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Purkinje cell is an important neuron for the cerebellar information processing. In this

work, we present an efficient implementation of a cerebellar Purkinje model using

the Coordinate Rotation Digital Computer (CORDIC) algorithm and implement it on

a Large-Scale Conductance-Based Spiking Neural Networks (LaCSNN) system with

cost-efficient multiplier-less methods, which are more suitable for large-scale neural

networks. The CORDIC-based Purkinje model has been compared with the original

model in terms of the voltage activities, dynamic mechanisms, precision, and hardware

resource utilization. The results show that the CORDIC-based Purkinje model can

reproduce the same biological activities and dynamical mechanisms as the original model

with slight deviation. In the aspect of the hardware implementation, it can use only logic

resources, so it provides an efficient way for maximizing the FPGA resource utilization,

thereby expanding the scale of neural networks that can be implemented on FPGAs.

Keywords: Purkinje, multiplier-less, coordinate rotation digital computer (CORDIC), field-programmable gate

array (FPGA), digital implementation

INTRODUCTION

The cerebellum is a very important part of the human brain and associated with many
important functions with a large number of incoming and outgoing connections between the brain,
brainstem, and spinal cord. These functions are not only relevant to motor control including error
correction (Doya, 2000; Llinas, 2009), tracking movements (Paulin, 1993; Miall et al., 2000), and
coordinated movements (Thach et al., 1992; Heck et al., 2007) but also relevant to many non-motor
functions such as linguistic prediction, word generation, emotional control, and so on (Leiner et al.,
1993; Schmahmann and Caplan, 2006; Pleger and Timmann, 2018). Purkinje cells (PCs) make up
the middle layer of the cerebellum, Purkinje layer, which is responsible for receiving information
from the cerebellar granule cell (GC) synapses through parallel fibers (PF) and climbing fibers (CF)
in brainstem. In addition to being all the constituent cells of the cerebellar Purkinje layer, PCs also
directly connect to deep cerebellar nuclei cells, which are the main output cells of cerebellum. So, it
is obvious that PCs play the most important role in the information processing of the cerebellum.
Besides, PCs are responsible for cerebellar motor learning (Gilbert and Thach, 1977) with the
information stored in the synapses with granule cells. The information is presented as the variation
of synaptic strength according to the error signals carried by CFs through spike timing-dependent
plasticity (STDP), which consists of long-term potential (LTP) and long-term depression (LTD)
(Ito and Kano, 1982; Han et al., 2000; Medina et al., 2000). This learning mechanism can be
obviously observed in classical eyeblink conditioning experiments (Bao et al., 2002) and cerebellar
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vestibulo-ocular reflex (VOR) (Blazquez et al., 2003;
Masuda and Amari, 2008), which are mainly caused by the
function of PCs.

There are two calculation modes for simulation spiking
neurons or spiking neural networks, serial computing mode,
and the parallel computing mode (Yang S. M. et al., 2019).
The serial computing mode is mainly based on some computer
simulation software that is incompatible with the parallel
computing features of real neural systems. In order to achieve
these in a more biological way, more and more neuroscientists
prefer to implement neurons and neural networks with parallel
computing mode. Analog very Large-Scale Integration (VLSI),
Graphics Processing Unit (GPU), and Field Programmable
Gate Array (FPGA) are the three most used platforms with
parallel computing capacity. Analog VLSI is an efficient analog-
based method for hardware implementation of spiking neurons
and neural networks because it can realize the non-linear
function directly (Han, 2005; Hsieh and Tang, 2012). However,
it cannot be flexibly changed once formed, so it is more
suitable for well-defined circuits. In addition, its high cost and
long development cycle also limit the application range. GPU
provides a digital implementation method for spiking neurons
and neural networks with its powerful parallel calculation ability
and many researches have been carried on GPUs (Igarashi et al.,
2011; Yamazaki and Igarashi, 2013). However, the kernel-launch
method used on GPU and the limited bandwidths are obstacles
for dealing with a lot of data. Compared to the two methods
above, FPGA has many advantages for realizing the neural
circuits. On one hand, the flexible reconfigurability and parallel
computing architecture can perfectly meet the requirements for
exploring characteristics of not only spiking neurons but also
the large-scale spiking neural networks; on the other hand,
its low area and power consumption also make it popular in
neurosciences (Yang et al., 2017, 2018a). In this work, the neuron
is implemented on the Large-Scale Conductance-Based Spiking
Neural Networks (LaCSNN) system first proposed by Yang S.
et al. (2019). The system consists of six Altera EP3SL340 FPGAs
and is designed to simulate large-scale spiking neural networks
with digital neuromorphic architecture. Its powerful storage
capacity, high calculation speed, and sufficient resources make it
an effective tool for neuroscience researches.

Although the advantages of FPGA are very prominent, the
disadvantages are also distinct. Most of the resources on FPGA
are logic resources; the lack of memory and multiplier resources

TABLE 1 | Conductance parameters of cerebellar Purkinje cell.

