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The field of cell therapy and regenerative medicine can hold the promise of restoring

normal tissues structure and function. Additionally, the main targets of stem cell-based

therapies are chronic diseases and lifelong disabilities without definite cures such as

osteoporosis. Osteoporosis as one of the important causes of morbidity in older men

and post-menopausal women is characterized by reduced bone quantity or skeletal

tissue atrophy that leads to an increased risk of osteoporotic fractures. The common

therapeutic methods for osteoporosis only can prevent the loss of bone mass and

recover the bone partially. Nevertheless, stem cell-based therapy is considered as

a new approach to regenerate the bone tissue. Herein, mesenchymal stem cells as

pivotal candidates for regenerative medicine purposes especially bone regeneration are

the most common type of cells with anti-inflammatory, immune-privileged potential,

and less ethical concerns than other types of stem cells which are investigated in

osteoporosis. Based on several findings, the mesenchymal stem cells effectiveness near

to a great extent depends on their secretory function. Indeed, they can be involved in the

establishment of normal bone remodeling via initiation of specific molecular signaling

pathways. Accordingly, the aim herein was to review the effects of stem cell-based

therapies in osteoporosis.
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INTRODUCTION

Osteoporosis as a chronic and long-term skeletal disorder is
more common in senile people (in men after age 65 and women
after age 55 years) (1–4). Accordingly, it is responsible for most
of the elderly fractures through decreasing the bone mass and
mineral density (BMD) (1, 5, 6). Moreover, it has been reported
that osteoporosis occurs when there is an imbalance between
bone cells function (7, 8). In 1993, osteoporosis is defined as
“progressive systemic skeletal disease characterized by low bone
mass and microarchitectural deterioration of bone tissue, with
a consequent increase in bone fragility and susceptibility to
fracture” by WHO (9–12). The proximal ends of the humerus
and femur, the distal end of the radius, and the vertebral column
are more susceptible to the osteoporotic fractures in contrast to
other parts of the bone (13–15). Additionally, the hip fracture can
be considered as the serious complication with high morbidity
and mortality (15–17). Given the fact that the life expectancy
universally is increasing and subsequently osteoporosis becomes
a growing global problem with a great impact on quality of
life, selecting powerful approaches for disease managing is
essential. In this respect, there is no practical pharmaceutical
cure (18). Recently, stem cell therapies have attained remarkable
clinical consideration with a promising strategy for regenerative
medicine and tissue engineering to treat various types of diseases
including osteoporosis (19–26). Herein, discuss the effects of
stem cell-based therapies in osteoporosis is the main objective of
this review.

BONE BIOLOGY; SIGNALING PATHWAYS;
BONE MODELING AND REMODELING

Bone as a highly dynamic tissue continuously undergoes
modeling and remodeling via activation of bone cells (osteoblasts,
osteoclast, and osteocytes) (Figure 1) (40–42). Herein, modeling
is defined as separately happening of bone formation and
resorption on the bone surface and remodeling is known
as the coupling between bone formation and resorption for
regeneration (43–46). The process of developing new bone
material by osteoblasts is called bone formation (ossification
or osteogenesis) which commences about 6 weeks after
fertilization in embryos. There are two types of bone formation,
including intramembranous and endochondral (27, 47). During
intramembranous bone formation, mesenchymal stem cells
(MSCs) are proliferated and differentiated into osteoblasts

Abbreviations: BMD, Bone Mineral Density; WHO, World Health Organization;
MSCs, Mesenchymal Stem Cells; Runx2, Runt-related transcription factor 2; OSX,
Osterix; Atf4, Activating transcription factor 4; AP-1, Activator Protein 1; FGFs,
Fibroblast Growth Factors; TGF-β, Transforming Growth Factor β; IGF-1, Insulin-
like Growth Factor 1; BMP, Bone Morphogenetic Protein; PTH, Parathyroid
hormone; MMP-9, Matrix Metallopeptidase 9; M-CSF, Monocyte/Macrophage
Colony-Stimulating Factor; OPG, Osteoprotegerin; HSC; Hematopoietic Stem
Cells; IL-1, Interleukin1; Il-6, Interleukin 6; TNFα, TumorNecrosis Factor α; DXA,
Dual X-ray Absorptiometry; SERMs, Selective Estrogen Receptor Modulators; IV,
Intravenous; HRT, Hormone Replacement Therapy; VEGF, Vascular Endothelial
Growth Factor; HGF, Hepatocyte Growth Factor; ESCs, Embryonic Stem Cells;
iPSCs, induced Pluripotent Stem Cells; VELs, Very small Embryonic-Like stem
cells; BM- MSCs, Bone Marrow Mesenchymal Stem Cells.

