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Abstract

The viable but non culturable (VBNC) state is a condition in which bacterial cells are viable

and metabolically active, but resistant to cultivation using a routine growth medium. We

investigated the ability of V. parahaemolyticus to form VBNC cells, and to subsequently

become resuscitated. The ability to control VBNC cell formation in the laboratory allowed us

to selectively isolate VBNC cells using fluorescence activated cell sorting, and to differenti-

ate subpopulations based on their metabolic activity, cell shape and the ability to cause dis-

ease in Galleria mellonella. Our results showed that two subpopulations (P1 and P2) of V.

parahaemolyticus VBNC cells exist and can remain dormant in the VBNC state for long peri-

ods. VBNC subpopulation P2, had a better fitness for survival under stressful conditions and

showed 100% revival under favourable conditions. Proteomic analysis of these subpopula-

tions (at two different time points: 12 days (T12) and 50 days (T50) post VBNC) revealed

that the proteome of P2 was more similar to that of the starting microcosm culture (T0) than

the proteome of P1. Proteins that were significantly up or down-regulated between the differ-

ent VBNC populations were identified and differentially regulated proteins were assigned

into 23 functional groups, the majority being assigned to metabolism functional categories.

A lactate dehydrogenase (lldD) protein, responsible for converting lactate to pyruvate, was

significantly upregulated in all subpopulations of VBNC cells. Deletion of the lactate dehy-

drogenase (RIMD2210633:ΔlldD) gene caused cells to enter the VBNC state significantly

more quickly compared to the wild-type, and adding lactate to VBNC cells aided their resus-

citation and extended the resuscitation window. Addition of pyruvate to the RIMD2210633:

ΔlldD strain restored the wild-type VBNC formation profile. This study suggests that lactate

dehydrogenase may play a role in regulating the VBNC state.

Author summary

Members of the Proteobacteria are reported to adopt a survival strategy and enter a viable

but non culturable (VBNC) state, when exposed to stressful or non-permissible growth
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conditions. This is a characteristic employed widely in the natural environment in order

for bacteria to survive harsh environmental conditions over a long period. In spite of the

importance of the VBNC state in microbiology, we know little about the molecular

makeup of VBNC cells. In this study, using the model organism Vibrio parahaemolyticus,
we resolved that distinct subpopulations of bacteria exist in the VBNC state and these

have different resuscitation potentials and distinct proteomic profiles. We also discovered

that deletion of the gene encoding the enzyme lactate dehydrogenase (lldD) triggered the

cells to enter the VBNC state, and adding lactate to VBNC cells extended their resuscita-

tion potential window. The ability for bacteria to survive in the VBNC state might be

linked to their ability to overcome oxidative stress.

Introduction

Members of the Proteobacteria are reported to have the ability to form viable but non-cultur-

able (VBNC) cells, a fundamental survival mechanism that allows bacteria to ‘hibernate’ or lay

dormant until conditions become more favourable to support their growth [1,2]. VBNC bacte-

ria can continue to utilise nutrients, retain their plasmids, undergo cell rounding and retain

virulence properties [3–10]. Importantly, VBNC bacteria remain metabolically active albeit at

a reduced capacity, but no longer form colonies on standard culture media [11–13]. Following

environmental stimuli or permissible growth conditions, some VBNC cells can ‘resuscitate’,

restoring their ability to grow on media [1,13]. The VBNC state has been well documented in

Vibrio species and V. parahaemolyticus is a good model organism for studying VBNC cells for

a number of reasons [14–16]. Firstly, the VBNC state can be induced in V. parahaemolyticus
by low temperatures and salinity, secondly V. parahaemolyticus VBNC cells can be resuscitated

by increasing the temperature in the medium and thirdly, the period of resuscitation of VBNC

cells is well documented to be approximately 2 weeks after cells have become unculturable

[8,11,15–18].