Current type gi Ei x∞ (αx ) τ x (βx )

Potassium 10 −95 1/
{

1+ exp[−(V + 29.5)/10 ]
}

0.25+ 4.375 exp[(V + 10)/10 ], V ≤ −10

0.25+ 4.375 exp[−(V + 10)/10 ], V > −10

Sodium 125 50 1/
{

1+ exp[(V + 59.4)/10 .7]
}

m∞ = 1/
{

1+ exp[−(V + 34.5)/10 ]
}

0.15+ 1.15/
{

1+ exp[(V + 33.5)/15 ]
}

Calcium 1 125 1.6/
{

1+ exp[−0.072(V − 5)]
}

0.02(V + 8.9)/
{

exp[(V + 8.9)/5]− 1
}

M 0.75 −95 0.02/
{

1+ exp[−(V + 20)/5]
}

0.01 exp[−(V + 43)/18]

Leak 2 −70 – –

often limits the scale when implementing neural networks.
As a kind of digital systems, it is difficult to implement the
non-linear functions directly. To solve these problems, many
methods have been proposed. One of the most frequently used
methods is to store the function values in a storage area with
continuous address space in advance, which is called look up
table (LUT) realization. When used, the function value can be
obtained by addressing. This method is very easy but costs
much memory resources. Besides, the use of LUTs increases the
duration of reconstruction when changing model parameters.
Another method, Taylor series approximation, is to replace
the non-linear function in the neighborhood with an n-order
polynomial approximation for a certain error. This method
can make a trade-off between LUT resources and multiplier
resources with different approximation order, but it still needs
these resources (Lee and Burgess, 2003). The piece-wise linear
(PWL) approximation (Julian et al., 1999) is a more efficient
method to solve these problems but there are two main cons:
one is there will be unavoidable error due to the use of several
linear segments; the other is that it needs to recalculate when the
non-linear function changes. So, in this work, we propose a non-
multiplier and non-LUTmethod with the CORDIC algorithm for
implementing the cerebellar Purkinje model on FPGA.

One of the main reasons for implementing single neurons
with optimization algorithms on FPGA is to lay a foundation for
realizing large-scale spiking neural networks. Many researches
have been carried out in recent years. Yang et al. (2018b) propose
a series of techniques for implementing a conductance-based
neuron model that is beneficial for building large-scale neural
networks. Soleimani et al. (2012) implement a classic Izhikevich
model using PWL method to prove that the method can simplify
the hardware implementation with showing similar dynamic
behaviors. Ambroise et al. (2013) also implement an Izhikevich
model on FPGA, but it is mainly to propose an architecture to
reproduce a neural network with only one computation core (one
neuron) based on one multiplier. Bonabi et al. (2012) implement
a Hodgkin–Huxley (H–H) single neuron with the CORDIC
algorithm and some LUTs that show high precision with more
compact used logic.

There are also many researches about implementing the
CORDIC algorithm on FPGA. Valls et al. (2002) evaluate
some methods for the CORDIC algorithm and realize a
variable precision method using conventional arithmetic on
FPGA. Liu et al. (2014) implement a modified CORDIC
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algorithm that reduces the utilization of ROM resources and
power consumption. Garcia et al. (2006) realize a pipelined
CORDIC architecture with solution for overflow and quadrant
correction and successfully generating sine and cosine waves.
Muñoz et al. (2010) propose a floating-point CORDIC FPGA
implementation for calculating transcendental functions. The
FPGA implementation of the CORDIC algorithm can give full
play to the advantages of FPGA and utilize hardware resources
to realize an optimization scheme combining hardware and
algorithm. The pipelined computational structure of FPGA
can also enhance the real-time performance of the CORDIC
algorithm, minimizing the computational delay due to the
iterative operations. Therefore, the CORDIC algorithm can be
widely applied to real-time high-quality signal processing with
high-performance requirements.

The remaining parts of this work are arranged as follows.
In section Neuron Model, the original model and modified
CORDIC model of cerebellar PC are presented. The CORDIC
algorithm used is also introduced in this section. Section
Hardware Implementation Based on LaCSNN describes the
details of hardware implementation. The results of software
simulation and hardware simulation are shown in section
Results. We also compare and analyze the result between
the original model and the CORDIC model with various
evaluation indicators for both the two simulations. The
behaviors of a network with this neuron are also presented.
section Discussion illustrates the discussion and conclusion for
this work.

NEURON MODEL

Original Purkinje Model
During the exploration of PCs, many mathematic models have
been built for different research interests (De Schutter and Bower,
1994a,b; Khaliq et al., 2003). Many models are either too detailed
to form a large-scale neural network or too simple to have many
basic biological characteristics. For the starting point of our
implementation, which is to propose a method for simplifying
a single neuron model with relatively high biological plausibility
and make contributions to build large-scale networks on FPGA,
we choose an H–H (Hodgkin and Huxley, 1952)-based model
proposed by Miyasho et al. (2001) and Middleton et al. (2008),
which consists of 32 ionic channels and simplified by Kramer
et al. (2008) to 5. The membrane potential is shown as follows:

C
dV

dt
= −gkn

4 (V − Ek) − gNam∞ (V)3 h (V − ENa)

−gCac
2 (V − ECa) − gM M(V − EM )

−gL (V − EL)− I (1)

where V represents the membrane potential, C represents the
membrane capacitance, and gi and Ei (i ǫ {k,Na,Ca,M, L})
are the maximum ionic conductance and reversal potentials
for different ion channels, respectively. There are five ionic
currents and an external stimulus current I in this model:
a potassium current Ik = gkn

