensitive NMRd
detection enables us to determine the position and period of a
“diffraction grating” with a precision of <0.8 Å. The diffraction
grating itself is a z -axis 31P spin magnetization modulation, the
mean period of which is 4.5 nm in our (50 nm)3 detection
volume. Our second experiment utilizes spatially modulated spin
phase in an alternative way—as a label for the physical dis-
placement of the spins. Our interferometric technique detects
an angstrom-scale displacement of the indium-phosphide (InP)
sample with a precision of 0.07 Å.

Principles

NMRd Concept. To illustrate the basic concept of NMRd as envi-
sioned in ref. 1, we consider a one-dimensional spin density having
a spatially periodic modulation—such as a linear spin chain with
spacing a as shown in Fig. 1—that evolves in a uniform field
gradient Gx = ∂B/∂x for a time τe . The wavevector correspond-
ing to the helical winding encoded in the spins is kx = γGx τe ,
where γ is the spin gyromagnetic ratio. At particular encoding
times τecho = 2πl/(γGx a), corresponding to kxa = 2πl , the
relative phase between neighboring spins becomes Δϕ= 2πl ,
l ∈ {1, 2, 3, . . . } and a “diffraction echo” (DE) is observed. At the
peak of the echo, the signal from each spin adds constructively,
in exact analogy to the diffraction peak observed in a scattering
experiment. The lattice constant is determined from the location
of the DE peak and the shape of the sample from the Fourier
transform of the DE envelope. Because the encoding wavevec-
tor is spin selective, the structure factor corresponding to each
NMR-active nucleus can be determined separately. The NMRd

concept illustrated in Fig. 1 can be readily generalized to three
dimensions, with k= γGτe and G=∇B , where B represents
the magnitude of either the static or the radio frequency (RF) field
at the Larmor frequency, used for phase encoding. The diffraction
condition in three dimensions corresponds tok · aj = 2πl , where
aj are the primitive vectors of the lattice.

Being particularly sensitive to hydrogen atoms, NMRd could
enable structural characterization of nanocrystalline organic solids
via NMR. For example, a lattice of 1H spins with a = 3 Å
evolving under a uniform field gradient of 105 T/m would
produce a DE at τe = 780 μs. While the dephasing times in most
organic solids are much shorter, typically of order T2 ∼ 20 μs, dy-
namical decoupling NMR pulse sequences, such as the symmetric
magic echo sequence (32), can be used to extend the coherence
time into the millisecond range, while allowing for encoding with
both static and resonant RF field gradient pulses. Importantly,
although the concept of NMRd was first envisioned as a technique
to study crystal structures, it can be applied more broadly to probe
any spatially periodic spin-state modulation, e.g., a periodic
modulation of the z -axis magnetization, that can be refocused
by the evolution under the field gradient. The magnetization
modulation could, for example, also arise from evolution under
internal spin Hamiltonians such as spectroscopic shifts or spin–
spin interactions, both of which could be studied on atomic length
scales.

Experimental Setup. The experimental setup, shown in Fig. 2A,
is similar to the one used in our previous nanoMRI work
(24). Force-detected magnetic resonance measurements were
performed using a silicon nanowire (SiNW) mechanical resonator,
which served as the mechanical sensor to detect the force exerted
on 31P spins in an InP nanowire (InPNW) placed in a magnetic-
field gradient. The InPNW sample was attached to the SiNW
resonator with the axes of the two nanowires aligned parallel
to each other. To apply various control signals to the SiNW, we
glued the SiNW chip to a millimeter-size piezo electric transducer
(PT). To increase the measurement bandwidth of the resonator,
a feedback signal was applied to the PT (33). For details of the
SiNW and InPNW growth and attachment, see Materials and
Methods and SI Appendix.

NMR measurements were performed by applying a static field
of B0 = 3 T parallel to the the InPNW axis. At this field, the
Larmor frequency of the 31P spins is ω0/(2π) = 51.7MHz. The
time-varying magnetic fields and magnetic-field gradients used for
spin measurements were generated using a current-focusing field
gradient source (CFFGS) (Materials and Methods). All measure-
ments were carried out with the tip of the InPNW placed at the
center of the CFFGS and positioned ∼50 nm above the surface.

