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ABSTRACT
White matter (WM) tracts shape the brain's dynamical activity and their damage (e.g., white matter hyperintensities, WMH) yields 
relevant functional alterations, ultimately leading to cognitive symptoms. The mechanisms linking the structural damage caused 
by WMH to the arising alterations of brain dynamics is currently unknown. To estimate the impact of WMH on brain dynamics, 
we combine neural-mass whole-brain modeling with a virtual-lesioning (disconnectome) approach informed by empirical data. We 
account for the heterogeneous effects of WMH either on inter-regional communication (i.e., edges) or on dynamics (i.e., nodes) and 
create models of their local versus global, and edge versus nodal effects using a large fMRI dataset comprising 188 non-demented 
individuals (120 cognitively normal, 68 with mild cognitive impairment) with varying degrees of WMH. We show that, although 
WMH mainly determine local damage to specific WM tracts, these lesions yield relevant global dynamical effects by reducing the 
overall synchronization of the brain through a reduction of global coupling. Alterations of local nodal dynamics through discon-
nections are less relevant and present only at later stages of WMH damage. Exploratory analyses suggest that education might play 
a beneficial role in counteracting the reduction in global coupling associated with WMH. This study provides generative models 
linking the structural damage caused by WMH to alterations in brain dynamics. These models might be used to evaluate the detri-
mental effects of WMH on brain dynamics in a subject-specific manner. Furthermore, it validates the use of whole-brain modeling 
for hypothesis-testing of structure–function relationships in diseased states characterized by empirical disconnections.

1   |   Introduction

The structural scaffold formed by white matter connec-
tions shapes cerebral dynamical activity (Sporns  2013; 
Suárez et  al.  2020). Its damage results in disruption of the 

arising dynamics (Alstott et al. 2009; Cabral et al. 2012; Idesis 
et al. 2022; Thiebaut de Schotten, Foulon, and Nachev 2020), ul-
timately yielding cognitive deficits (Jenkins et al. 2021; Thiebaut 
de Schotten, Foulon, and Nachev 2020). White matter hyperin-
tensities (WMH) constitute imaging correlates of white matter 
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damage and are characterized by local areas of high signal in 
T2-weighted MRI (Kantarovich et  al.  2022; Wardlaw, Valdés 
Hernández, and Maniega 2015). They pathologically correspond 
to vasculopathy, chronic demyelination, axonal damage and 
loss (Wardlaw, Valdés Hernández, and Maniega 2015). Previous 
studies demonstrated that WMH is associated with alterations 
of brain dynamics with significant effects both on static func-
tional connectivity (FC) and time-varying FC (tv-FC) (Jenkins 
et al. 2021; Kantarovich et al. 2022; Schlemm et al. 2022; Schulz 
et al. 2021). Nonetheless, these studies lacked a generative model 
allowing them to explain these modifications and to compare 
different pathophysiological hypotheses. Understanding the ef-
fects of WMH is of crucial clinical importance due to their high 
prevalence and associated risk of developing cognitive impair-
ment (Debette and Markus 2010; Wardlaw, Valdés Hernández, 
and Maniega  2015). Better elucidation of the pathophysiologi-
cal effects of WMH on brain dynamics might provide insights 
for the development of new preventive and treatment strategies 
aimed at counteracting their detrimental effects. Furthermore, 
generative models of brain signal alterations caused by WMH 
might prove useful to predict subject-specific network dynamics 
alterations stemming from WM lesions in a clinical setting.

By linking structural connectivity to the arising dynamics 
through well-defined mathematical equations, whole-brain neu-
ral mass models (WBM) are well suited to explore the dynamical 
effects of structural lesions, such as WMH (Alstott et  al.  2009; 
Cabral et al. 2012; Deco et al. 2017; Idesis et al. 2022). In WBM, 
model parameters can be adjusted based on hypotheses about the 
pathophysiological effects of the investigated observables (e.g., le-
sions of white matter tracts) and the biological plausibility of these 
hypotheses can be tested in terms of goodness of fit between sim-
ulated and empirical fMRI or EEG data (Kobeleva et al. 2022). 
From a network perspective, by interrupting the communication 
between various brain regions, WMH can be conceptualized as 
disconnections (Griffis et  al.  2021; Idesis et  al.  2022; Thiebaut 
de Schotten, Foulon, and Nachev 2020). As shown by a previous 
computational study, disconnections unlink each regional activ-
ity from that of other network's nodes, thus affecting the resulting 
FC (Cabral et al. 2012). Although promising, previous theoretical 
studies evaluating the impact of disconnections lacked validation 
by empirical data analyses, thus limiting the clinical applicability 
of whole-brain mass models for diagnostic or prognostic purposes.