4 (V − Ek), a sodium current
INa = gNam∞ (V)3 h (V − ENa), a calcium current ICa =

gCac
2 (V − ECa), an M-current IM = gMM (V − EM) , and a leak

current IL = gL (V − EL). n, m, h, c, and M are gating variables
for different ionic currents and the dynamics are described
as follows:

x∞ =
αx

αx + βx
, τx =

1

αx + βx
(2)

dx

dt
=

x∞ − x

τx
(3)

x∞ is the state variable, τx is the time constant for
xǫ {n,m, h, c,M}, αx, and βx are relevant functions, and all
of these are functions of membrane potential V. The detailed
parameter values and the description for ionic currents dynamics
are provided in Table 1.

CORDIC-Based Purkinje Mode
In order to make the implementation more suitable for building
large-scale neural network and improve the calculation speed,
we modify the original Purkinje model to save memory and
multiplier resources with the CORDIC algorithm and introduce
as follows.

The CORDIC algorithm is originally developed in Volder
(1959) as an algorithm for calculating trigonometric and
hyperbolic functions and first used in navigation systems. Then,
a unified CORDIC algorithm is proposed in Walther (1971).
By introducing a coordinate system parameter m, the circular
rotation, hyperbolic rotation, and linear rotation are unified into
the same CORDIC iterative equations, which provide a premise
for the multifunction of the same hardware implementation. The
essence of the CORDIC algorithm is to approximate a certain
rotation angle by using a set of constant angle bases. It is possible

FIGURE 1 | The diagram of pipeline structure for the five variables used in

cerebellar Purkinje model.

Frontiers in Neuroscience | www.frontiersin.org 3 October 2019 | Volume 13 | Article 1078

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


Hao et al. Efficient Implementation of Purkinje Cell

to accurately calculate many non-linear functions by using vector
repeated rotation. Its iterative equation is as follows:







Xi+1 = Xi −mqiYi · 2
−i

Yi+1 = Xi + qiXi · 2
−i

Zi+1 = Zi − qi · θi

(4)

FIGURE 2 | The schematic diagram of the functional shift multiplier (FSM).

where Xi and Yi are the value before rotation, Xi+1 and Yi+1 are
the value after rotation, qi is the direction of rotation, θi and
the relationship between m value and rotation mode are both
described in Equation (5).

θi =







tanh−1 (

2−i
)

, m = −1, hyperbolic rotation

2−i, m = 0, linear rotation

arctan(2−i), m = 1, circular rotation

(5)

The exponential operations and divisions used in this paper
are calculated in the hyperbolic rotation and linear rotation
modes, respectively. The division can be easily gotten with θi =

2n−i
(

θi= 2i−n
)

, where n determines the calculation range. As
for the exponential operations, since through hyperbolic rotation
we can only obtain the values of coshθ and sinh θ , eθ needs
to be calculated with the basic relationship between hyperbolic
functions sinh θ + coshθ = eθ . According to Equation (5), we can
know that the convergence domain is limited by tanh−1 (

2−i
)

. In
detail, the maximum value it can be calculated is determined by
the sum of all the angles, which is approximately equal to 1.1182.
It is obvious that it cannot meet the calculation requirements of
this model. So, before calculating, the input variable needs to be
preprocessed to expand the convergence domain. Suppose the
input variable is θ , it can be divided into integer part A and
fractional part b after being divided by ln2 just as Equation (6)

FIGURE 3 | The schematic diagram of data flow for V and currents in the modified model. (A) The pipeline of “V.” (B) The pipeline of “Ik.” (C) The pipeline of “INa.” (D)

The pipeline of “ICa.” (E) The pipeline of “IM.” (F) The pipeline of “IL.”.
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FIGURE 4 | The schematic diagram of data flow for gating variables, a state variable and the detailed structures of one iteration in each CORDIC operations. (A) The

pipeline of “c” and “M.” (B) The pipeline of “h” and “n.” (C) The pipeline of “h∞.” (D) One iteration of CORDIC division (CDI). (E) One iteration of expand CORDIC

exponential (ECEXP). (F) One iteration of and CORDIC exponential (CEXP) in order.

and the exponential operation will be eθ = 2A· ebln2.

θ

ln2
= A+ b (6)

There are two reasons for choosing ln2, one is the exponential
operation of integer part can be transmitted to power of 2
directly, which can be easily implemented by shifting; the other
one is that b · ln2 is smaller than 1.1182, which is just within
the convergence domain. With this method, we can perform
exponential operations in any range. After careful consideration,
in the case of ensuring high precision and minimizing resource
consumption, the iterations in this work are chosen as: 10 for
exponential operations and 12 for divisions with n= 2 for θi.

HARDWARE IMPLEMENTATION BASED
ON LaCSNN

To the best of our knowledge, there are no works on
FPGA implementation for cerebellar PC model based on H–
H form. The detailed implementation method is described in
the following.

