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Abstract

Severe liver injury that occurs when immune cells mistakenly attack an individual’s own liver cells leads to autoimmune
hepatitis. In mice, acute hepatitis can be induced by concanavalin A (ConA) treatment, which causes rapid activation of
CD1d-positive natural killer (NK) T cells. These activated NKT cells produce large amounts of cytokines, which induce strong
inflammation that damages liver tissues. Here we show that PKC-h2/2 mice were resistant to ConA-induced hepatitis due to
essential function of PKC-h in NKT cell development and activation. A dosage of ConA (25 mg/kg) that was lethal to wild-
type (WT) mice failed to induce death resulting from liver injury in PKC-h2/2 mice. Correspondingly, ConA-induced
production of cytokines such as IFNc, IL-6, and TNFa, which mediate the inflammation responsible for liver injury, were
significantly lower in PKC-h2/2 mice. Peripheral NKT cells had developmental defects at early stages in the thymus in PKC-
h2/2 mice, and as a result their frequency and number were greatly reduced. Furthermore, PKC-h2/2 bone marrow
adoptively transferred to WT mice displayed similar defects in NKT cell development, suggesting an intrinsic requirement for
PKC-h in NKT cell development. In addition, upon stimulation with NKT cell-specific lipid ligand, peripheral PKC-h2/2 NKT
cells produced lower levels of inflammatory cytokines than that of WT NKT cells, suggesting that activation of NKT cells also
requires PKC-h. Our results suggest PKC-h is an essential molecule required for activation of NKT cell to induce hepatitis, and
thus, is a potential drug target for prevention of autoimmune hepatitis.
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Introduction

Mistaken attack of healthy liver cells by an individual’s own

immune system causes severe liver damage, leading to autoim-

mune hepatitis (AIH) [1]. A widely used murine AIH model is that

caused by concanavalin A (ConA) treatment, which rapidly

induces severe immune-mediated hepatitis due to activation of a

specific population of T cells, natural killer (NK) T cells, that are

enriched in liver [2]. Activated NKT cells produce large amounts

of inflammatory cytokines such as IFNc, IL-4, TNFa and MCP1,

which in turn recruit innate immune cells such as macrophages to

cause inflammatory responses [3,4]. In addition, activated NKT

cells also up-regulate FasL and induce hepatocyte apoptosis

through the FasL-Fas pathway. Fas/FasL-mediated apoptosis

appears to be an important mechanism for liver damage, as NKT

cells from Fas-mutant gld/gld mice fail to induce hepatitis [5,6].

Although ConA can activate other T cells, NKT cells are required

and sufficient for induction of liver damage in this murine AIH

model [7]. NKT cells are also thought to be involved in liver injury

induced by LPS, a-galactosylceramide (a-GalCer), Salmonella

infection, chronic hepatitis C infection and primary biliary

cirrhosis [8,9,10,11,12]. TCR signaling molecules are likely to

have an essential role in the activation of NKT cells responsible for

hepatitis, as suggested by the prevention of hepatitis by

immunosuppressive drugs such as FK506 or cyclosporine, which

inhibit conventional T cell receptor (TCR) signals [13]. Thus,

critical TCR signaling molecules are potential drug targets for

treatment of hepatitis; however, little is known about the signaling

molecules required for activation of NKT.

NKT cells develop in the thymus and are positively selected by the

MHC-I-like molecule CD1d [14], as indicated by complete absence

of NKT cells in CD1d-deficient mice [15]. NKT cell development

involves the following sequential stages: stage 0) CD24hi; stage 1)

CD24intCD44negNK1.1neg; stage 2) CD44+NK1.12 and; stage 3)

CD44+NK1.1+ mature NKT cells [15]. Mature NKT cells express

TCRs that consist of an invariant Va14-Ja18 TCRab chain paired

with a limited number of TCRb chains, Vb8, Vb7 or Vb2, which is

why they are called invariant NKT (iNKT). TCRs on NKT cells

recognize CD1d-presented glycolipids such as a-GalCer, a potent

activator of both mouse and human NKT cells [16]. Little is known

about the signaling pathways that regulate NKT development;

however, the NF-kB pathway is likely important, as a dominant

negative IkB transgene can arrest NKT development at the

CD44+NK1.12 stage [17]. NF-kB is an important downstream

signaling molecule of TCR, and therefore is likely that TCR

mediates the activation of NF-kB required for NKT development.