In this study, by combining WBM with a virtual-lesioning 
disconnectome approach—informed by empirical WMH 

lesions—we aim to contribute to a deeper understanding of 
the effect of structural alterations caused by WMH on resting-
state brain dynamics, going beyond focal lesion studies such 
as in stroke (Idesis et al. 2022). We introduce the concept that 
WMH might result in changes in the intrinsic dynamics of dis-
connected regions and build upon previous theoretical results 
(Cabral et  al.  2012) by testing theoretical predictions against 
empirical data. Specifically, we aim to: (a) test how WMH in-
fluence inter-regional connectivity (structural disconnectivity 
models) and neuronal activity at the node level (node discon-
nectivity models), and (b) determine whether WMH effects are 
localized (i.e., focal) or indicative of more diffuse white matter 
damage (i.e., global). To achieve this, we developed four distinct 
WMH-weighted models to explore these hypotheses and com-
pared them to a baseline benchmark model with no information 
regarding WMH. Our modeling approach is based on resting-
state fMRI data of 188 elderly nondemented study participants 
(either cognitively normal or with mild cognitive impairment), 
constituting one of the largest data-driven WBM studies to date.

2   |   Materials and Methods

2.1   |   Participants

From an initial sample of 363 elderly subjects without dementia 
from the Alzheimer's Disease NeuroImaging Initiative 3 dataset, 
188 subjects with available rs-fMRI, 3D-T1-weighted and 3D-
FLAIR sequences, acquired at 3T at the same timepoint, were 
included after preprocessing. CSF biomarkers, including the 
amyloid-beta peptide 42 to 40 ratio (Aβ42/Aβ40) and total tau 
levels, were obtained from the UPENNBIOMK Master data re-
lease (Shaw et al. 2009). The detailed step-by-step inclusion and 
exclusion flowchart is summarized in Figure S1. In exploratory 
analyses, we assessed the associations between model-derived pa-
rameters of the homogeneous SDC model (i.e., the model with the 
best fit) and executive functions and memory. We used the com-
posite measurements of executive functions and memory provided 
in the ADNI database. The full details are in Gibbons et al. (2012).

2.2   |   MRI Preprocessing and Timeseries 
Extraction

The full MRI acquisition and preprocessing protocol is pro-
vided in the Supporting Information. Briefly, fMRIPrep v. 21.0.4 
(Esteban et al. 2019) was used for fMRI preprocessing. XCP-D 
(Adebimpe et al. 2023) was used to discard the first four time-
points, to perform the “nonaggressive” ICA-AROMA denoising 
strategy (including six motion estimates and their derivatives as 
well as signal from white matter and CSF), and to extract regional 
timeseries for the 90 supratentorial regions of the automated 
anatomical labeling (AAL) atlas (Tzourio-Mazoyer et al. 2002) 
(Figure 1A and Table S1). Timeseries were demeaned, detrended 
and filtered in the 0.04–0.07 Hz frequency range.

2.3   |   Structural Connectivity

To avoid the possible detrimental effects of WMH on diffusion 
tractography (Min et  al.  2021; Svärd et  al.  2017), we used a 

Summary

•	 White matter hyperintensities (WMH) appear in im-
aging studies as damage to focal white matter tracts, 
but they induce dynamical effects on interregional 
communication at a global level.

•	 In later stages of white matter damage, WMH might 
also determine changes in intrinsic regional brain 
node dynamics through disconnections.

•	 Whole-brain modeling can be used to effectively link 
structural damage to associated alterations of brain 
dynamics.
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normative SC matrix based on the AAL atlas from a previously 
published study in healthy controls (Škoch et al. 2022).

2.4   |   WMH Segmentation and Disconnectome 
Analysis

Segmentation of WMHs was performed using a deep-learning-
based software (Li et  al.  2018) in subject space (Figure  1B). 
Segmentations were visually inspected to avoid inconsistencies and 
manually modified, if needed. Infratentorial WMH were removed. 
Fazekas score (Fazekas et al. 1987) was recorded. Total WMH vol-
umes were calculated in mm3, log-transformed and normalized to 
the 0–1 range (only in the group with relevant WMH, namely the 
volume for subjects without relevant WMH was set to 0). WMH 
segmentations were registered to MNI space and used as inputs for 
the Lesion Quantification Toolkit (LQT) (Griffis et al. 2021). The 
full details are reported in the original paper (Griffis et al. 2021) 
and graphically summarized in Figure 1C. Briefly, LQT employs a 
normative white matter atlas in MNI space to estimate the damage 
to each of 70 reference tracts caused by the input lesion. From this, 

a disconnection vector ( �⃗d) representing the WMH-related discon-
nection to each region and a damage matrix (DM) representing the 
percentage of damage to each edge are calculated.