In order to be implemented on a digital system, the differential
equations of the Purkinje model should be solved with the
Euler method. The Euler method is suitable for hardware
implementation with its easy operation and adequate precision.
The discretization results with a mathematical finite-difference
method are shown as follows, Equation (7) is for membrane
potential and Equation (8) shows the results of other variables:

V
[

k+ 1
]

= V
[

k
]

+







gkn
4
(

V
[

k
]

− Ek
)

− gNam∞
3h

(

V
[

k
]

− ENa
)

−gCac
2
(

V
[

k
]

− ECa
)

−gMM
(

V[k]− EM
)

− gL
(

V
[

k
]

− EL
)

− I
}∗(

1t

C
)

(7)


















h
[

k+ 1
]

= h
[

k
]

+
h∞−h[k]

τh

∗
1t

n
[

k+ 1
]

= n
[

k
]

+
n∞−n[k]

τn

∗
1t

c
[

k+ 1
]

= c
[

k
]

+
(

α∗
c

(

1− c
[

k
])

− β∗
c

[

k
])∗

1t

M
[

k+ 1
]

= M
[

k
]

+
(

α∗
M

(

1−M
[

k
])

− β∗
MM

[

k
])∗

1t

(8)

where k is the iterations and 1t is the time step for the
Euler method. Generally speaking, the precision is inversely
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FIGURE 5 | The voltage activities of original model and the modified CORDIC model.

proportional to the value of the time step, and in this work,
the time step is set to be 0.004ms, which is the same
in Traub et al. (2003).

Since floating-point operations take up a lot of resources
and require a long calculation time, the FPGA implementation
usually uses fixed-point calculations under the premise of
meeting the computing needs. The bit width of fixed-point
calculation is another important factor affecting precision or even
implementation result besides the time step. The selection of bit
width can be divided into an integer part and a fractional part,
which can be estimated according to the software simulation
results. For example, the range of V in this work is−60 to 40mV,
so the integer part should be 7 at least for 27/2 > | − 60|. If
we need the precision to be 0.001, the bit width of the fractional
part that directly determines it should be 10. In the calculation
process of this work, the range of most variables is from −100
to 100, so the bit width of the integer part for most logical
operation modules is 8. It should be pointed out that one of
the variables reached 8,000 in the process of calculating h∞, so
the bit width of the integer part for related logical operation
modules is 14. In order to guarantee the precision of spiking
and dynamics, the bit width of the fractional part is chosen
to be 15.

In this work, all of the variables including V, n, h, c, and
M in Equations (7) and (8) are designed to be realized with
pipeline structures. The overall pipeline schematic is shown in
Figure 1. There are two parts for one pipeline structure, the
“Pipeline” includes all the calculations in Equations (7) and (8)
and the “Buf” consists of a certain number of buffers to store
the calculation results for each variable. This implementation
method can improve the throughout and calculation efficiency
of the LaSCNN system.

It is well-known that one of the factors limiting the size of
the network implemented on the FPGA is the limited multiplier
and memory resources. Due to most of the resources on FPGA is
logic resources, all the multiplication, division, and exponential
operations are replaced by adders and shifters in this work.
The division and exponential operations are implemented with
the CORDIC method as described in section Neuron Model
and the multiplications are implemented through two methods,
which are more efficient than the CORDIC algorithm. On one
hand, we can only use shifters and adders for the multiplications
with a constant multiplicand. The main idea of this method is

decomposing the constant into a summation of several (−1)k2n

with different values of k and n and shifting the multiplier
according to the values. k is 0 or 1, which determines the sign
bit and the absolute value of n determines the number of bits
that the multiplier need to be shifted. The direction of shifting
is decided by the sign bit of n. If n is negative, the multiplier
needs to be shifted to the left; if n is positive, the multiplier
needs to be shifted to the right. On the other hand, the rest
of multiplications are realized with functional shift multipliers
(FSMs) with the structure shown in Figure 2. As we can see, one
of the variables is split into single bits through a bus splitter and
output to the multiplexers as enable signals. That is, if a bit of
this variable is 0, the output of the corresponding multiplexer is
0; if a bit of this variable is 1, the output of the corresponding
multiplexer will be the value of the other variable after shifting.
The number of shifters is related to the bit position of the
previous variable. Finally, add all the values from multiplexers
and then the multiplication result can be obtained. It is worth
noting that there is always one slow variable in a multiplication
and splitting this variable is a better choice when using FSMs.
Due to each additional bit of an FSM consumes a shifter and a
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multiplexer, all the FSMs used in this work are designed to fit
the inputs in order to minimize the use of logical resources. The
overall bit width is between 13 and 18.

Besides, when implementing the exponential operations with
the CORDIC algorithm, we find that the iterative structure of X
and Y is very similar, so we merge the two iterations and then
the iterative Equation (4) becomes like Equation (9), which can
save about one-third of the logical resources without changing
the results. Under the premise of ensuring accuracy, the iterations
of CORDIC is set to 20 for division and 10 for exponential
operations in this work.