V. parahaemolyticus is also of particular interest because it is the leading cause of seafood

associated gastroenteritis and is abundant in shellfish when sea temperatures exceed 18˚C,

coinciding with elevated disease burden. In the absence of ideal growth conditions, culturable

V. parahaemolyticus can no longer be detected in shellfish samples and it is thought that Vibrio
species do not survive well at low temperatures. Previous studies have shown that V. parahae-
molyticus can appear seasonally in the environment [19], indicating a possible dormant state

for these bacteria during colder temperatures. V. parahaemolyticus in the VBNC state may

constitute a reservoir of bacteria that can be reactivated later under more favourable condi-

tions. Understanding the relationship between VBNC cells and cells that are able to grow is

critical for understanding the incidence of disease potential from the environment.

To date, little is understood about the genetic control underlying the VBNC state and regu-

lators such as RpoS and OxyR have been identified in bacteria as playing a role in VBNC for-

mation [1,20]. The lack of the stress regulator RpoS has been shown to decrease the ability of

E. coli to remain in the VBNC state [21,22] and in V. parahaemolyticus repression of rpoS
expression was observed when cells could no longer be resuscitated at 37˚C [23]. In V. vulnifi-
cus the oxidative stress regulator OxyR has been shown to regulate the activity of catalase,

which was required to degrade hydrogen peroxide generated in response to cold shock [20].

More recently, the gene cpdA was shown to be involved by regulating cAMP- receptor proteins

in the VBNC cell environment and a lack of cAMP-CRP retained colony formation in E. coli
VBNC induced conditions [24]. Other studies have shown that E. coli VBNC cells are identical
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to persister cells and that control of persister cells are due to ribosome dimerization and the

use of chemotaxis to acquire nutrients [25,26].

Transcriptomic profiling of VBNC cells has been used to identify the genetic determinants

of the VBNC state and a recent study demonstrated differential gene expression in V. parahae-
molyticus VBNC cells compared to exponential or stationary phase cells [27]. The study

revealed that genes involved in glutamate synthesis, biofilm maintenance, DNA repair and

transportation were up regulated at least 4-fold during the VBNC state. Collectively, the tran-

scriptome studies on VBNC Vibrio cells [27,28] are useful but, crucially, do not identify genes

where the function is unknown that may play a role in VBNC formation.

Investigating the proteome of cells in the VBNC state and comparing it to the proteome

from growing culturable cells, is an augmented and complementary approach and provides

valuable information regarding differentially expressed proteins and enzymes. Two recent

studies have used a proteomic approach to investigate V. parahaemolyticus in the VBNC and

resuscitation states [29,30]. The analysis reveals that when compared to exponentially growing

cells, 36 proteins were significantly down regulated and 15 were significantly up regulated as

the cell population entered VBNC. The majority of regulated proteins were found to be associ-

ated with; translation, structural constituent of ribosome, rRNA binding, siderophore trans-

membrane transporter activity, receptor activity and bacterial-type flagellum organization

[29]. Upon resuscitation from the VBNC state, 429 proteins were found to be differentially

expressed, with 330 significantly up-regulated and 99 down-regulated [30]. Whilst these stud-

ies have provided a general overview of protein expression in V. parahaemolyticus upon entry

and exit from the VBNC state, they have considered the culture as a homogeneous population

of cells that all display a similar response. However, SEM imaging has previously indicated

that V. parahaemolyticus VBNC cells actually form a heterogeneous population; where

small coccoid cells and flattened larger cells coexist [18]. The contribution of these morpholog-

ically differentiated cells to a global VBNC proteome is currently unknown, but is absolutely

crucial for a more accurate, mechanistic understanding of bacterial survival and subsequent

growth.