The transverse field in the rotating frame B1(r) =√
B2

x (r) + B2
y (r)/2 used for NMR was produced by driving

the CFFGS with 70 mA-peak currents at ω0, where Bx (r),
By(r), and Bz (r) are the components of the magnetic field
at position r. Correspondingly, each spin has a Rabi frequency
u(r) = γB1(r)/(2π), where γ/(2π) = 17.235 MHz/T is the
31P gyromagnetic ratio. Further details regarding the field profile
produced by the CFFGS are provided in SI Appendix.

Results

Nanometer-Scale NMRd Measurements. To observe a focused
diffraction echo—i.e., one in which the spectral weight of the echo
is localized within a narrow range of encoding times—the
spin-state modulation must be a periodic function of the
encoding-field coordinate; e.g., for a spin density with a spatially

2 of 8 https://doi.org/10.1073/pnas.2209213119 pnas.org

https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2209213119/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2209213119/-/DCSupplemental
https://doi.org/10.1073/pnas.2209213119


SiNW resonator

InP sample

Laser

CFFGS

350 kHz

450 kHz

550 kHz

650 kHz

750 kHz

350 kHz 750 kHz

A B

Fig. 2. (A) Schematic of the experimental setup, including the SiNW force sensor, the CFFGS, and the InP spin sample. (B) Simulated contours of constant Rabi
frequency u(r). The contours within the sample are nearly parallel to the xy plane and vary primarily in the z direction.

periodic modulation, the encoding-field profile must vary linearly
in space as in Fig. 1. As a demonstration of nanometer-scale
NMRd, we utilize theB1 gradient to 1) create a diffraction grating
by periodically inverting the z -axis magnetization of the 31P spins
within the measured volume of the InP tip (Fig. 3) and 2) generate
the encoding wavevector for the NMRd measurements. In so
doing, we ensure that the spin modulation is a periodic function
of the encoding field.

We detect the statistical spin fluctuations in an ensemble of
approximately 2× 106 31P spins within the conical region of
the InP sample indicated in Fig. 3 A, Inset, using the modu-
lated alternating gradients generated with currents (MAGGIC)
spin detection protocol described in SI Appendix and ref. 24.
The measured spin signal is proportional to the quantity s ∝∫
d3r n(r)G2

R(r)χ
(
u(r)

)
Tr[σz
f (r)], where n(r) is the spin

density, GR(r) = ∂Bz (r)/∂y is the readout gradient applied in
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Fig. 3. (A) Spatial configuration of the InP spin sample brought 50 nm above the surface of the CFFGS device. The CFFGS surface lies perpendicular to the
static external magnetic field B0 ẑ. The 18 regions indicated in red represent the regions inverted by the band-inversion pulses within g(u). (Inset) Scanning
electron microscope (SEM) image of a representative InPNW. The measured volume of the sample is indicated by the outlined region. (B) Measured weighted
Rabi-frequency distribution p(u) of the 31P spins in the detection volume indicated by the outlined region in A, Inset. The data were obtained by sampling 20
points in the frequency range 0 ≤ u ≤ 1 MHz. The upper horizontal axis indicates the z coordinate corresponding to the particular u value on the InPNW axis at
the center of the CFFGS (x = y = 0). (C) Calculated inversion profile h(u) for the 100-kHz-wide band-inversion pulse, targeting spins in the Rabi frequency range
562.5 kHz ≤ u ≤ 662.5 kHz. (D) Spin signal measured after applying the band-inversion profile shown in C. The data were obtained by sampling 23 points in the
frequency range 325 kHz ≤ u ≤ 875 kHz. The solid green line indicates the expected distribution calculated using the measured p(u) in B and the calculated
h(u) in C.
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the MAGGIC protocol that couples the z -axis magnetic moment
of a spin at position r to the resonant mechanical motion of the
SiNW, and χ(u) is a Rabi-frequency–dependent filter function
used to control the detection volume (SI Appendix). Here, 
f (r)
is the traceless part of the density matrix of the spin at position
r at the end of the NMR control sequence, Tr[σz
f (r)] is
proportional to the expectation value of the z -axis component of
the magnetic moment of the spin, and (σx ,σy ,σz ) are the Pauli
spin operators.