{

Xi+1 = Xi + qiXi · 2
−i

Zi+1 = Zi − qi · tanh
−1 (

2−i
) (9)

The schematic diagram of dataflow for V is shown in Figure 3.
Figure 3A shows the data flow of V with ionic currents and
external current in the modified model. The detailed structures
for the ionic currents are shown in Figures 3B–F. The schematic
diagrams for the other four variables and the CORDIC algorithm
are shown in Figure 4. Figure 4A is the structure for c and
M and Figure 4B is for h and n. Due to space limitations,
we only give a typical example for CORDIC-based non-linear
function that includes all the compartments used in other
functions in the Figure 4C. Figures 4D–F show the detailed
structure for non-linear operations realized with the CORDIC
algorithm. For the sake of simplicity, the figures only give
the structure for one iteration of each operation and it will
need several same structures with different values of “shift” for
realizing the calculation. There is no LUTs and multipliers in
all the designs so we can get a non-multiplier and non-LUT
implementation through this method, which has potential for
large-scale cerebellum realization on LaCSNN.

RESULTS

Comparison of Software Simulation
Results
The original and CORDIC-based cerebellar Purkinje model are
both simulated withMATLAB v2014a. The time step for software
simulation is 0.004ms. The membrane potential waveforms of

TABLE 2 | The value of RMSE and mAE of non-linear function realized with

CORDIC.

CORDIC functions RMSE mAE

n∞ 0.0013 0.0098

τn 0.0010 0.0068

h∞ 8.80 × 10−4 0.0073

τh 0.0012 0.0102

m∞ 0.0013 0.0082

αc 0.0012 0.0146

βc 0.0015 0.0299

αM 1.42 × 10−5 1.28 × 10−4

βM 5.22 × 10−5 4.29 × 10−4

two models are shown in Figure 5. As shown in the figure and
taking the original model as an example, the burst activity with
increasing amplitude can be seen when I = −25 (Bursting I).
With the decrease of I, the interburst intervals decrease and
the bursting becomes more durable (Bursting II). When I =

−33.09485 (I′), a value in the critical region, the voltage activity
presents bursts interspersed with amplitude modulation, which
is the new type of activity founded in Kramer et al. (2008). The
continuous decrease of I will make bursting disappear gradually,
from the only spiking amplitude modulation (I = −33.1) to
the complete fast spiking (I < −33.2). The CORDIC model can
successfully reproduce the same voltage activities as performed
in the original model but with different values of I. That is caused
by the differences of the non-linear function realized with two
different methods. There are inevitable errors of the CORDIC
algorithm due to the iterative operations, but it will not affect
overall results and can meet our requirements. To show it clearly,
the detailed spiking waveforms for fast spiking of the two models
are shown in Figure 6. We can see that there exists a certain but
small difference in spiking interval and the disparity of amplitude
is also limited.

FIGURE 6 | The spikes under fast spiking mode of the two models. The blue

lines and red lines are for original model and the CORDIC model, respectively.

The solid lines represent the spike waveform. The dash lines show the spike

moment and the black one shows the synchronous spike moment of the two

models. Horizontal arrows represent spiking intervals.

TABLE 3 | The value of ERRt and Corr of five different types of spikes.

Spike type ERRt Corr

Bursting I 0.0011 0.9980

Bursting II 0.0006 0.9890

Bursting with amplitude modulation 0.0037 0.9835

Amplitude modulation 0.0041 0.9922

Fast spiking 0.0005 0.9817
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FIGURE 7 | The curve and absolute error of nine nonlinear functions. The top panel of each figure is the function curve and the bottom panel of each figure is the

absolute error. Blue lines represent the original nonlinear functions and red lines represent the CORDIC functions. (A–I) Represents n∞, τn, h∞, τh,αc,βc,αM,βM,

and m∞ in order.

Error Analysis
In order to evaluate the CORDIC model more accurately, we
use different methods to quantify the error between the two
models to get a more comprehensive understanding of the
CORDIC model. The detailed description of the method is
as follows.

1) Maximum absolute error (mAE):

The absolute error (AE) is defined as the difference between the
absolute values of the voltage of the two models. The maximum

absolute error is defined as the difference between the voltage
maximum absolute values of the two models. The two indexes
can be calculated with the following equation:

{

AE (i) = |Fori (i) − FCORDIC (i)| , i = 1, 2, . . . ,N
mAE = max (|Fori (i) − FCORDIC (i)|) , i = 1, 2, . . . ,N

(10)

where Fori(i) represents the relevant value of the original model
and the FCORDIC(i) represents the relevant value of the CORDIC
model. The symbol |·| is used to get the absolute value and the
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FIGURE 8 | Comparison of the dynamics between the original model (A) and

the CORDIC model (B) with I = I′. The “FP” and “LC” represent fixed points

and limit cycles, respectively.

max(·) is used to get the maximum value. In order to get the error
of the CORDIC algorithm in detail, we calculated the mAE of
all nine non-linear functions realized by the CORDIC algorithm
under a complete spiking waveform for a more convincing effect.
The values are summarized in Table 2.

2) Root mean square error (RMSE):

The root mean square error is a typical measurement index
for two value differences and very sensitive to very large or very
small errors. We also calculate the RMSEs of all nine non-linear
functions with the equation below and summarized in Table 2.

RSME =

√

√

√

√

1

N

N
∑

i−1

(Fori(i)− FCORDIC(i))
2 (11)

3) Error of spikes’ timing (ERRt):

The error of spikes’ timing reflects the difference in spiking
interval between the two models. It can not only directly reflect
the difference in spiking periodicity but also indirectly reflect the
difference in the shape of the spiking waveform. To calculate

the spiking interval, we should find a synchronous spike at first
just as Figure 5. Then, measure the time interval between the
synchronous spike and the previous or next spike. The error can
be calculated as follows:

{

ERRt = |
1TCORDIC−1Tori

1Tori
|

1T = tsyn − tpre or 1T = tnex − tsyn
(12)

where 1TCORDIC represents the spiking time interval of the
CORDIC model and the 1Tori represents the spiking time
interval of the original model.