In this investigation, we used imaging flow cytometry (IFC) and fluorescence activated cell

sorting (FACS) to characterise and isolate two morphologically distinct subpopulations (P1

and P2) of V. parahaemolyticus, as they enter the VBNC state. Cells from either subpopulation

can remain dormant in the VBNC state for long periods, but the P1 and P2 subpopulations

displayed different abilities for revival under favourable conditions. To understand the basis of

these differences, the proteomes of P1 and P2 were analysed and shown to possess distinct fea-

tures. The majority of the significantly upregulated proteins belonged to metabolic functional

categories and included a lactate dehydrogenase (LldD; VPA1499) one of the most highly

abundant proteins in both P1 and P2 subpopulations. We demonstrated that deletion of the

lactate dehydrogenase encoding gene caused the cells to enter the VBNC state significantly

quicker than the wild-type; and that supplementation with lactate aided resuscitation and

extended the resuscitation window indicating a role of lactate dehydrogenase in the VBNC

state. This work advances our understanding of the VBNC consortium and provides novel

molecular insight to VBNC subpopulation morphologies and their virulence potential.

Results

Induction of cells into the VBNC state depends on inoculum age

V. parahaemolyticus strain RIMD2210633 was used to establish high cell density (109 CFU/ml)

laboratory microcosms. Initial experiments showed that we could impose conditions in which

cells entered a VBNC state (hereafter referred to as microcosms). We could resuscitate cells to
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culturable forms depending on; the age of the culture, the handling of cells to avoid damage

during preparation and the methods used to induce VBNC formation and resuscitate the cells

(S1 Text).

When 5-day old cultures were used to establish VBNC microcosms, the number of cultur-

able cells declined to undetectable levels within 30–35 days (Fig 1A). In VBNC microcosms set

up using cultures that had been stored on agar for at least 2 weeks, the number of culturable

cells declined more rapidly, taking approximately 20 days to reach undetectable levels (Fig

1A). We found that 0.63% of cells could be resuscitated for up to 7 days when the VBNC

microcosms were prepared from >14 day cultures and 1.3% of cells could be resuscitated for

up to 13 days when 5 day cultures were used to establish the microcosm (Fig 1B). For subse-

quent experiments we used VBNC microcosms established from cultures that were consis-

tently less than 5 days old (Fig 1A).

Fig 1. The age of the strain can affect VBNC formation and resuscitation. A) The number of culturable cells of V.

parahaemolyticus RIMD 2210633 in the microcosms over time using either fresh cultures that were�5 days out of the

freezer or older cultures that had been on agar plates for�14 days. When older cultures were used to set up

microcosms it took ~20 days for cells to reach unculturable while microcosms prepared with cultures that were less

than 5 days old from freezer stocks took longer to become unculturable in the microcosm. The detection limit of CFU

was 0.2 cells /ml. B) Resuscitation of cells was tested when all the cells in the population had turned unculturable.

When older cultures were used to set up a microcosm a resuscitation window of 7 days was observed while a

resuscitation window of 2 weeks could be observed in microcosms set up with fresher cultures.

https://doi.org/10.1371/journal.ppat.1009194.g001
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Flow cytometry analysis of VBNC cells

Flow cytometry was used to analyse 10,000 cells/events from the microcosm at 3 different time

points; T0 (start of the microcosm), T12 (12 days post VBNC formation) and T50 (50 days

post VBNC formation) (Fig 1A). Fig 2A and 2B shows that at T0 over 40% (±10%) of the cells

stained as live and metabolically active, while approximately 45% (±15%) of cells stained as

damaged or dead. Analysis of the microcosm at T12 using FACS after PI staining showed that

damaged/dead cells were not visible, indicating that the dead/damaged cells seen at T0 had

repaired, lysed or degraded by this stage. Conversely, all of the cells that stained alive and with

an intact membrane, at T12 and T50 fell into two distinct populations based on their size and

fluorescence signals (Fig 2C and 2D). These two populations were designated as Population 1

(P1), in which cells had a low fluorescence signal and were a smaller size, and Population 2

(P2) in which the cells had a higher fluorescence signal and were larger. The percentage of cells

moving from gates for population P1 changed from 1.27% at T0 to 39.8% or 27% at T12 or

T50 respectively (Fig 2C and 2E). While for population P2 the percentage of cells changed

from 21% at T0 down to 0.1% or 6.4% at T12 or T50 respectively (Fig 2C and 2E).