PKC-h mediates the critical TCR signals required for

conventional T cell activation [18,19,20]. Engagement of TCR

induces activation of phospholipase Cc1 (PLCc1), which catalyzes

the hydrolysis of inositol phospholipids to produce diacylglycerol
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(DAG) and inositol triphosphate (IP3). DAG activates PKCs [21].

Although phorbal esters activate multiple isoforms of PKC, PKC-

h is selectively required for T cell activation in vivo [19,20]. Mature

PKC-h2/2 T cells failed to proliferate and produce interleukin 2

(IL-2) upon TCR stimulation due to defective activation of NF-kB

and AP1, and these observations are supported by several in vitro

studies in Jurkat T cells [22,23,24,25]. Mice deficient in other

isoforms of PKC do not display defects similar to those observed in

PKC-h2/2 T cells [26], demonstrating the selective requirement of

PKC-h in T cell activation. Although many T cell-dependent

immune disease models have been used to demonstrate PKC-h
regulated T cells function in vivo [27], it is unknown how PKC-h
functions in NKT cell-mediated in vivo immune responses. In this

study, we used ConA-induced hepatitis to define the essential

function of PKC-h in NKT cell-mediated liver injury, strongly

suggesting PKC-h is a potential drug target for the prevention

autoimmune hepatitis.

Materials and Methods

Mice
All experiments involving mice were approved by the City of

Hope Institutional Animal Care and Use Committee. B6-Ly5.2/

Cr(CD45.1) mice were purchased from NCI laboratories (Freder-

ick, MD). PKC-h2/2 mice were generated as previously described

[20]. Mice used were in C57BL/6 background and age/sex

matched between WT and PKC-h2/2 mice. All mice were

maintained under specific pathogen-free conditions.

Antibodies and tetramers
Monoclonal antibodies CD3 (clone 145-2c11), NK1.1 (clone

PK136), CD44 (clone IM7), CD24 (clone M1/69), CD45.1 (clone

A20), CD45.2 (clone 104), IL4 (clone 11B11), INFc (clone

XMG1.2), FasL (clone MFL3) were purchased from eBioscience

(San Diego, CA). CD40L(clone MR1), Trail (clone N2B2) and

DR5 (clone MD5-1) were purchased from Biolegend (San Diego,

CA). The PE-CD1d-PBS157 tetramer was provided by the

tetramer core facility at the National Institutes of Health.

ConA and OCH treatment
ConA (Sigma, St. Louis, MO) was dissolved in pyrogen-free

phosphate-buffered saline (PBS), and intravenously injected

(25 mg/kg) into wild-type (WT) and PKC-h2/2 mice via the tail

vein. Mouse survival was monitored for 56 h after injection. OCH

(provided by the National Institutes of Health), a specific antigen of

NKT cells, was injected intravenously (1 mg/mouse) via the tail vein

into both WT and PKC-h2/2 mice. One hour after injection, mice

were bled and their sera collected. Mice were then sacrificed for

collection of intrahepatic lymphocytes as previously described [28].

Serum cytokine and ALT/AST assay
Collected sera were 1:10 diluted with the diluents provided by

the mouse inflammation CBA kit (BD Biosciences, San Diego,

CA). Inflammatory cytokines (INFc, TNF, MCP1, IL6) were

measured using the mouse inflammation CBA kit. Mouse IL-4 was

assayed with the flex set of cytokine assay beads (BD Biosciences).

Mouse serum ALT and AST were assayed with the enzymatic

assay kit (Bioo Scientific, Austin, TX). Mouse serum Osteopontin

(OPN) were assayed with Osteipontin mouse ELISA Kit (Abcam,

Cambridge, MA).

Surface and intracellular staining
Cells were incubated (30 min, 4uC, in the dark) with antibody

cocktail in staining buffer (2% FBS plus 0.1% sodium azide). Cell

samples were then washed and examined by BD FACSCanto II

(BD Biosciences). For intracellular staining, subsequent to surface

staining, cells were fixed with BD Cyto fix/perm buffer for 15 min

followed by two washes with Cyto perm/wash buffer. Cells were

then incubated (20 min, 4uC, in the dark) with IL-4/INFc cocktail

in Cyto/perm buffer. After two washes, cells were examined by

FACSCanto II. The FACS data were analyzed with Flowjo 7.4.6

(Tree Star).

Generation of bone marrow chimeric mice
Bone marrow (BM) transfer was performed as described [29].