in areas of embryonic connective tissue which contain high
vascularization. Additionally, the intramembranous bone
formation that is involved in the formation of the flat bones of the
clavicles, skull, and the mandible is known as a procedure of bone
formation from fibrous membranes (48, 49). The endochondral
bone formation is befallen at three sites including the physis,
the epiphysis, and the cuboidal bones of the carpus and tarsus.
It is a procedure in which the cartilage is commonly replaced
by bone for the formation of the growing skeleton (50–52). In
general, bone formation is controlled by various growth factors,
cytokines, and hormones (40, 53, 54). Therein, osteoblasts
can reply to these external signals through various signaling
pathways and control the specific gene expression for cell fate
determining (28, 29, 55). Accordingly, there are some signaling
molecules with critical roles in osteoblast turnover including
runt-related transcription factor 2 (Runx2), osterix (Osx),
ß-Catenin, activating transcription factor 4 (Atf4), and activator
protein 1(AP-1) family. Indeed, they have momentous roles in
osteoblast differentiation and osteoblastogenesis to promote
bone formation (27–33). Moreover, it has been demonstrated
that fibroblast growth factors (FGFs), transforming growth
factor β (TGF β), insulin-like growth factor 1 (IGF-1), bone
morphogenetic proteins (BMPs), Notch, Wnt, and parathyroid
hormone (PTH) have effective roles in the bone formation
process (56–59). Bone formation and resorption must be
balanced for bone mass maintenance (34, 38, 39). Bone
resorption is the process of minerals dissolution and organic
matrix degradation by osteoclasts, which depends on the
osteoclasts secretions into the extracellular space (60–63). Some
more important types of osteoclasts secretions are lysosomal
enzymes (e.g., cathepsin K) and matrix metallopeptidase 9
(MMP-9) (41, 64, 65). Osteoclasts arise from the hematopoietic
stem cells (HSC) via stimulation of receptor activation of
NF-κB ligand (RANKL) and the monocyte/macrophage colony-
stimulating factor (M-CSF) from osteoblasts membrane surface
(60, 66, 67). RANKL and M-CSF are interacted with their
receptors present on osteoclast precursors to stimulate osteoclast
proliferation and differentiation (60, 68, 69). However, there is
another signaling molecule called osteoprotegerin (OPG) which
is also secreted by osteoblasts to interfere with the RANKL
for inhibition of osteoclastogenesis (70–73). According to
investigations, some inflammatory cytokines e.g., interleukin1
(IL-1), interlukin-6 (IL-6), and tumor necrosis factor-α (TNFα)
can be involved in osteoclast differentiation and function
(34–37). Several findings have indicated that imbalance between
osteoclasts and osteoblasts functions can lead to some skeletal
disorders including osteoporosis. In fact, these disorders are the
consequence of decreased in osteoblast activity and/or increased
in osteoclast activity (8, 41).

AN OVERVIEW ON OSTEOPOROSIS:
IMBALANCE BETWEEN BONE
FORMATION AND RESORPTION

As a result of the aging process, reduction in osteoblast
number, function, and longevity, lead to bone formation
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FIGURE 1 | Normal Bone Biology; Signaling Pathways. Bone as a dynamic tissue undergoes modeling and remodeling by activation of osteoblasts, osteoclast, and

osteocytes. Mesenchymal stem cells (MSCs) are proliferated and differentiated into osteoblasts. Some signaling molecules have important roles in osteoblast turnover

and function including runt-related transcription factor 2 (Runx2), osterix (Osx), ß-Catenin, activating transcription factor 4(Atf4), activator protein 1(AP-1) family,