For the case where the NMR control sequence is only selec-
tive in Rabi frequency, 
f is only a function of u , such that
s ∝

∫∞
0

du p(u)Tr[σz
f (u)], where p(u) is the weighted Rabi
frequency distribution, determined by the sample geometry, the
readout gradient GR(r), and the filter function χ(u). For a
derivation of p(u) in terms of the MAGGIC protocol parameters,
see SI Appendix. We experimentally determine p(u) (Fig. 3B)
using the Fourier-encoding method presented in ref. 24.

We encode the periodic grating g(u) in the z -axis magnetiza-
tion by selectively inverting sequential regions in the sample that
are 10.2-kHz wide and separated by 10.2 kHz in u , as indicated
in Fig. 4A. The physical regions targeted by the inversions are
shown in Fig. 3A. To generate a particular g(u), we implement
control waveforms that invert spins within the range (ulow, uhigh)
with adjustable edge sharpness around ulow and uhigh. To verify
the performance of the inversion waveform, we implement a
control sequence that inverts spins within a 100-kHz bandwidth:
562.5 kHz ≤ u ≤ 662.5 kHz. The calculated inversion profile is
shown in Fig. 3C. The measured spin signal after the application
of the band-inversion pulse (Fig. 3D) agrees closely with the
expected inversion profile. Further details regarding the design
of the band-inversion pulses are in SI Appendix. We also include
an animation depicting the operation of the 100-kHz-wide band-
inversion pulse in Movie S2.

The NMR control sequence used to measure g(u) is shown
schematically in Fig. 4C. After encoding the grating, we apply a
Larmor-frequency RF pulse for a duration τ .* The evolution of the
spin, when driven with constant Rabi frequency u , is described
by a unitary U (u, τ) = exp(−i2πuτσx/2) in the frame rotat-
ing at ω0, which yields 
f (u) = g(u)U (u, τ)σzU

†(u, τ)/2 =
g(u)[cos(2πτu)σz − sin(2πτu)σy ]/2. The in-phase (sI ) and
quadrature (sQ) components of the diffraction signal are

[
sI (τ)
sQ(τ)

]
∝
∫ ∞

0

du p(u)g(u)

[
cos(2πuτ)
− sin(2πuτ)

]
. [1]

To measure the quadrature part of NMRd signal, we end the
measurement sequence with a numerically optimized adiabatic
half-passage (AHP) pulse (34) that rotates σy to σz . It can be seen
that if g(u) has a single modulation period Ω, i.e., g(u + lΩ) =
g(u), l ∈ Z, and varies much more rapidly than the envelope of
p(u), then sI (τ) and sQ(τ) contain a series of diffraction echos
separated by 1/Ω-long intervals. The amplitudes of these echos
reflect the magnitude of the Fourier coefficients of g(u), and the
echo envelopes contain the Fourier transform of p(u).

To demonstrate the phase, and consequently position, sensitiv-
ity of NMRd, we encode two spin magnetization gratings g1(u)
and g2(u), shown in Fig. 4A, that differ by a 4.74-kHz translation;
i.e., g2(u) = g1(u + 4.74 kHz). We refer to g1(u) and g2(u)
as the grating at positions 1 and 2, respectively. The physical
displacement of the grating corresponding to Δu = 4.74 kHz is

*Prior to the application of the RF pulse, we introduce a wait time ∼3T∗
2 , where T∗

2 =

70 μs, to dephase any small residual transverse components in the spin magnetization
that can arise from the band inversion pulses.

Δz = 0.7 nm (Δz = 1.9 nm) at z = 50 nm (z = 140 nm). Both
gratings are produced using the control sequence shown in Fig. 4C
that comprises 18 band inversion waveforms sandwiched between
two AHPs identical to the ones used to measure sQ(τ).