Fig 2. Flow cytometry analysis of microcosms. Dot plots (Left) and corresponding histograms (Right) for Time point

T0 (A-B), Time point T12 (C-D) and Time point T50 (E-F). Left: Dot plot of side scatter area vs. Y610/20 emission

area management. Right: Line gate was used to select population P1 and P2 at T12 and T50 and plotted on a histogram

of Y610/20 emission area to highlight proportions of cells in populations P1 and P2. Populations P1 and P2 became

visible on dot plots and histograms once the cells in the microcosm population had turned unculturable. Intensity of

fluorescence increased (as measured on the YG610/20 laser) and a peak on Y610/20 was seen which corresponded to a

large side scatter.

https://doi.org/10.1371/journal.ppat.1009194.g002
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Morphological analysis of the P1 and P2 subpopulations

Next, the physiological differences between T0 cells, and VBNC subpopulations P1 and P2 at

time points T12 or T50 were investigated. Using Imaging Flow Cytometry (IFC) and FACS we

identified culturable V. parahaemolyticus cells in the T0 population as 1.26 ± 0.1 μm in length

and 1.00 ± 0.04 μm in width (Table 1 and Fig 3A). Using IFC we analysed ~1900–5000 events

(n = 3 ± SD) from the VBNC microcosms and found morphological differences between the

P1 and P2 populations. P1 cells were a similar size to T0 cells, measuring 1.31 ± 0.18 μm in

length and 1.07 ± 0.17 μm in width (Fig 3B). These P1 cells accounted for 89% of the sample.

Subpopulation P2 consisted of filaments or chains of rods that accounted for 0.5% of the

microcosm and had an average length 2.69 ± 0.6 μm and an average width of 1.51 ± 0.5 μm

(Fig 3C). Subpopulation P2 also contained large coccoid cells that were 6.34 ± 1.1 μm in length

and 4.3 ± 0.48 μm in width and accounted for 10% of the microcosm population (Fig 3D).

Fig 3. Analysis of the cell morphology in different VBNC subpopulations. Cells analysed using the ImageStream

Technology were stained with Syto9 stain before imaging. Examples of healthy rod shaped V. parahaemolyticus at T0 are

shown in panel A, small coccoid VBNC cells from population P1 in panel B, large rods/filaments and large coccoid cells

from population P2 in panel C and D respectively. Images are accompanied with representative SEM pictures. Panel E

shows the percentage recovery (resuscitation) of VBNC cells stained with Syto9 in subpopulations P1 and P2. Data is

from time point T12 and T50 and representative of 4 microcosms and standard deviation is shown ± SD.

https://doi.org/10.1371/journal.ppat.1009194.g003

Table 1. Different VBNC subpopulations and morphologies of cells identified by IFC analysis compared to T0 population of cells. Cell lengths and cell widths are

the size with standard deviation.

Population Morphology Number of cells Fraction of VBNC population Cell length (μm) Cell width (μm)

T0 Small rods 10992 - 1.26 ± 0.1 1.00 ± 0.04

P1 Small coccoid 8434 89.4% 1.31 ± 0.18 1.07 ± 0.17

P2 Large coccoid 950 10.07% 6.34 ± 1.10 4.30 ± 0.48

P2 Filaments 50 0.53% 2.69 ± 0.60 1.51 ± 0.45

Cell lengths and cell widths are the size with standard deviation.

https://doi.org/10.1371/journal.ppat.1009194.t001
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Scanning electron microscopy (SEM) images were acquired of the whole microcosm and

FACS sorted VBNC subpopulations P1 and P2, to verify the morphological observations seen

by IFC. SEM analysis of whole VBNC microcosms showed that VBNC cells were part of a

complex extracellular matrix of which VBNC cells were embedded or attached (Fig 4A). SEM

images of cells in VBNC subpopulation P1 were seen as smaller coccoid cells while VBNC sub-

population P2 were verified as larger dense coccoid cells that were sometimes in doublets.