2.5   |   Hopf Model

We modelled each regional BOLD signal over time using the 
normal form of a supercritical Hopf bifurcation and coupled 
the resulting activity through the normative AAL atlas (Škoch 
et al. 2022; Figure 2A). The Hopf model has been widely used 
to describe whole-brain neural dynamics, given its ability to 
capture static and dynamic properties of brain functional con-
nectivity (Deco et al. 2017). In the complex plane, the simulated 
BOLD activity (z) of each node (n) over time (t) is described by 
the following differential equation:

where zn is a complex number zn = xn + i yn, ωn denotes the intrinsic 
frequency of each node, which is determined empirically by aver-
aging the peak frequencies of narrowband-filtered BOLD signals 
in the 0.04–0.07 Hz range. We used group-averaged frequencies 
for all simulations. ηn(t) represents additive Gaussian noise with 
standard deviation β. Substituting zn in Equation (1) and dividing 
into the real and imaginary parts of the equation, we obtain:

Here, xn represents the BOLD signal for a single uncoupled 
node. In the Hopf model, an, is known as the bifurcation param-
eter, and can be thought of as a control parameter governing the 
dynamical activity of each region. When the bifurcation param-
eter is negative (an < 0), the addition of Gaussian noise results 
in noisy activity around a stable point, which can be thought of 
as corresponding to asynchronous neuronal firing. After transi-
tioning to values greater than the bifurcation point (a = 0), full 
oscillations are observed for positive values (an > 0), which cor-
respond to synchronized neuronal firing.

Given that the brain is a coupled system consisting of various 
nodes (brain regions), the activity of all nodes is coupled through 
an underlying structural connectivity matrix Cnp, which is de-
fined as the number of streamlines connecting each two regions 
n and p. The real part of the complex number zn representing the 
BOLD signal for node n when considering the coupled whole-
brain system is then described by the following equation:

where G, defined as the global coupling weight, equally scales the 
total input received by each brain area to determine the overall 
synchronization. In the baseline model, we set the bifurcation pa-
rameter for all nodes at the brink of the bifurcation (an= −0.02), 
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FIGURE 1    |    Preprocessing workflow of the study. (A) fMRI data 
preprocessing was performed using the reproducible containerized 
versions of fMRIPrep (Esteban et  al.  2019) and XCP (Adebimpe 
et  al.  2023). (B) WMH segmentation was performed in subject space 
via automated deep learning software and visually checked to avoid 
inconsistencies. Infratentorial WMH were removed. (C) MNI-registered 
WMH masks were used as input for the Lesion Quantification Toolkit to 
calculate subject-specific damage matrices, representing the percentage 
of damage to each regional connection (represented by an “X” of 
different dimensions on the damaged tract) and a node disconnection 
vector, summarizing, for each brain region, the extent of regional 
disconnection from the whole-brain network (represented by different 
shades of red; gray defines nodes that were not disconnected by WMH).
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as this nodal activity regime is able to give rise to complex col-
lective brain dynamics resembling whole-brain activity observed 
in  vivo (Deco, Jirsa, and McIntosh  2011; Deco et  al.  2017). All 
simulations were implemented in Neurolib (Cakan, Jajcay, and 
Obermayer 2021). The sampling rate of 3 s and simulation length 
matched the empirical preprocessed fMRI recordings, plus two 
initial minutes—to allow for the stabilization of the system after 
the initial random conditions—that were discarded before other 
analyses.

2.6   |   Model Fitting

As commonly performed in the literature (Deco et  al.  2019; 
Patow et al. 2023), we initially aimed to best characterize both 

time-averaged and time-varying properties of the empirical 
data by calculating FC and tv-FC (Deco et al. 2019) in healthy 
subjects without WMH. In line with previous studies (Deco 
et al. 2019; Patow et al. 2023), fitting tv-FC was clearly a stronger 
model constraint compared with fitting FC in our dataset. As 
can be seen in Figure S2, FC fits are consistently high across a 
wide range of G (resulting in several possible G values to retrieve 
the same FC), while tv-FC clearly shows a global minimum at 
G = 1.98. This is an expected finding, as tv-FC is better able to 
capture the complex spatiotemporal structure inherent in fMRI 
data. Due to better constraints in model parameter estimation, 
we only focus on fitting tv-FC for further analyses.

Tv-FC was assessed using the phase functional connectivity dy-
namics (phFCD) (Deco et al. 2019). Briefly, for both empirical and 

FIGURE 2    |     Legend on next page.
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simulated signals, we first applied the Hilbert transform to calcu-
late the instantaneous BOLD phase of each region n at each time-
point t. For each timepoint, we then calculated its phase coherence 
matrix by taking the cosine of the absolute phase difference of 
each two regions n and m. When the BOLD signal in regions n and 
m is synchronized, it means that their phases would be similar, 
and, consequently, their phase difference is small, resulting in a 
high phase coherence value (close to 1). On the other hand, if their 
phases are not aligned (i.e., asynchronous), their phase coherence 
value is close to zero. Since the phase coherence matrix is symmet-
ric, we only considered its upper triangular part and we accrued 
them over all timepoints for each subject or simulation. We finally 
compared the empirical and simulated distributions of the phFCD 
using the Kolmogorov–Smirnov distance (KSD). Lower KSD rep-
resents better goodness of fit (Figure 2C). The full details are in 
Deco et al. (2019).