Briefly, WT and PKC-h2/2 mice received whole body c-

irradiation (two doses of 550 Rad given 3 h apart) with a cesium

source (Gammacell 40), and the bone marrow recipient mice were

reconstituted 6 h later with one intravenous injection of 56106

bone marrow cells from various adult donors. After 10 weeks of

reconstitution, mice thymus NKT cells were analyzed.

FACS sorting of NKT cells and in vitro stimulation
Pooled splenocytes and intrahepatic lymphocytes from batches

of two WT and two PKC-h2/2 mice were stained with anti-CD3

antibody and CD1d-PBS157 tetramer as above, and the NKT

cells (CD3lowCD1d-PBS157 tetramer+ subset) sorted by BD

FACSAria III (BD Biosciences). The purified NKT cells were

cultured in 96 well plates (2.56105 cells/well) with 200 ml/well T

cell culture medium (RPMI 1640 supplemented with 10% fetal

calf serum, 561025 M 2-mercaptoethanol, 2 mM L-glutamine,

1 mM sodium pyruvate, 0.1 mM non-essential amino acids,

100 U/ml penicillin and 100 mg/ml streptomycin) with or without

100 ng/ml OCH as previously described [30]. After overnight

stimulation, cytokine levels in supernatants were assayed with BD

Flex set, and cells were harvested for IL4 and IFNc intracellular

staining as above.

Statistical analysis
Prism software (Graphpad) was used for all statistical analyses.

Unpaired students t tests were used to compare experimental

groups. A P value of less than 0.05 was considered statistically

significant.

Results

PKC-h2/2 mice are resistant to ConA-induced hepatitis
To determine the function of PKC-h in liver injury, we used an

acute hepatitis murine model that depends on ConA-mediated

activation of NKT cells [31]. WT and PKC-h2/2 mice, age and

sex matched, were treated with 25 mg/kg ConA, and their

survival rate was determined. Consistent with previous results [9],

this dosage of ConA was lethal for WT mice (Fig. 1A), whereas all

PKC-h2/2 mice survived. Because damaged liver releases

aspartate transaminase (AST) and alanine transaminase (ALT),

we measured levels of both enzymes in serum of ConA-treated

mice to assess liver damage (Fig. 1B). Prior to ConA treatment,

AST and ALT levels were both very low (less than 50 U/L), and

there were no obvious differences between WT and PKC-h2/2

mice (data not shown). After ConA treatment, although elevated,

AST and ALT levels of PKC-h2/2 mice were significantly lower

than those of WT mice, suggesting there was less liver damage in

the absence of PKC-h. Because ConA treatment stimulates the

production of inflammatory cytokines that are critical mediators

for liver injury, we also measured serum cytokines after ConA

treatment. Levels of the inflammatory cytokines IL-6, IFNc and

monocyte chemotactic protein-1 (MCP1) were significantly lower

in PKC-h2/2 than WT mice at 1 h (Fig. 1C), 2 h (Fig. 1D) and 6 h
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(Fig. 1E) after ConA treatment. TNFa peak was detected at 1 h

after stimulation in WT mice, which is consistent with published

results [32]. However, there was no such peak of TNFa detected

in PKC-h2/2 mice. We also checked the serum levels of OPN,

which has important role in the hepatic inflammation and toxicity

[33], after challenged with ConA at different time point (Fig. 1F).

PKC-h2/2 mice had lower levels of OPN in the early stage after

ConA challenge (1 h and 2 h). However, there was no obvious

difference in OPN levels between WT and PKC-h2/2 mice 6 h

after ConA treatment, which is similar to TNFa. These results

suggest that PKC-h is required for ConA-induced inflammation

that is responsible for the liver injury.

PKC-h2/2 mice have significantly fewer NKT cells
Since liver NKT cells are essential for ConA-induced hepatitis,

we examined NKT cell distributions in naı̈ve WT and PKC-h2/2

mice. Consistent with their role in liver injury [15], NKT cells

were enriched in liver tissues (28.9%) as compared to spleen

(1.23%) or bone marrow (0.21%) (Fig. 2A, left panel). The

percentage of NKT cells in liver (12.3%), spleen (0.342%) and

bone marrow (0.122%) of PKC-h2/2 mice was always lower than

in WT mice (Fig. 2A, B). Furthermore, the absolute number of

NKT cells in spleen and liver were also significantly less in PKC-

h2/2 mice (Fig. 2C), indicating that in the absence of PKC-h there

is a reduction in peripheral NKT cells, which are required for

ConA-induced hepatitis.