SEM images also captured long chains of hollow cells in the microcosm in VBNC subpopula-

tion P2. Transmission electron microscopy was also carried out on FACS sorted VBNC sub-

populations P1 and P2. Subpopulation P1 cells showed contents of the cytosol was still present

and the cell wall was extended and sometimes bulging with empty spaces. Subpopulation P2

showed cells to have intact cell membranes and empty spaces in the cytosol (S1 Fig).

Subpopulations of VBNC cells have different resuscitation capabilities

Next, the entire VBNC microcosm was tested at time points T12 and T50 for its ability to be

resuscitated. When T12 resusciated cells were incubated in PBS and subjected to an increase in

temperature they could be resuscitated and had a “return to growth” phenotype. This is consis-

tent with published data that suggests that V. parahaemolyticus VBNC cells can be resuscitated

for approximately 2 weeks after their formation [15–17]. At T50 VBNC cells could not be

resuscitated using this method.

To test resuscitation capabilities of individual VBNC subpopulations we used FACS to col-

lect 250,000 or 50,000 cells/events from the P1 and P2 populations respectively at time point

T12 and T50. We have presented the number of resuscitated cells as a percentage of the total

number collected. The cells in subpopulation P2 were mainly large coccoid in shape and could

Fig 4. Virulence potential of V. parahaemolyticus RIMD2210633 cell types. Panel A shows SEM pictures of VBNC

cells with extracellular matrix attached surrounding the cells. Panel B shows survival of Galleria mellonella after 48 h

when injected with different VBNC cell types. Panel C shows a heat map identifying regulation among known virulence

proteins.

https://doi.org/10.1371/journal.ppat.1009194.g004
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be resuscitated at either T12 or T50 (Fig 3E). A recovery of over 100% from some samples indi-

cates that some cells in this subpopulation were in doublets, chains, or in large coccoid cells

consisting of more than one cell. Approximately 14% of T12/T50 VBNC cells in population P1

could be resuscitated. When resuscitated the coccoid cells returned to rod shaped bacteria.

These results indicate that particular subpopulations of V. parahaemolyticus can remain in the

VBNC state for long periods and can be resuscitated more than 2 weeks after their formation.

Virulence in G. mellonella larvae

We have shown previously that Galleria mellonella (wax moth) larvae can be used to assess vir-

ulence of V. parahaemolyticus [31], including strain RIMD2210633 and the median lethal dose

of this strain was approximately 100 CFU [31]. When we dosed larvae with approximately 105

CFU of T0 cells, ~50% of the larvae succumbed to infection (Fig 4B). Next, we assessed the vir-

ulence of VBNC cells at time point T12 in the whole microcosms. Using basic resuscitation

methods, we calculated that approximately 105 CFU were injected into larvae and found that

70% of the larvae had died by 48 h. Subsequently, culturable V. parahaemolyticus could not be

isolated from the larvae. In order to demonstrate that virulence was due to the VBNC cells and

not solely due to the accumulation of a secreted toxin from T0 cells, VBNC cells from T12

were washed and injected into the larvae. After 48hrs, ~50% of the larvae died (Fig 4B).

When we tested the virulence of the VBNC subpopulation P1 and P2 independently (sepa-

rated and sorted by FACS), at time point T12, by injecting approximately 104 CFU (without

resuscitation) into the larvae we found that all of the larvae survived and showed no signs of

disease after 48 h. Even though death was seen when the microcosm was injected as a whole,

larvae death was not observed when subpopulations of VBNC cells were separated and then

injected into larvae. SEM analysis of whole microcosms confirms that VBNC cells are embed-

ded in an extracellular matrix (Fig 4A) which is completely removed by the pressure of the

rapid flow stream used to separate cells during the FACS process and gives pure defined

VBNC subpopulations without any extracellular matrix present (Fig 3B–3D).

Resuscitated VBNC P2 cells regain virulence

Next, we assessed the virulence of P1 and P2 resuscitated VBNC cells at T12. When approxi-

mately 104 CFU of VBNC subpopulation P1 were resuscitated and the cells were injected into

larvae, they did not kill larvae within 48 h. Conversely, when approximately 104 CFU of VBNC

subpopulation P2 were resuscitated and injected into larvae, all of the larvae died within 24 h

(Fig 4B.) This suggests that V. parahaemolyticus VBNC cells in subpopulation P2, when resus-

citated, revert to virulent forms. Fig 4C shows a heat map of regulation among virulence pro-

teins and indicates no major known virulence mechanisms where upregulated.