2.7   |   Modeling Steps

We hypothesized that WMH might have an impact on brain 
dynamics only after a certain threshold, so we used the clinical 
Fazekas score (Fazekas et  al.  1987)—a visual estimate of the 
amount of WMH in structural MRI scans (score range 0–3)—
to binarize our sample into a group without relevant WMH 
(Fazekas ≤ 1) and a group with relevant WMH (Fazekas > 1). 
Previous studies using the Hopf model showed that brain dynam-
ics in healthy subjects are best described by slightly subcritical 
bifurcation parameters (Deco et  al.  2017). We assessed the op-
timal dynamical working point in our sample by performing a 
group-level tuning of the Hopf whole-brain model in the healthy 
subjects' group (no WMH and cognitively unimpaired). To do so, 
we fixed a (uniformly across regions) just below the critical bifur-
cation point (a = −0.02) and allowed G to vary as a free parameter 
(Figure 2B) (0 ≤ G ≤ 3.5, ΔG = 0.02). The best G maximizing the 
fit to empirical data was found at 1.98. We refer to the resulting 
model (with a = −0.02 and G = 1.98) as the baseline model and 
use it as a reference benchmark for comparison of all WMH-
weighted models.

2.8   |   WMH-Weighted Models

We first discuss the building blocks of WBM aimed at evaluat-
ing the effects of WMH on brain dynamics, tested in the sub-
groups with relevant WMH (88 subjects), and later presented the 
specific equations used for fitting. We developed four distinct 
WMH-weighted models (Figure 2B) guided by two sets of inter-
related hypotheses: (Sporns 2013) how WMH might influence 
various parameters of the whole-brain model (i.e., edges vs. 
nodes), and (Suárez et al. 2020) the biological nature of WMH 
(i.e., local vs. global).

The first set of hypotheses explored how WMH might impact 
brain dynamics. Since WMH damage WM tracts, which are cru-
cial for communication between brain regions, we posited that 
WMH could reduce the strength of inter-regional communication 
(i.e., the edges of the connectome), leading to structural discon-
nectivity (SDC) models. Additionally, experimental data suggest 
that axonal lesions could alter the intrinsic dynamic of neuronal 
firing (Nagendran et al. 2017). In the node disconnectivity (NDC) 
models, we tested whether these changes could be seen in the 
whole-brain Hopf models as variations in (nodal) bifurcation pa-
rameters. Based on previous studies (Demirtaş et al. 2017; Sanz 
Perl et al. 2023), we hypothesized that higher WMH-related dis-
connections might induce reductions in bifurcation parameters.

The second set of hypotheses addressed whether WMH effects 
are location-specific (i.e., local) or suggestive of a more diffuse 
WM damage (i.e., global). Biological evidence posits that WMH 
might represent just the observable aspect of a more widespread 
WM damage that is not visible with conventional MRI (Maillard 
et al. 2011; ter Telgte et al. 2018). We explored this concept by de-
veloping homogeneous models, which hypothesized that WMH 
effects are global and confronted them with heterogeneous mod-
els where the effects of WMH are locally confined to the specific 
brain regions or connections damaged by visible WMH.

To build the heterogeneous models, we used outputs from the 
LQT pipeline. For the heterogeneous SDC model, we linearly 

FIGURE 2    |    Schematics of the modeling pipeline. (A) In a whole-brain Hopf model, each regional dynamics over time is driven by its intrinsic 
frequency (not shown, as this was estimated from the empirical data and not modified in relation to WMH) and by a bifurcation parameter, describing 
the transition from asynchronous noisy behavior (< 0) to full oscillations (> 0), with zero referred to as the critical bifurcation point. The overall activity 
of the network is derived from the sum of the local activity plus the weighted (by the strength of inter-regional connection, e.g., number of tracts) 
sum of the activities of all regions connected to it, scaled by a global coupling parameter (G). Using this framework, a baseline model was constructed 
based on a normative SC and tuned to the empirical data of subjects without cognitive impairment and without WMH (Baseline model). (B) This panel 
displays the four WMH-weighted whole-brain models, categorized into homogeneous and heterogeneous types according to the hypotheses outlined 
in the main text. These models investigate whether WMH effects are localized to specific brain regions (heterogeneous) or distributed broadly across 
the brain (homogeneous). For the homogeneous models, the log-transformed volume of WMH is applied to uniformly reduce either connectivity or 
bifurcation parameters uniformly across the brain. In the homogeneous Node Disconnectivity (NDC) model, the bifurcation parameters in all regions 
are uniformly decreased, represented by red nodes with the same shade. In the homogeneous structural disconnectivity (SDC) model, connectivity 
across all tracts is uniformly reduced, shown as uniformly thinner red lines. In the heterogeneous models, the NDC model links WMH to changes in 
bifurcation parameters, using the node disconnectivity vector to inform how these parameters are altered in specific regions, depicted as red nodes 
of varying shades. Meanwhile, the SDC version simulates how WMH reduce inter-regional communication along specific tracts. This is achieved by 
using the damage matrix from the Lesion Quantification Toolkit to decrease connectivity only in those specific tracts, illustrated with red lines of 
varying thickness. The brain network illustration also includes gray nodes, which represent regions where WMH do not impact bifurcation parameters 
(matching the baseline model), and blue tracts, indicating connections not affected by WMH. These models were employed to simulate whole-brain 
BOLD activity and were subsequently compared against empirical data and a baseline model without WMH information. (C) The dynamics of phase 
coherence matrices (phFCD) was chosen as the fitting measurement between simulated and empirical data and compared with the Kolmogorov–
Smirnov distance (KSD, see Methods for a full description). Lower values of KSD represent a better fit.
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reduced the edge values of the normative SC matrix by the 
subject-specific damage matrix. For the heterogeneous NDC 
model, we reduced the bifurcation parameters proportionally to 
the node disconnectivity vector. For the homogeneous models, 
we used the log-transformed WMH volume as a proxy of over-
all brain damage. The homogeneous SDC model was created by 
proportionally reducing the global coupling parameter, while 
the homogeneous NDC model involved proportionally decreas-
ing all bifurcation parameters with increasing WMH volume.