NKT cell development is defective in PKC-h2/2 mice
That the number of peripheral NKT cells was reduced in all

PKC-h2/2 tissues examined raised the possibility that NKT cell

development was inadequate. Since NKT cells develop in the

thymus, we assessed the thymic NKT cells. Consistent with results

for the periphery, significantly fewer NKT cells (percentage and

absolute number) were present in the thymi of PKC-h2/2 mice

(Fig. 3A–D), suggesting abnormal NKT cell development. NKT

cell development can be divided into two major stages, stage 0 and

Figure 1. PKC-h2/2 mice are resistant to ConA-induced hepatitis. PKC-h2/2 mice and age and sex matched WT mice were challenged with a
lethal dosage of ConA (25 mg/kg). Survival was monitored every 3 h. N = 7, from 2 independent experiments. A) Survival curve of mice challenged
with ConA. B) Serum ALT and AST levels 6 h after ConA challenge. C) Levels of the indicated cytokines in serum 1 h after ConA challenge. D) Levels of
the indicated cytokines in serum 2 h after ConA challenge. E) Levels of the indicated cytokines in serum 6 h after ConA challenge. F) Levels of serum
OPN different times after ConA challenge. (*, P,0.05; **, P,0.01; ***, P,0.001).
doi:10.1371/journal.pone.0031174.g001
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stage 1–3, based on expression of the surface marker CD24 [34].

The percentages of NKT cells in both stages were much lower in

PKC-h2/2 mice (Fig. 3B), suggesting defective NKT development

at early stages. We further analyzed stage 1–3 cells with the surface

markers CD44 and NK1.1 (Fig. 3A, C). PKC-h2/2 mice

accumulated significantly more cells at stages 1 and 2 (4.51%

and 14.2%, respectively) than did WT (3.94% and 6.68%),

suggesting a blockade at these two stages.

Since PLZF (promyelocytic leukemia zinc finger, Zbtb16) is

critical for NKT cell development and function [34], its

expression was thus detected by intracellular staining (Fig. 3E–

F). PLZF levels in PKC-h2/2 NKT cells were not lower, actually

were slightly higher than WT NKT cells if there was any change,

suggesting that PLZF cannot explain the observed defective NKT

development in PKC-h2/2 mice. In addition we examined levels

of CD1d which is required to present antigens for positive

selection of NKT cells in thymus [14]. No obvious differences in

CD1d expression were observed between WT and PKC-h2/2

thymocytes (Fig. 3G), suggesting that defective NKT cell

development in PKC-h2/2 mice is likely not due to abnormal

expression of CD1d. Taken together, our results strongly suggest

that PKC-h is required for NKT cell development in thymus,

which likely explains the reduction in peripheral NKT cells in

PKC-h2/2 mice.

PKC-h is intrinsically required for NKT cell development
Intact PKC-h2/2 mice lack PKC-h in all tissues. Therefore, to

determine whether defective NKT cell development is due to lack

of PKC-h in hematopoietic cells or the surrounding tissues, we

performed adoptive transfer to examine NKT cell development

arising from PKC-h2/2 bone marrow in a WT environment. We

used an congenic marker, CD45.1 (donors) and CD45.2 (WT

recipients), to differentiate between donor and recipient cells, and

used four different adoptive transfer scenarios: WT (CD45.1) bone

marrow to WT (CD45.2) recipients (WTRWT), PKC-h2/2 bone

marrow to WT (CD45.1) recipients (KORWT), WT (CD45.1)

bone marrow to PKC-h2/2 recipients (WTRKO), and PKC-h2/2

bone marrow to PKC-h2/2 recipients (KORKO). Ten weeks after

bone marrow transfer, we examined thymic NKT cells (Fig. 4A

and left panel of C) and NKT cells at stages 0 and 1–3 (Fig. 4B and

right panel of C). Similar numbers of NKT cells developed from

WT bone marrow in WT or PKC-h2/2 recipients, suggesting that

NKT cells can develop normally in a PKC-h2/2 environment. In

contrast, PKC-h2/2 bone marrow developed much fewer NKT

Figure 2. Reduced numbers of NKT cells in peripheral lymphoid tissues of PKC-h2/2 mice. A) Flow cytometric analysis of CD1d-Tetramer-
positive and CD3-positive NKT cells mice in spleen (top panels), liver (middle panels) and bone marrow (bottom panels) of naı̈ve WT (left panels) and
PKC-h2/2 (right panels) mice. B) Frequency of NKT cells in organs described in A, as averaged from five mice of each genotype. C) Total NKT cell
number in spleen and liver as averaged from five mice of each genotype. (*, P,0.05; **, P,0.01).
doi:10.1371/journal.pone.0031174.g002
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cells in either WT or PKC-h2/2 recipients, demonstrating that