Fig. 4B shows a plot of the expected sI (τ) calculated using
Eq. 1, g1(u), and the measured p(u) shown in Fig. 3B. Because
the first DE at τ ∼ 49 μs has a significantly larger amplitude than
the higher-diffraction orders, we measure the NMRd signal only
for l = 1, for both grating positions, in the interval 39 μs ≤ τ ≤
59 μs, using the NMRd measurement protocol that is shown in
Fig. 4C. We note that for all measurements shown in Fig. 4, the
maximum duration of the RF pulse used in the NMRd measure-
ment portion of the sequence was 59μs, which is much shorter
than the transverse relaxation time T2ρ = 570μs measured under
a continuous Larmor-frequency excitation (SI Appendix). There-
fore, we ignore decoherence effects during the RF pulse in our
analysis and simulations. The resulting data are shown in Fig. 4
D and E, which also include the unscaled calculated values for
sI (τ) and sQ(τ). The echo envelopes for both signal quadratures
are shown as the shaded regions in Fig. 4 D and E. We see
that although the small shift in the grating position produces
little discernible change in the echo envelope, there is a clearly
visible change in the relative phase of the in-phase and quadrature
measurements, demonstrating the importance of phase-sensitive
detection for high-precision position measurements.

In SI Appendix, we construct a statistical estimator (35) to de-
termine the periodicityΩ from the measured data. The calculation
is done assuming no prior knowledge of g(u), other than the fact
that it is periodic in u and varies more rapidly than p(u). The
resulting estimates forΩ in g1 and g2 areΩ1 = 20.30± 0.14 kHz
and Ω2 = 20.26± 0.10 kHz, respectively. The 0.14-kHz
(0.10-kHz) error in the period of g1 (g2) in u space corresponds to
an uncertainty of 0.2 Å (0.15 Å) in the wavelength of the grating
at z = 50 nm and 0.6 Å (0.4 Å) at z = 140 nm.

In SI Appendix, we construct a maximum-likelihood estimator
for Δu for the data in Fig. 4, which yields Δu = 4.67± 0.20
kHz, in excellent agreement with the expected value of Δu =
4.74 kHz. The error in Δu corresponds to an uncertainty of 0.3 Å
(0.8 Å) in the relative z -axis position of g1 (g2) at z = 50 nm
(z = 140 nm).

We reconstruct the periodic spin modulation in spatial coordi-
nates by calculating the real part of the complex Fourier transform
Re{F−1[sI (τ) + i sQ(τ)]} using the data shown in Fig. 4 D and
E for the two grating positions. In the reconstruction, we include
the points around the l = 1 DE, as well as the points sampled near
τ = 0 to account for a small DC offset in the modulation envelope
caused by a slight asymmetry in the magnitude of the positive-
and negative-amplitude regions in g(u). The time records used in
the Fourier transforms are constructed to be continuous by zero-
padding the unsampled regions in the interval 0≤ τ ≤ 59.5 μs
(Fig. 4B). The data in the interval 0≤ τ ≤ 3 μs are not expected
to change for the two grating positions. Therefore, this interval
was measured only for position 1 and used in the reconstruction
of both grating positions. We see that the position–space repre-
sentations of p(u)g1(u) and p(u)g2(u), shown in Fig. 4 F and
G, closely follow the calculated values.

Displacement Detection via NMR Interferometry. In the previ-
ous section, we performed phase-sensitive NMRd measurements
of a nanometer-scale periodic modulation of the z -axis magne-
tization with subangstrom precision. In this section, we describe
an interferometric detection protocol that enables us to measure a
real-space displacement of the InP sample in the z direction with a
precision of 0.07 Å. The protocol, shown schematically in Fig. 5A,
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Fig. 4. NMRd data measured for the 18 × diffraction grating. (A) Inversion profile for the two positions (g1 and g2) of the periodic grating encoded with a
period of 20.4 kHz. The top horizontal axis indicates the position dependence of g1 and g2 with respect to the CFFGS. The shift in position corresponding to
Δu = 4.74 kHz is indicated for the regions of the sample that are 50 and 140 nm away from the CFFGS. (B) Calculated in-phase component sI(τ) for the grating
at position 1 given the simulated g1(u) profile in A and measured p(u) shown in Fig. 3B. (C) NMR control sequence. The encoding part of the sequence generates
either g1(u) or g2(u) in A by applying 18 consecutive inversions. The second part of the sequence performs the NMRd readout. sI(τ) is measured by applying a
resonant RF pulse (x) for a duration τ . An extra adiabatic half-passage pulse is applied for detecting the quadrature component sQ(τ). (D and E) sI(τ) and sQ(τ)
measurements for the two grating positions in A as a function of the effective encoding time τ . The shaded regions in D and E indicate the signal amplitude. (F
and G) Coordinate–space reconstruction of the diffraction grating. Solid lines in F and G are the calculated p(u)g1(u) [p(u)g2(u)] using g1(u) [g2(u)] in A and p(u)
in Fig. 3B. The data points are the coordinate–space reconstructions of p(u)g1(u) and p(u)g2(u) by Fourier transforming the data in D and E after zero padding.
The position values indicated on the lower horizontal axis are determined from the simulated field distribution produced by the CFFGS (SI Appendix).The dashed
vertical lines are placed as a guide to indicate the spatial offset between the two grating positions. The number of the inversion slice is indicated above the
vertical lines.