4) Correlation coefficient (Corr):

The correlation coefficient is an amount of linear correlation
between the two groups of data. For the spiking waveforms of the
two kinds of neurons, the larger the correlation coefficient is, the
more similar the two waveforms are, and the maximum value of
Corr is 1. As shown in Equation (13), the Corr is generally defined
as the ratio of covariance to variance product of two sets of data.
The covariance and the variance of the two sets of data can be
obtained by Equation (14).

Corr =
cov(Vori, VCORDIC)

σ (Vori)σ (VCORDIC)
(13)











cov (Vori, VCORDIC)

=
∑n

i=1

(

Vori (i) − Vori

) (

VCORDIC (i) − VCORDIC

)

σ (V) =

√

∑n
i−1 (V(i)− V)

2
(14)

We calculate the ERRt at 20 different times and take the average
as the final value and the Corr is calculated with the membrane
voltage values 6ms (about 3–4 complete spiking) after the start of
spiking synchronization. Both the two indexes are measured with
five spiking modes and the values are summarized in Table 3.
It can be seen from the table that the ERRt of the five spiking
modes are <0.005, which indicates that the difference between
the spiking intervals is small. In addition, the Corr of the five
discharge modes is also around 0.99, which indicates that the
spiking waveform is very similar.

The curves of the nine non-linear functions of the original
model and CORDICmodel are shown in Figure 7 with the shape
of AE below. As can be seen from Figure 7 and the two tables, the
model implemented using the CORDIC algorithm has very small
errors calculated by various methods and can meet the needs for
building spiking neurons.

Dynamic Analysis
In order to evaluate the difference between the two models
more comprehensively, we learn and compare the dynamical
mechanisms in different discharge modes. Because small errors
can cause large differences in dynamical diagrams, it is a good
way tomeasuremodel consistency. Formore convincing, we have
implemented the dynamic mechanisms in Kramer et al. (2008):
the bifurcation diagrams of voltage V and the slow variableM.

The simulation results of the entire system and its associated
bifurcation diagram for bursting with amplitude modulation are
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FIGURE 9 | The dynamic of the original model (left) and CORDIC model (right) for bursting, amplitude modulation, and fast spiking.

shown in Figure 8A, which is obtained from the original model,
and Figure 8B, which is from the CORDIC-based model. For
a clearer description, the portion of the M-current at (0.483,
0.546) mV is referred to as the fast subsystem. When the M-
current is reduced to less than the voltage at fold of fixed
points in the fast subsystem, the rapid discharge begins and
the attracting and repelling fixed points are also merged at this
point. After that, the voltage increases rapidly and the system
enters the fast subsystem along the attraction curve of the limit
cycle. During this period, the M-current gradually increases
until it reaches a fold of limit cycles in the fast subsystem.
Finally, the M-current decreases, and the dynamics of the system
temporarily follows the repelling branch of limit cycles until
the return fixed points (light gray) or limit cycles. It can be
seen from the figure that the small errors of CORDIC make
the shapes of the two figures slightly different, but the CORDIC
models can still reproduce the results in the original paper
very well.

Figure 9 shows the other three bifurcation diagrams for

bursting, amplitude modulation, and fast spiking. M-current

and calcium current play major roles in the switching
of the spiking mode. When the hyper-polarization due to
the M-current works (I < I′), the bursting occurs due
to the victory of hyperpolarization, then the cell enters
the stationary phase of bursting and spiking stops. When
the calcium current works, its depolarizing effect prevents
the hyperpolarization. Then, the stationary phase no longer
appears, with the amplitude modulation spiking instead. As
I continues to decrease, there only exists fast spiking. There
are still small differences in these figures, but they are

also able to reproduce the dynamical mechanisms that the
cell follows.

Network Behavior
In this section, we present a network of two coupled PCs to verify
the proposed method. The two PCs (Vpre and Vpost) are all in the
form of Equation (1) each with an extra added synaptic current
Isyn. The pre-PC is set to an excitatory cell and the post-PC is
set to an inhibitory cell. The pre one receives excitatory current
Isyn_postthrough GABAA receptors and the post one receives
inhibitory current Isyn_pre through AMPA receptors. The detailed
synaptic current is shown as follows:











dz
dt

=
1+tanh( V10 )

2
1−z
τ1

− z
τ2

Isyn_pre =Wzpre(Vpost − Vinh)
Isyn_post = Wzpost(Vpre − Vex)

(15)

whereW is neuron connection weight, z is the synaptic activation
variable, and τ1 and τ2 are time delay constants, which for
GABAA receptors are 0.5, 10 and for AMPA receptors are
0.2, 2, respectively. The other parameter values are: W = 0.5,
Vex= 0, Vinh = −50, I for pre and post cell is −25 and
−34, respectively.