PKC-h2/2 bone marrow failed to fully reconstitute the NKT cell

compartment, even in the WT environment (Fig. 4A, B). Thus,

these data show that PKC-h is intrinsically required for thymic

NKT cell development.

PKC-h2/2 NKT cells are defective in production of
inflammatory cytokines

In response to activation, NKT cells produce cytokines that

mediate inflammatory responses to cause liver injury. We have

shown that PKC-h2/2 mice produced lower levels of inflamma-

tory cytokines in response to ConA treatment (Fig. 1). However,

ConA can stimulate conventional T cells in addition to NKT

cells. Therefore, we examined cytokine production in response

to stimulation with OCH, a glycolipid ligand that binds to

CD1d and is specific for activation of NKT cells [15]. At 1 h

post OCH treatment, IL-6, MCP1, TNFa, INFc and IL-4

levels in serum were all consistently much lower in PKC-h2/2

mice (Fig. 5A). To specifically measure cytokines produced by

NKT cells, we performed intracellular staining of IFNc and IL-

Figure 4. Intrinsic requirement of PKC-h for NKT cell development. Bone marrow from WT and PKC-h2/2 donors was adoptively transferred
to irradiated WT or PKC-h2/2 recipients (6 mice per group). Ten weeks after adoptive transfer, NKT cells in thymi were analyzed by flow cytometry. A)
CD1d and CD3 NKT cells in thymi of adoptively transferred mice. B) Stage 0 and stage 1–3 NKT cells in thymi of adoptively transferred mice. C)
Frequencies of total NKT (left panel), and stage 0 and stage 1–3 NKT cells (right panel) as averaged from 6 recipients of each type of adoptive transfer.
(**, P,0.01).
doi:10.1371/journal.pone.0031174.g004

Figure 3. NKT cell development is defective in PKC-h2/2 mice. A) Flow cytometric analysis of thymic NKT cells in WT (top panels) and PKC-h2/2

(bottom panels) mice. Overall CD1d- and CD3-positive NKT cells in thymus were first analyzed (left panels), and the NKT cells were then divided into
stage 0 and stage 1–3 based on expression of CD24 (middle panels). Gated Stage 1–3 cells were further analyzed based on CD44 and NK1.1
expression to indicate each of the three stages (right panels). B) Frequency of NKT cells in thymus, stage 0 and stage 1–3 described in A, as averaged
from three mice of each genotype. C) Frequency of NKT cells at stages 1, 2 and 3 described in A, as averaged from three mice of each genotype. D)
Total NKT cell number in thymus as well as stage 0 and stage 1–3, as averaged from three mice (*, P,0.05; **, P,0.01; ***, P,0.001). E) FACS analysis
of PLZF expression in thymic NKT cells. PLZF expression in WT and PKC-h2/2 NKT cells was analyzed using flow cytometry. F) GeoMean of PLZF
expression averaged from 3 independent experiments described in E. G) Lack of PKC-h does not affect surface CD1d levels on thymocytes. Histogram
of CD1d levels of WT (black line) and PKC-h2/2 (dotted line) thymocytes.
doi:10.1371/journal.pone.0031174.g003
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4 in liver NKT cells 1 h after OCH treatment (Fig. 4B–C).

Intrahepatic lymphocytes were collected based on the method

previously described [28]. Indeed, PKC-h2/2 NKT cells

had reproducible reduced levels of both IFNc (Fig. 5B left

panel and Fig. 5C) and IL-4 (Fig. 5B right panel and Fig. 5C).

Consistently, IFNc and IL-4 production was also lower in

OCH-stimulated purified PKC-h2/2 NKT cells compared to the

WT cells (Fig. 5D). These results thus suggest that PKC-h is

required to activate NKT cells to produce inflammatory

cytokines.