utilizes the symmetric magic echo (SME4) (32) NMR sequence
to decouple the P-P and P-In interactions, thereby extending the
coherence time of the 31P spins up to 12.8 ms. In SI Appendix,
we describe a modification to the SME4 that allows us to
evolve the spins under the Rabi-frequency gradient ∂u/∂z =
γ(∂B1/∂z )/(2π) for a variable amount of time Δτ for phase en-
coding. By extending the spin coherence time into the millisecond
range and by utilizing the large-field gradients (∂B1/∂z ∼ 2×
105 T/m) we encode a helical phase winding in the xz plane with
an average wavelength as short as a few angstroms, allowing us to
detect displacements of the InP sample with picometer precision.

The protocol starts by encoding a helical winding for a
time τe . The traceless part of the density matrix for a spin at
position r at the end of the encoding sequence is U [u(r), τe ]
σzU

† [u(r), τe ] /2, whereU [u(r), τ ] = exp [−i2πτσyu(r)/2].

During this time, a constant voltage is applied to the PT (Fig. 5 B,
Inset), which translates the InP sample with respect to the CFFGS,
thereby slightly shifting the local field experienced by the 31P spins
during encoding. The PT is retracted to its equilibrium position
by zeroing the voltage. During retraction, 2 × SME4 sequences
with Δτ = 0 are applied, contributing no gradient evolution
while refocusing the homonuclear dipolar and σz evolution
during the time that the PT returns to its equilibrium position.
The duration of the 2 × SME4 sequences is 1.8 ms, which is
chosen to be substantially longer than the ∼300 μs mechanical
response time of the PT. In the decoding phase, the inverse unitary
U † [u(r+ δr), τd ] = exp [i2πτdu(r+ δr)σy/2] is applied for
a time τd at the new location of the InP sample, which yields

f (r+ δr) = δU (r, δr)σz δU

†(r, δr)/2 = [σz cosϕ(r, δr) +
σx sinϕ(r, δr)]/2, where δU (r, δr) = exp[−iϕ(r, δr)σy/2].
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Fig. 5. (A) NMR control sequence used for interferometric displacement detection, as well as the voltage VP(t) applied to the PT, and the PT displacement δr(t).
The unitary operations corresponding to different parts of the sequence are indicated above each block. The data presented in B and C were acquired from
spins in the Rabi-frequency range 400 kHz < u < 650 kHz, corresponding to the sample volume indicated by the shaded regions in A. The shading indicates
the z-axis modulation [cos ϕ(r, δr0)] at different times during the measurement sequence, corresponding to τe = τd = 960 μs, and a sample displacement of
δr0 = 1 Å ẑ. (B) The data were acquired using the sequence shown in A, where 2 × SME4 sequences were used in the encoding portion, with each SME4 designed
to encode phase for Δτ = 480 μs. From the fit to the data, we determine the ratio δy/δz = 6.5. For reference, two other curves have been included that show
the variation in signal amplitude for different ratios of δy/δz. The calculations clearly indicate that for lateral displacements of order 1 nm, a higher ratio
δy/δz primarily increases the decay rate with respect to VP of the modulation envelope of the interference signal, without significantly affecting the modulation
frequency; the modulation frequency, on the other hand, is primarily determined by δz. The asymmetry in the response along the y and z directions is caused
by the relative magnitude of the B1 gradients near the center of the CFFGS, for which ∂B1/∂x, ∂B1/∂y � 0.01∂B1/∂z. (C) In-phase and quadrature data were
acquired for VP = 0 V and VP = 7.2 V with a fixed encoding time of τe = 480 μs for different decoding times. A single SME4 with Δτ = 480 μs was used for the
encoding and decoding parts of the sequence. The displacement results in a shift in the phase of both signal quadratures. From the fit to the data, we determine
displacement corresponding to VP = 7.2 V to be δz = 0.81 ± 0.07 Å and δy = 9.72 ± 1.34 Å. The value of δy determined from the fit is consistent with the value
δy = 1.0 nm determined by optical interferometry (SI Appendix). The VP = 7.2 V datasets in C have been offset for clarity.