To introduce information regarding WMH in the Hopf model we 
performed a linear fitting of one of its parameters (a, G, or SC) 
by WMH information (WMH volume log-transformed, node 
disconnectivity or damage matrix) and explored the parameter 
space using a grid search. More in detail, the NDC and SDC ho-
mogeneous models were obtained by fitting a or G, respectively, 
as follows:

The heterogeneous SDC model was obtained by linearly reduc-
ing the weights of the SC based on the damage matrix calculated 
by LQT, as follows:

Elements with values less than zero in the resulting matrix were 
reset to zero. This matrix was used instead than the healthy nor-
mative SC. The fitting of b was omitted considering that the av-
erage value of SC elements is approximately zero.

Finally, the heterogeneous NDC model used the region discon-
nection vector �⃗d as a spatial prior for linear fitting, leading to het-
erogeneous bifurcation parameters (different between regions):

Homogeneous random models were obtained by randomly shuf-
fling WMH volume across subjects. The heterogeneous random 
versions were obtained by randomly shuffling the region discon-
nection vector or damage matrix between subjects for node and 
structural disconnectivity models, respectively.

2.9   |   Statistical Comparisons

Categorical variables are reported as numbers (percentages) 
and continuous variables as median (interquartile ranges) and 
compared with the Chi-square and Mann–Whitney-U test, 
respectively. Models' goodness of fit was compared with the 
paired-samples Wilcoxon test and corrected for multiple com-
parisons with the Benjamini–Hochberg method (Benjamini and 
Hochberg  1995). Partial correlation analyses were performed 
using Spearman's correlation and corrected for age.

3   |   Results

3.1   |   Empirical Data Analysis

We first present the overall characteristics of the sample 
(Table  S2 and Figure  S3). We hypothesized that WMH might 
not have an impact on brain dynamics in the lowest Fazekas 
score group due to their very limited extension, thus we bina-
rized our sample into a group without relevant WMH (Fazekas 
≤ 1, 100 subjects) and a group with relevant WMH (Fazekas > 1, 
88 subjects). We also later explored the effects of WMH on brain 
dynamics in the subgroup with the highest Fazekas score of 3 
(“High WMH”, 22 subjects). As expected, subjects with relevant 
WMH were significantly older than those without (p < 0.001). 
There were no statistically significant differences in years of ed-
ucation and mini-mental state examination (MMSE) between 
the two groups. WMH did not show any significant correlation 
with Aβ42/Aβ40 nor tau CSF levels (all p > 0.05; Figure  S4). 
Figure 3A shows the regional distribution of WMH (Figure 3A); 
compared to the group without WMH, the group-averaged dis-
tribution of the phFCD was shifted towards lower values in in-
dividuals with WMH (p < 0.001), suggesting lower synchrony 
(Figure 3B).

3.2   |   Model Comparison

Accounting for WMH-related damage resulted in better descrip-
tions (lower KSD) of the empirical data compared to the baseline 
model (Figure 3C, for individual p values, please see Table 1). We 
found that WMH significantly alter inter-regional communica-
tion strengths (i.e., edges), although this effect remained statis-
tically significant after correcting for multiple comparisons only 
for the homogeneous SDC model. We compared these models 
fits to the respective randomly implemented counterparts and 
found that random models resulted in significantly lower model 
fits for both SDC models (Figure  S5, Table  S3). Interestingly, 
both heterogeneous models did not result in increased model fit 
compared to their homogeneous counterparts. The volume of 
WMH (log-transformed) was significantly positively correlated 
with the percent improvement of model fit compared with base-
line for all WMH-weighted models (Figure 3D). These analyses 
were performed considering partial correlation corrected for the 
effects of age (Table  2). Based on these findings, we assessed 
the dynamical effects of WMH in the group with the highest 
WMH (Fazekas score of 3). Here, the heterogeneous SDC and 
both NDC models described the empirical data significantly 
better compared to the baseline, also after multiple comparisons 
correction (Figure  3E), suggesting that at higher level of tract 
damage, an effect on regional node dynamics is also observed 
(Table 2).