PKC-h2/2 NKT up-regulate FasL, TRAIL and CD40L
normally

Upon activation, NKT cells up-regulate FasL, TRAIL and

CD40L, which contributes to ConA-induced hepatitis by

induction apoptosis [5,6,35,36]. Therefore, we examined their

expression after ConA stimulation (Fig. 6). There were no

obvious difference in FasL (Fig. 6A), Trail (Fig. 6B) and CD40L

(Fig. 6C) levels on NKT cells between WT and PKC-h2/2 mice

before (left panels) or after (right panels) ConA challenge,

although stimulation up-regulated their levels as expected. In

addition, examination of expression of DR5 (Fig. 6D), the ligand

for Trail, on hepatocytes were found no difference between WT

and PKC-h2/2 mice. These results suggest that it is unlikely that

FasL, Trail and CD40L contribute to the hepatitis-resistance

exhibited by PKC-h2/2 mice.

Discussion

Liver diseases, including acute liver failure, viral hepatitis,

alcoholic liver disease, biliary cirrhosis and AIH, are serious

threats to public health. Although NKT cells represent only about

0.5% of total thymocytes and peripheral T cells, they comprise up

to 30% of the T cells in liver and play a critical role in liver

diseases [37]. Overwhelming activation of NKT cells, such as that

induced by ConA, a-GalCer, LPS and salmonella infection, causes

much damage, including severe injury of the liver [4,9,15]. ConA-

induced hepatitis has been used as a model for NKT-mediated

liver injury, which is closely resembles the pathology of human

AIH [4]. Inhibition of NKT cell activation is thus beneficial under

such circumstances. We found that PKC-h is a critical molecule

required for NKT cell activation by ConA and its lipid ligand, and

that deletion of PKC-h likely impairs liver injury in AIH. Many

highly specific PKC-h inhibitors have been developed by

pharmaceutical companies [38,39], and these inhibitors likely

have therapeutic value in the treatment of AIH.

Lack of PKC-h interferes with multiple NKT cell functions that

contribute to the ameliorated ConA-induced hepatitis observed in

PKC-h2/2 mice. First, both the percentage of NKT cells and their

absolute number were reduced in liver. This reduction in NKT

cells is not restricted to liver, as reduced numbers of NKT cells

were also observed in the spleen, bone marrow and thymus. That

numbers of thymic NKT cells were significantly reduced suggests

Figure 5. NKT cells require PKC-h in order to produce cytokines. A) WT (black bars) and PKC-h2/2 (open bars) mice were challenged with OCH
(1 mg) for 1 h, indicated cytokine levels in serum were detected (*, P,0.05; **, P,0.01). B. Mice were challenged with OCH (1 mg) for 1 h, IFNc(left
panel) and IL-4 (left panel) in WT (solid line) and PKC-h2/2 (dotted line) NKT cells were detected by intracellular staining of intrahepatic lymphocytes.
Shaded area is isotype (ISO) antibody control. C) Intracelluar IFNc and IL-4 levels in NKT cells described in B are indicated by GeoMean obtained from
at least three independent experiments. D) Sorted NKT cells (CD3LowCD1d-PBS57+) were stimulated with 100 ng/ml OCH in vitro for overnight, and
IFNc and IL-4 levels in supernatant were measured (*, P,0.05; **, P,0.01).
doi:10.1371/journal.pone.0031174.g005
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that development of NKT cells requires PKC-h, which is also

confirmed by other observations [40,41]. However, it was not

clear at which stages NKT cell development was blocked. Our

results demonstrated a significant reduction in NKT cells starting

from the earliest developmental stages (stage 0), suggesting PKC-h
has a critical function during early NKT development. Further

analysis of stages 1–3 showed that lack of PKC-h lead to block

NKT cell development at stages 1 and 2 but not so much at stage

3, suggesting that PKC-h-mediated function is more important for

stage 1 and 2 NKT cell development than that of stage 3. We have

shown previously that PKC-h regulates NF-kB activation [20],

and NF-kB is apparently required for NKT development [17].

However, deletion of NF-kBp50 arrested NKT cell development

at stage 2, which is a later stage than what we observed in PKC-h2/

2 mice. In addition to the NF-kB pathway, we and others have

shown that PKC-h also regulates signaling pathways such as AP1

and NFAT [42]. It is likely that PKC-h-regulated AP1 or NFAT

or both may play a role in early stages of NKT cell development.