fibroblast growth factors (FGFs), transforming growth factor β (TGF β), insulin-like growth factor 1 (IGF-1), bone morphogenetic proteins (BMPs), Notch, Wnt, and

parathyroid hormone (PTH) (27–33). Osteoblasts which are trapped in the bone matrix are called osteocytes. Osteoclasts are derived from the hematopoietic stem

cells (HSC) through the stimulation by receptor activation of NF-κB ligand (RANKL) from osteoblasts. Osteoprotegerin (OPG) which is also secreted by osteoblasts can

interfere with the RANKL and inhibit osteoclastogenesis. Osteoclasts can secrete cathepsin K and matrix metallopeptidase 9 (MMP-9) in extracellular space. Some

inflammatory cytokines such as. interleukin1 (IL-1), interlukin-6 (IL-6), and tumor necrosis factor-α (TNFα) can be involved in osteoclast differentiation and function

(34–37). In normal condition Bone formation (by osteoblasts) and resorption (by osteoclasts) are in balanced for bone mass maintenance (34, 38, 39).

decreasing However, bone resorption is exceeded due to sex
hormones defection. Accordingly, individuals are predisposed
to osteoporosis and osteoporotic bone fractures (74–77). In
fact, osteoporotic bones due to low bone mass are fragile and
brittle. The compression fractures of the vertebrae and traumatic
fractures of the femoral neck and the wrist are the main
issues of osteoporosis. Nevertheless, the hip fractures due to
their burden are more considerable and need more attention.
It is estimated that by 2050 the number of hip fractures will
be more than 6 million and almost the 75% of them will
be occurred in the developing countries (9). Osteoporosis can
be followed by various complications and disorders. Usually,
low levels of estrogen in post-menopausal women is the most
well-known factor (78). In clinical diagnostic techniques of
osteoporosis, dual x-ray absorptiometry [DXA] is approved as a
gold standard approach to diagnose and follow the osteoporosis
by calculating BMD (79). The WHO defines a set of categories
to diagnose osteopenia and osteoporosis. These guidelines are
based on T-score and Z-score. T-score shows the number of
standard deviations above or below the mean reference value
for 30 year-old healthy adults. However, Z-score measures
the BMD regards to the average BMD of the same age and
gender (80). According to the guidelines, a score above −1
is considered normal, a score between −1 and −2.5 indicates
osteopenia, and a score below −2.5 portends the osteoporosis
(79). Hereupon, for individuals with osteoporosis diagnosed,
various treatments are recommended to increase the quality
of life and decrease the economic burden on health care
system (1).

CURRENT TREATMENTS AND
LIMITATIONS

Osteoporosis cannot be cured but some of the pharmacological
and non-pharmacological treatment approaches can manage it
(Table 1) through the strengthening the bones and preventing
the consequent fractures. In this context, using bisphosphonates,
selective estrogen receptor modulators (SERMs), teriparatide,
denosumab, calcitonin, and hormone replacement therapy
(HRT) are the approved methods as the pharmacological
treatments for osteoporosis (94). Additionally, some of the non-
pharmacological treatments are including nutritional therapy,
physical exercises, vertebroplasty, and kyphoplasty. Despite the
preventive and therapeutical effects of these treatments, there are
some limitations and side effects around using them. Hence, it is
needed to apply new and more effective approaches with fewer
side effects for osteoporosis management.

CELL THERAPY AS A NOVEL APPROACH

The clinical demand for new therapeutic methods has been
led to progress in stem cell therapy and regenerative medicine
(23, 95). In other words, stem cell-based therapies are becoming
increasingly important in treatment of chronic and long-lasting
diseases (96, 97). However, there are several parameters which
need to be optimized for maximizing stem cell-based therapies
potential. In this context, various basic and clinical studies related
to the effects of stem cell-based therapies on diseases with no
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definite treatments were performed (22, 98, 99). Accordingly,
some investigations were also conducted in the field of stem
cell therapy for osteoporosis. Herein, the application of different
types of stem cells including embryonic, induced pluripotent, and
MSCs along with their secretion factors were evaluated to treat
osteoporosis (100–102).