3.3   |   Assessing the Impact of Clinical Variables on 
Model Fit

We then performed exploratory correlational analyses (partial 
correlations, including the effects of age) to further evaluate if 
other clinical variables might be responsible for the increase 
in model fit compared to the baseline (Figure  4, Table  2). We 

a= −0.02+w∗WMHvol

+b (−0.1≤w≤0, −0.05≤b≤0,Δw=Δb=0.005);

G=1.98+w∗WMHvol

+b (−1≤w≤0,Δw=0.1; −0.5≤b≤0,Δb=0.05);

SChet=SC+w∗DM (−0.25≤w≤0, b=0,Δw=0.005)

�⃗a = −0.02+w∗ �⃗d

+b (−0.1≤w≤0, −0.05≤b≤0, Δw=Δb=0.005).
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found that for both SDC models, the increase in performance 
was negatively correlated with years of patient education. For 
the heterogeneous SDC model, the observed improvement was 
also positively correlated with increasing age. No correlations 
were found between these variables and either of the NDC mod-
els (Figure S5, Table 2).

3.4   |   Assessing the Association Between Model 
Parameters and Cognitive Scores

We performed exploratory analyses to investigate the association 
of model-derived parameters on cognitive scores of executive 

functions and memory. We focused on the homogeneous SDC 
model since this was the best-performing model. We did not find 
any statistically significant association between executive func-
tions and memory scores (Figure S6).

4   |   Discussion

In this study, we aimed to quantify in vivo global dynamical 
effects induced by WMH, which are highly prevalent lesions 
of the WM in the general aging population (Garnier-Crussard 
et al. 2023; Wardlaw, Valdés Hernández, and Maniega 2015). 
We combined WBM (Alstott et  al.  2009; Cabral et  al.  2012; 

FIGURE 3    |    (A) Maximum intensity projections along the sagittal (left), axial (middle) and coronal (right) planes of WMH probability maps. 
(B) Histograms of the distribution of the group-averaged phase functional connectivity dynamics (phFCD) in the groups without (blue) and with 
(orange) relevant WMH. The distribution of the phFCD is significantly shifted towards lower phFCD values in the group with relevant WMH, 
suggesting lower synchrony (p < 0.001). (C) Boxplots summarizing model comparisons between the baseline (white) and the homogeneous (light 
blue) and heterogeneous models (dark blue). The same baseline model (in white) is shown twice for better visualization of the comparison. Structural 
disconnectivity models (SDC), assessing the impact of WMH on structural connections are grouped on the left. Node disconnectivity (NDC) models, 
showing the effects of WMH on bifurcation parameters are shown as grouped boxplots on the right. The boxplots represent the Kolmogorov–Smirnov 
distance (KSD) between the empirical and simulated phase functional connectivity dynamics for the whole group with WMH. Note that after 
Benjamini–Hochberg correction only the homogeneous SDC remained statistically significant. (D) Scatterplots depicting the correlation between 
WMH volume (log-transformed, along the x axes) and the percentage of improvement in the model fit of the considered model (homogenous/
heterogeneous SDC/NDC) compared to the baseline model (r refers to post hoc Spearman's rank-order partial correlation corrected for age, p = p-
value). (E) The same model comparison as in (C) was evaluated in the group with the highest Fazekas score of 3. All comparisons remained statistically 
significant also after Benjamini–Hochberg correction. *0.01 < p < 0.05; **0.001 < p < = 0.01.
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Deco et al. 2017; Demirtaş et al. 2017; Idesis et al. 2022; Patow 
et al. 2023; Sanz Perl et al. 2023) with a virtual-lesioning ap-
proach (Griffis et  al.  2021) and tested different hypothesis-
driven generative models of brain dynamics against empirical 
resting-state fMRI data, providing new insights into the patho-
physiology of WMH from a network perspective. We tested 
various hypotheses on the local versus global and nodal ver-
sus edge effects of WMH in different WMH-weighted models 
and compared them both to a baseline model, to evaluate their 
added accuracy in describing empirical data, and to random 
models, to assess their robustness. We found that, although 
WMH are focal lesions of WM tracts, they induce global ef-
fects on network dynamics by reducing the global coupling 
of the network. At later stages of damage (e.g., higher WMH 
volume), WMH also alter the intrinsic nodal dynamics of dis-
connected regions. Finally, exploratory analyses suggested 
that level of education plays a role in counteracting the det-
rimental effects of WMH on global coupling, consistent with 
previous work on cognitive reserve (Stern 2009). Our results 

contribute to building biologically plausible and clinically in-
formative models of brain dynamics in the healthy aging pop-
ulation and in diseases characterized by an elevated volume 
of WMH, such as cerebrovascular and Alzheimer's dementia 
(Garnier-Crussard et  al.  2023; Wardlaw, Valdés Hernández, 
and Maniega 2015). Furthermore, methods and insights from 
this study might also be applied to other neurological diseases 
characterized by WM disconnections, that is, multiple sclero-
sis or traumatic brain injury.