The differential phase ϕ(r, δr) = 2π [u(r)τe − u(r+ δr)τd ]
results from the interference of the encoding and decoding
modulations separated by δr. The measured signal quadratures at
the end of the sequence are

[
sI (τe , τd , δr)
sQ(τe , τd , δr)

]
∝
∫

d3r n(r)G2
R(r)χ

(
u(r)

) [cosϕ(r, δr)
sinϕ(r, δr)

]
.

[2]

Fig. 5B shows a plot of the in-phase data acquired as a function
of the voltage VP applied to the PT, using the sequence shown
in Fig. 5A, with τd = τe = 960 μs. The modulation wavelength
varies from 2.1 to 5.8 Å within the measured volume of the
sample. To extract the z displacement from the data, we conduct
a least-squares fit (36) using Eq. 2, where we assume that δr∝
VP and δr= δy ŷ + δz ẑ, with the fit parameters being the
PT coefficient δz/VP and δy/δz . The displacement in the y
direction is included because the PT used for the measurements
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was poled in the y direction; hence δy(VP )� δz (VP ). The
quantity n(r)G2

R(r)χ
(
u(r)

)
was calculated using our model

for the sample geometry (SI Appendix). For details regarding
the characterization of the PT, see SI Appendix. The resulting
fit is indicated by the solid line in Fig. 5B, corresponding to a
displacement δz/VP = 0.15± 0.01 Å/V. The PT calibration was
used to derive the top horizontal axis in Fig. 5B.

Finally, we conduct a set of measurements in which we keep
the encoding time and the voltage step applied to the PT constant
and vary the decoding time. Fig. 5C shows the in-phase and
quadrature data acquired for VP = 0 V and VP = 7.2 V with
τe = 480μs. To extract the sample displacement, we fit to the
data using Eq. 2, with the fit parameters being δz and δy (solid
lines in Fig. 5C ). The fit yields a sample displacement of δz =
0.81± 0.07 Å. In SI Appendix, we also provide an alternative
fitting method, which utilizes the measured p(u) instead of the
geometric model of the sample. Consistent with the previous
method, the fit yields δz = 0.85± 0.07 Å.

Using the PT displacement calibration found in Fig. 5B, we
would expect the displacement corresponding to VP = 7.2 V to
be δz = 1.04± 0.04 Å. Although the calculated displacements
from the two measurements are in reasonable agreement, the
20% difference in δz could be caused by systematic errors in
the different methods used for determining the displacement
corresponding to VP = 7.2 V. In particular, to determine the
PT displacement for the data in Fig. 5B, we needed to assume
a particular functional form for the piezo characteristic δr(VP ).
For the data in Fig. 5C, however, we find the displacement
directly for one particular value of VP , without any assump-
tions on δr(VP ). It is therefore possible that a small nonlinear
component in δr(VP ) could be responsible for the observed
difference.

For measurements that require large encoding wavevectors,
such as those that would be needed for crystallographic NMRd,
the mechanical stability of the sample becomes an important
consideration. We provide an analysis of the effect of mechanical
vibrations in SI Appendix, indicating sufficient mechanical stabil-
ity in the reported experiments.