MECHANISM OF STEM CELLS FUNCTION
IN BONE REMODELING AND
OSTEOPOROSIS

Osteoporosis is a multifactorial disorder with endogenous
and exogenous components (103, 104). Cell-based regenerative

medicine can be invaluable in osteoporosis treatment through
bone resorption modulation, fractures susceptibility reduction,
and lost mineral density enhancement. These are possible by
increasing the number of progenitor stem cells and improve
the function of stem cells (proliferation and differentiation
into bone-forming cells) (20, 102, 105, 106). Since the bone
tissue repair cascade can be controlled by local signals from
various cytokines and growth factors through the inducing
osteoprogenitor cells migration, differentiation, proliferation,
revascularization, and extracellular matrix production (56, 107,
108), stem cells (especially MSCs) can support bone regeneration
by secreting bioactive molecules such as IGF-1, TGF-β, vascular
endothelial growth factor (VEGF), angiogenin, hepatocyte
growth factor (HGF), IL-6, and etc. (56, 109–113). On the

TABLE 1 | Some of the pharmacological and non-pharmacological treatments for osteoporosis (81–93).

Treatment Positive effects Side effects/limitations Type of treatment

Bisphosphonates - Can decrease both hip and spine fracture risk

through maintaining the bone mineral density

- Osteonecrosis of jaw

- Gastrointestinal and renal discomfort

- Atypical femoral fractures

- Acute influenza-like illness

Pharmacological

Teriparatide - As a recombinant parathyroid hormone can

be used to stimulate osteoblasts to

reconstruct the osteoporotic bone

- Can improve the bone mineral density and

the bone architecture

- Considered as an impressive agent to

decrease the vertebral, non-vertebral, and

hip fracture risks

- Inflammation of the nose

- Diarrhea

- Constipation

- Joint Pain

Pharmacological

Hormone replacement

therapy

- Safe and cost-benefit approach with positive

effects on preventing the vertebral and

non-vertebral fractures

- Cardiovascular, thromboembolic, and gallbladder

discomforts, breast and endometrial cancers

Pharmacological

Selective estrogen

receptor modulators

- Can be a good choice to prevent the number

of hormone replacement therapy related

complications

- Can improve the bone mass and reduce the

fracture risk

- Have some limitations in preventing non-vertebral

fractures and also have extra-skeletal side effects

Pharmacological

Physical exercises - Can lead to bone loss reduction

- Can conserve remain bone tissue

- Can reduce the risk of bone fractures caused

by falls

- Some types of physical exercises such as

abdominal sit-ups or loaded forward flexion of the

spine can increase the risk of the spine

compression fractures.

Non-pharmacological

Vertebroplasty - Can relieve symptoms associated with

vertebral compression fractures

- May lead to spinal cord or nerve root injury

- May lead to infection

- May lead to pulmonary embolus

Non-pharmacological

Kyphoplasty - Can relieve symptoms associated with

vertebral compression fractures

- May lead to cement leaks

- May lead to infection

- May occur balloon rupture

Non-pharmacological

TABLE 2 | Examples of MSCs transplantation in osteoporotic animal models and humans.

UC-MSC ADMSC BM-MSC Stem cell type

- 30 ovariectomized rats (2018) (121)

- 30 Wistar rats (2018) (122)

- 20 e Balb/c nude mice (2008) (123)

- 30 ovariectomized rats (2018) (124)

- 22 SAMP6 mice (2014) (125)

- 27 Balb/c nude mice (2011) (126)

- 60 estrogen deficiency-induced osteoporotic

- C57/BL6 mice (2017) (127)

- 22 goats (2012) (128)

- 25 isogenic Wistar rats (2010) (129)

- 30 number of rabbits (2006) (130)

Animal Study

– 8 participants (2012–2014) ClinicalTrials.gov

Identifier: NCT01532076 (105)

10 participants (2015–2018) ClinicalTrials.gov

Identifier: NCT02566655 (105)

Clinical Trial
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FIGURE 2 | Paracrine Effects of Mesenchymal Stem Cells in Bone Regeneration. Mesenchymal stem cells (MSCs) can participate in bone regeneration by secreting

bioactive molecules such as Insulin-like growth factor 1 (IGF-1), Transforming growth factor β (TGF-β), vascular endothelial growth factor (VEGF), hepatocyte growth

factor (HGF), interleukin−6 (IL-6), and fibroblast growth factor (FGF) (140–143).

other hand, MSCs derived exosomes are other factors which
their effects on preventing the bone loss and promoting bone
remodeling processes (during osteogenesis, osteoclastogenesis,
and angiogenesis) have been demonstrated in vitro and in
vivo (114–116).