We found that, when considering all subjects with WMH, SDC 
models yielded a significantly better fit compared to the baseline 
model, while NDC models performed better only when consid-
ering the specific subgroup with the highest Fazekas score (i.e., 
high WMH group). This finding suggests that alterations in inter-
regional communication induced by WMH (as evidenced by 
SDC models) play a more prominent role in shaping global brain 
dynamics, namely reducing the strength of inter-regional com-
munication (i.e., on the connectome edges). Only when a certain 
level of damage is reached, then disturbances in local nodal ac-
tivity might play a role. In light of the location of WMH this is not 
an unexpected finding, but notably, modeling these effects con-
sidering the location-specific damage to WM tracts did not yield 
better descriptions of empirical data compared to considering 
their effect as globally homogeneous. This suggests that the dam-
age associated with WMH might have dynamic repercussions 
at the whole-brain level. A previous study by Cabral et al. (2012) 
already showed in theoretical simulations that increasing levels 
of disconnections led to similar network reorganizations as re-
ductions in global coupling. In this scenario, the more damage to 
white matter tracts, namely the higher the WMH load, the more 
the dynamical effects caused by disconnections resemble those 
occurring from a reduction in global coupling. From a biologi-
cal perspective, a previous study also showed the existence of a 
widespread damage to white matter tracts that are not observ-
able with structural MRI, of which WMH are just the tip-of-the-
iceberg (Maillard et  al.  2011; ter Telgte et  al.  2018). WMH are 
surrounded by an area without abnormalities on conventional 
MRI, but where diffusion metrics in diffusion tractography are 
already altered (Maillard et  al.  2011; Maniega et  al.  2015). We 
suggest that these unobservable lesions might already determine 
communication impairments in widespread networks. In this 
scenario, the damage that was accounted for in the heteroge-
neous SDC model might thus be underestimated compared to the 
damage to the real empirical network. Thus, a global measure 

TABLE 1    |    Median (interquartile range) Kolmogorov–Smirnov 
distance (KSD) of the simulated phase functional connectivity 
dynamics compared to the empirical data for the baseline and WMH-
weighted models.

Model Name

All WMH High WMH

KSD p KSD p

Baseline 0.25 
(0.20–0.31)

NA 0.25 
(0.21–0.31)

NA

Homogeneous 
SDC

0.20 
(0.17–0.29)

0.003* 0.19 
(0.16–0.21)

0.003*

Heterogeneous 
SDC

0.20 
(0.17–0.28)

0.042 0.19 
(0.17–0.23)

0.005*

Homogeneous 
NDC

0.21 
(0.18–0.27)

0.17 0.20 
(0.16–0.22)

0.036*

Heterogeneous 
NDC

0.21 
(0.18–0.29)

0.12 0.19 
(0.14–0.24)

0.036*

Note: Results are first presented in the complete group consisting of all subjects 
with relevant WMH (All WMH) and then only for the group with a Fazekas 
score of 3 (High WMH). p values represent the comparison of model fit of each 
WMH-weighted model compared to the baseline model. Significant p values are 
illustrated in bold, and significant p values after multiple-comparison correction 
using the Benjamini–Hochberg correction are illustrated with *.
Abbreviations: NDC = node disconnectivity; SDC = structural disconnectivity.

TABLE 2    |    Correlations (Spearman's r) between the percentage increase in model performance compared to the baseline for each WMH-weighted 
model and the considered demographic variables.

Demographic variable

Homogeneous SDC Heterogeneous SDC Homogeneous NDC
Heterogeneous 

NDC

r p r p r p r p

WMH volume (log) 0.27 0.01 0.29 0.007 0.23 0.03 0.27 0.01

Age 0.15 0.16 0.23 0.03 0.21 0.052 0.10 0.35

MMSE −0.19 0.08 −0.15 0.17 −0.13 0.23 −0.10 0.36

Education (years) −0.26 0.02 −0.21 0.045 −0.21 0.055 0.16 0.14

Note: All correlations refer to partial correlations corrected for age, except for age itself. Significant p values are illustrated in bold.
Abbreviations: MMSE = Mini Mental State Examination; NDC = node disconnectivity; SDC = structural disconnectivity.
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of WMH (since we perform a linear fitting) might be enough to 
capture this damage. Future studies using advanced diffusion-
tractography-based measurements (e.g., fractional anisotropy) 
could further evaluate this hypothesis by also accounting for 
the normal-appearing white matter damage. Albeit previous 
associational studies on the effects of WMH on inter-regional 
FC are mixed (Schulz et al. 2021) and the association might be 
confounded by several factors (see next paragraph), our results 
are in line with the prevailing idea that WMH mostly reduces 
long-distance FC (Quandt et al. 2020; Yang et al. 2023) and con-
sequently increase local efficiency (Vergoossen et al. 2021). The 
increase in local efficiency is also predicted by computational 
models characterized by a reduction in global coupling (Cabral 
et al. 2012), thus we are planning a future study to investigate 
whether this relationship can also be observed in our models fit-
ted to empirical data of subjects with WMH.