The critical role of PKC-h in NKT development is in contrast to

conventional T cells, in which development is largely independent

of PKC-h [20], and it remains to be determined why PKC-h is

specifically required for the development of NKT cells.

In addition to reduced NKT cell number, defective NKT cell

activation also contributes to ameliorated hepatitis in PKC-h2/2

mice. Inflammatory cytokines such as IFNc, IL-4 and TNFa that

are produced by activated NKT cells are essential mediators for

induction of hepatitis [4,17,31]. We found that NKT cells activated

by OCH in the absence of PKC-h produced much less IFNc, IL-4

and TNFa. Consistent with this, fewer NKT cells from PKC-h2/2

mice produced IFNc and IL-4 in vitro and in vivo, suggesting that

reduced total number of NKT cells likely contributes to the reduced

serum TNFa. Interestingly, upon ConA treatment, TNFa, which

was lower in PKC-h2/2 mice 1 hr after stimulation, but has no

obvious difference 2 hr and 6 hr after stimulation. It is important to

emphasize here that other cells such as macrophages also produce

TNFa upon activation. Therefore, it is possible that TNFa
produced by other cells may contribute to the increased TNFa
levels in serum. It appears that IL-4 can regulate TNFa production

in ConA-induced hepatitis, as exogenous IL-4 can boost TNFa
levels [43]. Therefore, the reduced IL-4 production by PKC-h2/2

NKT cells may also be responsible for lower levels of TNFa in the

serum. Here we have demonstrated that PKC-h mediates signals

required for IFNc and IL-4 production by NKT cells, which

complements our previous results showing that PKC-c mediates

critical TCR signals required for IL-2 production in T cells [20]. In

addition to IFNc and IL-4, osteopontin produced by activated

NKT also contributes to ConA-induced hepatitis, indicated by the

resistance to ConA-induced hepatitis by osteopontin-deficient mice

[44]. Since PKC-h2/2 mice have reduced NKT cell number and

impaired NKT cell activation, it is likely that osteopontin produced

by activated NKT cells is also correspondingly reduced in the

absence of PKC-h, which contributes to the observed impaired

hepatitis in PKC-h2/2 mice.

Another potential mechanism responsible for NKT cell-induced

liver injury is FasL-induced hepatocyte apoptosis [5,6,35,36].

Similar to conventional T cells, activation of NKT cells leads to

up-regulation of FasL, which interacts with Fas on surface of

hepatocytes and induces apoptosis. The Fas-FasL-mediated

apoptosis is essential for ConA-induced hepatitis, as mutations in

this apoptotic pathway prevent hepatitis [5,6]. We have previously

shown that PKC-h is required for up-regulation of FasL in

conventional T cells and Fas/FasL-mediated activation-induced

cell death [45]. To our surprise, FasL was normally up-regulated

in NKT cells in the absence of PKC-h. Similarly, we also did not

find obvious difference in TRAIL, CD40, expression between WT

and PKC-h2/2 NKT cells. CD40 expression on hepatocytes is also

not affected by deletion of PKC-h (data not shown). Therefore, in

contrast to other functions such as activation and cytokine

production, PKC-h plays a different function in conventional T

than in NKT cells during FasL and likely TRAIL and CD40 up-

regulation.

In summary, PKC-h2/2 mice are resistant to ConA-induced

hepatitis, and this resistance is due to at least following mechanisms:

1) reduced NKT cell number due to an intrinsic requirement of

PKC-h for NKT cell development, and 2) reduced levels of

inflammatory cytokines such as IFNc and IL-4, because PKC-h
mediates the critical signals required for NKT activation. AIH in

humans is generally thought to be an immune disease. Similar to

many other autoimmunity, women are affected more than men

(gender ratio, 3.6:1) [46]. Immunosuppressive corticosteroid

treatment of AIH is effective [47]; however, corticosteroids have

broad effects on many tissues and have potential serious side effects

such as bone and skin problems as well as high blood pressure.

Highly specific drugs that target T cells, including NKT cells, are

likely better candidates for preventing liver injury induced by AIH.

PKC-h is specifically expressed in hematopoietic cells, particularly

in T cells, and deletion of PKC-h specifically affects T cell function

[20]. Therefore, many pharmaceutical companies have developed

PKC-h inhibitors to treat T cell-mediated autoimmunity. Consis-

tent with this, our study strongly suggests that PKC-h is a valuable

drug target for treatment of AIH.
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