The simulation results are shown in Figure 10. When the
two neurons are uncoupled, they both present the spike mode
according to the value of I, bursting mode for the pre cell with
I = −25, and fast spiking mode for the post cell with I = −34.
When the two neurons are coupled, the bursting period of the
pre cell becomes longer due to the excitatory synaptic current and
the spiking mode of the post cell turns into bursting due to the
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FIGURE 10 | The network behavior of the original model (left) and the CORDIC model (right).

inhibitory synaptic current. It is worth mentioning that the peak
value of each spike changes with time due to the interaction of
the two neurons, and the dynamic behavior shows corresponding
changes. We can see from Figure 10 that no matter the spiking
behaviors or the dynamic behaviors, the original model and
the CORDIC model show a high degree of consistency, which
indicates that the proposed method is also applicable for the
neural network.

Hardware Implementation Result
The modified CORDIC cerebellar Purkinje model is built
with the DSP Builder aided design toolbox in Simulink and
then transformed to VHLD hardware language that can be
compiled in Quartus II and downloaded to the LaCSNN
system through USB-Blaster with Joint Test Action Group
(JTAG) mode. In order to facilitate observation, the digital
outputs from FPGA are transmitted to analog signals through
a 16-bit dual-channel DA converter. The converter is also

connected to an oscilloscope where the voltage activity of the
model can be observed directly. The LaCSNN system and the
voltage activity on the oscilloscope screen are both shown in
Figure 11. The x-label and the y-label represent the time and
voltage, respectively.

The comparison of the software simulation results and
the FPGA implementation results for voltage activity is
shown in Figure 12. To clearly present the difference between
the two results, we give a partial spiking waveform. The
overall shape of the voltage is the same, but the period and
amplitude are different. The main reason is the usage of
the approximation method and the fixed-point calculation
on the hardware. The bifurcation diagrams for bursting,
amplitude modulation, fast spiking, and bursting with
amplitude modulation of the two simulation methods
are shown in Figure 13; for the same reason, the basic
shape of these diagrams is the same but the voltage values
have deviations.
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FIGURE 11 | The hardware implementation results of the CORDIC cerebellar

Purkinje cell on the LaCSNN system. The x-label is time with 100 ms/cell and

the y-label is voltage with 50 mV/cell. (A) The LaCSNN system and the

oscilloscope. (B) The membrane potential of “Bursting I” mode. (C) The

membrane potential of “Bursting II” mode. (D) The membrane potential of

“Bursting with amplitude modulation” mode. (E) The membrane potential of

“Amplitude modulation” mode. (F) The membrane potential of “Fast spiking”

mode.

FIGURE 12 | The detailed spiking shape of software simulation and hardware

implementation under the fast spiking mode. The blue line represents the

software simulation result and the red line represents the hardware

implementation result.

The resource utilization, working frequency, and power
dissipation of the original and CORDIC model are summarized
in Table 4. Due to the unroll iteration structure and a mass
of multiplications, the logical elements used by the CORDIC
model is more than the original model. However, the memory
bits used by LUTs and the DSP block 18-bit elements used by
multipliers can be reduced to zero. The power dissipation is
a little more also due to the unroll iteration structure. For a
clearer explanation, the same contents of the key algorithm of
this method are summarized in Table 5. Comparing the three
key algorithms, we can conclude that the FSM is more efficient

than the CORDIC with less logic resources and high working
frequency, which is why we do not use the CORDIC algorithm
to realize multiplications. With the number of iteration increases
(20 for division and 10 for exponent), the working frequency
decreases due to the iterative structure, which affects the working
frequency of the entire model. More importantly, it is obvious
that there’s no need for memory and multiplier resources for
realizing the non-linear operations with high frequency and low
power dissipation. It proves that, through this method, we can
efficiently convert memory resources and multiplier resources
into logical resources, which is of great significance to maximize
the use of FPGA on-chip resources and improve the scale of
neural network implementation.

DISCUSSION

There is a bottleneck for realizing a large-scale neural network
with high biological precision neurons such as the model in this
paper based on the H–H neuronmodel. These models have many
conductance-based ionic currents that usually contain many
non-linear functions and greatly increase the computational
complexity. To solve this problem, many previous studies are
working on FPGA resource optimization for spiking neurons
with different methods (Ahmadi and Zwolinski, 2010; Bonabi
et al., 2014; Hayati et al., 2016; Akbarzadeh-Sherbaf et al., 2018).
Ahmadi and Zwolinski (2010) propose a method with PWL
approximation for implementing the Izhikevichmodel. The non-
linear operations in the model are only multiplications for there
are no detailed ionic currents. The model complexity is relatively
simple so the reference meaning for building high biological
precision neurons is limited. Bonabi et al. (2014) implement an
H–H-based model and a two-mini-column network with the
CORDIC algorithm but it is only used for calculating exponent
operations, but there are still some things to do to implement
a large-scale neural network, because the multiplication and
division operations account for a large proportion of the model
and they still need multipliers and memory resources. Besides,
there is no simplification for the iterative structure as we have
done. Akbarzadeh-Sherbaf et al. (2018) use a general PWL
approach to implement a randomly connected network with
H–H models. If we just focus on one H–H model, the PWL
approach can successfully realize the non-linear functions and
improve the working frequency, but the precision is lower
than the CORDIC algorithm for a sharp curve will certainly
appear at the junction of the two linear sections. Besides, the
approximate range of each linear part is only applicable to that
set by the designer, so the linearization must be redesigned each
time the model changes, and any unexpected values may get
unexpected behaviors. As for the GPU platform, there may not
be many researches on implementing a single neuron on it,
but many researches have been carried on for the comparison
between GPUs and FPGAs about implementing spiking neural
networks (Cheung et al., 2012, 2016; Luo et al., 2016). The results
show that GPUs can speed up the simulations with multi-core
processors and parallel computing capacity, but compared to
FPGA, two obvious cons still exist. One is the small on-chip