EMBRYONIC, INDUCED PLURIPOTENT,
AND EMBRYONIC LIKE STEM CELLS IN
OSTEOPOROSIS

Although particular protocols are demanded to direct
differentiation of embryonic stem cells (ESCs) (from the
inner cell mass of a blastocyst) and induced pluripotent stem
cells (iPSCs) (embryonic–like stem cells reprogrammed from
adult cells) toward the osteoblasts and osteocyte-like cells
(bone-forming cells), some of investigations were shown
that application of these most known pluripotent stem cells
in osteoporosis treatment is limited due to ethical concerns
(20, 117, 118). Recently, implementation of very small
embryonic-like stem cells (VSELs) (non-hematopoietic
pluripotent cells that express embryonic characteristics
markers and stored during the organogenesis in organs
and tissues) as the autologous treatment for decreasing the
aging processes which lead to osteoporosis and other skeletal
disorders is taken into consideration. However, according
to some studies, VSELs population will decrease with aging
(20, 119, 120).

MESENCHYMAL STEM CELLS IN
OSTEOPOROSIS

In osteoporosis, there is a reduction in endogenous MSCs
function (proliferation, differentiation, and consequently bones

formation). Accordingly, they are the most common types of
stem cells investigated in osteoporosis treatment. In this respect,
examples ofMSCs transplantation in osteoporotic animal models
and humans were shown in Table 2. MSCs are an important
example of non-hematopoietic stem cells with less ethical
concerns and numerous advantages for clinical usage, containing
accessibility and ease of harvesting, immunosuppressive
outcomes, multi-lineal differentiation ability (especially ability to
differentiate into osteoblasts), and any possibility of malignant
transformation (21, 131–133). Additionally, as a subset of stromal
stem cells, they can be obtained from various tissue sources.
Bone marrow derive MSCs (BM-MSCs) with high osteogenic
differentiation capability are the most common types of MSCs
which have been used for osteoporosis (20, 24, 134–136). Herein,
accumulating evidence indicates that alternation in themolecular
mechanisms which modulate osteoblast differentiation in MSCs
will make the MSC therapies reliable and more effective for
osteoporosis (105, 137–139). While in accordance with other
studies the most therapeutic impressions of MSCs are due to
their supporting regenerative microenvironment ability and
paracrine effects rather than their differentiation ability. In
other words, MSC transplantation might open a new chapter
in osteoporosis treatment specifically through paracrine effects
(Figure 2) (140–143).

CONCLUSION AND FUTURE DIRECTIONS

The burden of osteoporosis is raised by an increase in the
proportion of older persons in societies. Routine treatments
only alleviate the symptoms partially. Hence, they are not
sufficient enough. Therein, regenerative medicine sheds light
on the treatment of osteoporosis. Specifically, MSCs therapy
is the most common technique of regenerative medicine in
osteoporosis treatment. Moreover, using small molecules (e.g.,
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PTH and oxytocin) which employ endogenous stem cells for
osteoporosis treatment will be intertwined in future management
(20, 144). Despite the many investigations in cell therapy for
osteoporosis, further studies are still demanded to fulfill the gaps
including the definite differentiation fate and biodistribution of
transplanted stem cells. On the other hand, in accordance with
growing advances in osteoporosis personalized medicine (the
applying of specific medical treatment based on the individual
characteristics of each patient), it is required to identify the
important bone loss signaling pathways and genes involved
in each individual (145–148). In this context, metabolomics
evaluation (the principled investigation of small molecules profile
in a biological system) (149, 150) also can be helpful to the
osteoporosis diagnosis of individuals with a genetic capacity
(151, 152). Additionally, the biomedical using of exosomal based
treatments will present novel approaches in clinical practice for
osteoporosis (116).
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