Interestingly, for both SDC models, we found an inverse asso-
ciation between model performance increase—compared with 
the baseline—and years of education. We speculate that this 
finding might be related to nonlinearities occurring in  vivo 
caused by counteracting increases in global coupling associated 
with higher educational status that could be linked to the con-
struct of “cognitive reserve”. Cognitive reserve refers to a series 
of protective mechanisms that allow an individual to mitigate 
the detrimental effects of age or pathological biomarkers (e.g., 
amyloid, tau, WMH) to achieve better results than what would 
have been predicted by simply evaluating the observed damage 
(Stern  2009). Previous studies demonstrated that cognitive re-
serve is indeed related to increases in resting-state functional 
connectivity in distributed resting-state networks (Marques 
et al. 2016), as well as with a more integrated and interconnected 

network configuration (Chaddock-Heyman et  al.  2018). Given 
the exploratory nature of this finding, future studies are needed 
to further explore this hypothesis.

When WMH become widely diffuse throughout the brain, 
namely when the Fazekas score is 3, then a more negative 
shift away from the bifurcation parameter of the nodes is also 
observed, that is, the dynamical behavior of the networks be-
comes noisier. This reduction in bifurcation parameters might 
be linked to other known pathological processes also associated 
with WMH, especially at later stages, such as tau and amyloid 
(Demirtaş et al. 2017; Patow et al. 2023). However, our study did 
not find any significant correlation between WMH and CSF lev-
els of Aβ42/Aβ40 nor tau, suggesting that, if present, the inter-
play among these pathologies might be more intricate and not 
simply linear in nature. An alternative hypothesis is that neurons 
might not suffer from alterations to their intrinsic patterns of fir-
ing when demyelination and axonal damage are below a certain 
threshold, possibly due to compensatory mechanisms (Naud and 
Longtin 2019). Only when this threshold is surpassed, then ab-
normal neuronal firing might occur. Future studies might imple-
ment biophysically detailed models and account for both WMH 
and amyloid/tau to try to disentangle their separate and synergis-
tic contributions to intrinsic regional dynamics.

Some limitations apply to this study, some intrinsically linked to 
the methodology of rs-fMRI. The BOLD signal does not directly 
measure neuronal activity per se, but rather slow oscillations de-
riving from neuro-vascular coupling (Logothetis 2003; Logothetis 
and Wandell 2004). WMH are commonly associated with cerebral 
small vessel disease, thus, they might be associated with whole-
brain level alterations of neuro-vascular coupling (Girouard and 
Iadecola  2006), increasing the intricacy in the interpretation of 
our results. Another limitation of our study is the age difference 
between the group with and without WMH. WMH are intrinsi-
cally associated with the aging process, resulting in an older aver-
age age for the cohort with WMH compared to the control group 
without WMH. To address the influence of the age difference, 
we evaluated the partial correlations corrected by age between 
increases in model performance and WMH and demographics 
variables. Furthermore, we used a normative SC for both groups, 
mitigating the potential impact of the age difference on SC mea-
sures. Another limitation is that model-derived parameters did 
not correlate with cognitive function scores, which are known 
to be impacted in subjects with WMH. A possible explanation is 
that in our study, we focused on fitting models to achieve the best 
average of single-subject fitting (i.e., using the same weight and 
bias for all subjects). While this resulted in models that could be 
applied to unseen subjects for a good representation of their dy-
namics, certain individual characteristics were not represented, 
leading to a lack of correlation with cognitive scores on a subject-
specific basis. Lastly, our modeling approach, as common to many 
previous modeling studies using the Hopf model with rs-fMRI 
(Deco et al. 2017; Demirtaş et al. 2017; Sanz Perl et al. 2023), did 
not include delays due to the longer timescales of the BOLD signal 
acquisition (seconds vs. the millisecond scale of inter-neuronal 
signaling), but studying the heterogeneous effects of WMH on de-
lays could be an interesting direction to explore in future studies.

In summary, our study provides further understanding of the 
dynamical effects of WMH, suggesting the presence of an 

FIGURE 4    |    Scatterplots depicting the correlation between 
demographics factors (age, years of patient education and mini-mental 
status examination (MMSE), and the percentage improvement in 
model performance of the considered model compared to the baseline 
model. The first row shows the results for the homogeneous structural 
disconnectivity model (SDC), while the second row shows the results for 
the heterogeneous SDC. For age, r refers to Spearman's rank correlation, 
while for patient education and MMSE, r refers to Spearman's partial 
correlation accounting for age. p = p-value, not corrected for multiple 
comparisons.
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associated widespread damage to WM tracts with relevant dy-
namical effects on global synchronization and, at later stages, 
also on regional brain dynamics. The models developed in this 
study also show promise for clinical applications, that is, in pre-
dicting subject-specific network effects in the presence of WMH. 
The pathophysiological insights developed and discussed in this 
study might be used, alone or in combination with other bio-
markers (e.g., tau and amyloid), to inform and create more bio-
logically plausible representations of brain dynamics in several 
diseases characterized by WMH, such as Alzheimer's disease, 
but also in other pathologies harboring WM disconnections 
(e.g., multiple sclerosis, traumatic brain injury). Furthermore, 
our study highlights the importance of whole-brain modeling to 
reconcile theoretical predictions with the nuances and complex-
ities arising from biological findings, effectively bridging the gap 
between the two.
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