Frontiers in Neuroscience | www.frontiersin.org 12 October 2019 | Volume 13 | Article 1078

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


Hao et al. Efficient Implementation of Purkinje Cell

FIGURE 13 | The dynamic behavior of software simulation and hardware implementation under bursting, amplitude modulation, fast spiking, and bursting with

amplitude modulation mode. The blue line represents the software simulation results and the red line represents the hardware implementation results.

memory and bandwidth, which limits the scale, the other is
the high-power consumption of the desktop system. Besides,
the calculation speed of GPUs is also lower than FPGAs in
these works.

In order to save multiplier resources on FPGA, many
multiplier-less methods have been proposed with different
application ranges. Both Jokar and Soleimani (2017) and Hayati
et al. (2016) propose a multiplier-less structure with the PWL
approach that needs to linearize each function that contains
multiplication of variables. The multiplier-less implementation
in Agostini et al. (2005) and Gomar and Ahmadi (2014) are
simple for there are all constant number multiplications in their
models, which can be easily replaced by adders and shifters.
Thomas and Luk (2013) replace the multipliers with LUTs and

block RAMs, which use more LUT resources to save multiplier
resources. Our work presents an FSM, which is common to all
multiplication operations and easy to use. With this method,
users do not need to redesign the whole approximation using
the PWL approach, and all of the multiplications can be realized
just by adjusting the supported bit width, even simpler than
the method implementing the constant number multiplications.
The working frequency of the FSM is 195.92 MHz as shown
in Table 5, so the lower working frequency of the cell model
compared to the model mentioned above is only due to the
unavoidable iterative structure of the CORDIC algorithm and the
complexity of this model.

This paper presents a multiplier-less and LUT-less CORDIC
method to realize the conductance-based cerebellar Purkinje

Frontiers in Neuroscience | www.frontiersin.org 13 October 2019 | Volume 13 | Article 1078

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


Hao et al. Efficient Implementation of Purkinje Cell

TABLE 4 | The resource utilization of hardware implementation for the two kinds

of models on Altera Stratix III EP3SL340H1152C2.

FPGA

resources

Total

available

Original

model

Modified

model

Total logical

elements

270,400 1,821 43,543

Dedicated

logical

registers

270,400 520 468

Total pins 744 29 29

Total memory

bits

16,662,528 307,200 0

DSP block

18-bit

elements

576 236 0

Total PLLs 4 1 1

Max

frequency

– 28.15 MHz 53.44 MHz

Total power

dissipation

– 275.40 mW 445.91 mW

TABLE 5 | The resource utilization of hardware implementation for CORDIC

algorithm and FSM on Altera Stratix III EP3SL340H1152C2.

FPGA

resources

Total

available

CORDIC-

Exponent

CORDIC-

Division

14-bit FSM

Total

logical

elements

270,400 644 1,222 303

Dedicated

logical

registers

270,400 565 537 0

Total pins 744 20 20 20

Total

memory

bits

16,662,528 0 0 0

DSP block

18-bit

elements

576 0 0 0

Total PLLs 4 0 0 0

Max

frequency

– 120.45

MHz

73.44 MHz 195.92 MHz

Total

power

dissipation

– 159.23

mW

164.81

mW

158.62 mW

model on FPGA. This can be used for the trade-off among logic
resources, memory resources, and multiplier resources, which
can be adopted to make full use of the FPGA resources to build a
large-scale neural network. All of the calculation modules in our

work, the FSM, CDI, and ECEXP, can be directly used for any
other models without any extra operation. Besides, the modified
pipelined parallel CORDIC algorithm can significantly reduce
the resource consumption and the complexity of the hardware
implementation architecture.

CONCLUSION

In this work, we present an efficient implementation of a
modified cerebellar PC using the CORDIC algorithm with
recently found new dynamic performance. Through the analysis
of various errors of the two single-neuron models and the
comparison of waveforms and network behaviors from different
aspects, it can be concluded that the original model and the
CORDIC-based model are consistent in biological activities and
dynamic mechanisms. After that, we use the non-multiplier
and non-LUT methods and implement the CORDIC model on
the LaCSNN system. The implementation results are observed
on the oscilloscope through the DA conversion module, which
are also consistent with the results of the software simulation.
By comparing the resource utilization of the original model
and the CORDIC model in FPGA implementation, we can
conclude that the method used in this paper can transform the
use of multiplier resources and memory resources into logical
resources, so as to maximize the utilization of FPGA on-chip
resources and expand the network scale that can be achieved.
This work provides an effective method for realizing large-scale
spiking neural networks of cerebellum or many other spiking
neural networks on FPGAs.
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