Discussion

In this work, we have presented two experiments that utilize the
large encoding wavevectors generated in a nanoMRI setting to
realize phase-sensitive NMRd measurement of 31P spins with
subangstrom precision. We believe these results represent sub-
stantial progress in establishing NMRd as a tool for studying
material structure. With further development of gradient sources
capable of applying spatially uniform encoding gradients in three
dimensions (3D), NMRd could be used to study the structure of
nanocrystalline materials.

Upcoming experiments focusing on NMRd crystallography
will utilize a design that combines the CFFGS with four additional
current-carrying paths designed to generate highly uniform 3D
field gradients of order 3× 104 T/m with a maximum variation
of 0.5% in a (100 nm)3 volume, suitable for crystallographic
NMRd measurements. Using these gradients, 1H spins separated
by 3 Å, for example, would form a DE at an encoding time of
2.6 ms, which is readily achievable using dynamical-decoupling
NMR sequences, such as the SME. Finally, although the concept
of NMRd was first envisioned for the study of material structure,
it can be applied more generally to study the dynamics of spatially
periodic spin correlations. Here, we have demonstrated the ability
to generate encoding wavevectors that could be used to probe spin
transport on length scales as short as the lattice spacing.

Materials and Methods

SiNW Resonator. Arrays of SiNWs were grown epitaxially via the vapor–liquid–
solid method from an array of Au catalyst particles patterned near the edge
of a 1.5 × 1 × 0.4-mm Si(111) substrate. Growth occurred in a H2 and HCl
atmosphere using SiH4 as the precursor. The SiNWs had a length of 20μm and a
100-nm diameter (37). The frequency of the fundamental flexural mode of the
as-grown SiNW was ∼250 kHz prior to sample attachment and had a spring
constant of 0.6 mN/m. At 4 K, the quality factor of the SiNW was ∼60,000. After
sample attachment, the resonance frequency of the SiNW decreased to 163 kHz;
however, no significant change in the quality factor was observed. The effective
quality factor of the SiNW was reduced to 700 after feedback damping through
the PT.

InPNW Growth. The InPNW sample used in this work was ∼5 μm long, with
an ∼50-nm diameter, grown with a Wurtzite structure. The growth was done
on a SiO2-patterned (111)B InP substrate using chemical beam epitaxy with
trimethylindium (TMI) and precracked PH3 and AsH3 sources. The patterned
substrate consisted of circular holes opened up in the SiO2 mask using electron-
beam lithography and a hydrofluoric acid wet etch into which a 5-nm-thick
Au layer was deposited using a self-aligned liftoff process. To achieve precise
diameter control, a two-step growth process was employed (38). First, we use
growth conditions (e.g., low growth temperature, low TMI, and PH3 fluxes) that
promote incorporation of material only at the Au/InP interface (i.e., vapor–liquid–
solid epitaxy) and produce defect-free wurtzite phase nanowire cores with a
diameter of ∼20 nm (39). To clad the nanowire core we switch to conditions
that promote material incorporation on the nanowire sidewalls (e.g., higher
PH3 flux) to controllably increase the nanowire diameter to ∼50 nm (40), see
Fig. 3 A, Inset.

Sample Attachment. The InPNW sample was attached∼3 to 4μm away from
the tip of the SiNW, with the tip of the InPNW extending ∼2 μm beyond the tip
of the SiNW. Details of the attachment procedure are provided in SI Appendix. A
video of the sample attachment is also included in Movie S1.

CFFGS Device. The CFFGS device was fabricated by electron-beam lithography
and reactive ion-beam etching of a 100-nm-thick Al film deposited on a sapphire
substrate. The device contained a 150-nm-wide and 50-nm-long constriction,
which served to focus electrical currents to produce the magnetic fields used for
spin detection and control.

Force-Detected NMR Measurements. NMR measurements were performed
in high vacuum at 4 K using a custom-built force microscope with piezo nanopo-
sitioners for relative positioning of the SiNW chip, CFFGS, and the optical fiber,
which was used for interferometric displacement detection of the SiNW. For
details of the measurement along with a schematic of the experimental setup,
see SI Appendix.

Data, Materials, and Software Availability. All study data are included in the
article and/or SI Appendix.
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