VBNC cells are present in samples of seafood

To determine whether the methods developed to identify VBNC cells in vitro were applicable

to samples of seafood, we screened a commercial shrimp (Penaeus vannamei: king prawn)

sample which tested negative for V. parahaemolyticus when using the ISO 21872–1 method.

The seafood sample was subjected to a temperature increase, by leaving the prawns at room

temperature for 12 h, and then processed and incubated at 30˚C for 24–48 h. V. parahaemoly-
ticus was recovered from the sample demonstrating that increased temperature could resusci-

tate VBNC cells in vivo. Stomached tissues were analysed using FACS and cells were collected

using gates corresponding to the P1 and P2 subpopulations that we had seen in our in vitro
studies (Fig 5A and 5B). Next, we investigated the morphology of cells in the gated regions cor-

responding to the P1 and P2 subpopulations using IFC. The cells in region P1 consisted of
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small coccoid cells that were approximately 1.84 μm in length and 1.23 μm in width (Fig 5C and

5G). The cells in region P2 consisted of large coccoid cells (Fig 5D and 5G) that were approxi-

mately 2.8 μm in length and 1.7 μm in size and large chains of rod cells that were approximately

13 μm in length and 5.9 μm in width (Fig 5E and 5G). Using IFC images alone, we cannot be

certain that the cells we see are Vibrio species however, they do resemble V. parahaemolyticus
VBNC cells. Cells from P1 and P2 gated areas were collected using FACS and non-resuscitated

cells could not be grown on agar while those treated with the resuscitation step were culturable

and were identified as V. parahaemolyticus (Fig 5F) using ToxR species targeted PCR. These

results indicated that this seafood sample contained V. parahaemolyticus VBNC cells that were

morphologically similar in shape and size to VBNC cells seen in our in vitro studies.

Fig 5. Analysis of the cell morphology of cells in seafood samples. Cells were stained with Syto9 stain before

imaging. Panel A shows dot plots of side scatter area vs. Y610/20 emission area management using FACS for a seafood

sample that was examined. Line gates already determined were used to select population P1 and P2 from the seafood

sample and are plotted on a histogram of Y610/20 emission area to highlight proportions of cells in populations P1 and

P2 (Panel B). The IFC images in Panel C, D and E show Syto9 stained cells, brightfield and composite images of both

syto9 and brightfield together. Examples of small coccoid cells from gated region P1 are shown in Panel C, large

coccoid cells and long chains of cells present in gated regions of P2 are shown in Panel D and E respectively. Panel F

shows the CFU/ml recovery (resuscitation) of VBNC cells collected from subpopulations P1 and P2. Data is

representative of 3 sorts and standard deviation is shown ± SD. Panel G indicates the sizes of cells determined by the

IDEAS software.

https://doi.org/10.1371/journal.ppat.1009194.g005
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Subpopulations of VBNC cells have distinct proteomes

Having established that cells in subpopulation P2 can be resuscitated, the molecular processes

involved in VBNC cell formation were investigated. Using quantitative mass spectrophotome-

try, the proteome of VBNC populations P1 and P2, derived from time points T12 and T50,

was resolved and compared to that from cells at T0 time point. We quantified similar numbers

of proteins in T0 (n = 1533) or in the P1 or P2 at time points T12 and T50 (n = 1444–1497) (S1

Table). A total of 1690 proteins were detected across all groups, representing 35% of the V.

parahaemolyticus genome across all the samples, of which 1173 proteins were found in all of

the samples (S1 Data).

Regression analysis was used to compare the different proteomes. We found that the P2

proteome was more similar to the T0 proteome than to the P1 proteome at time points T12

and T50 (see S2 Table). We also found that the proteomes of P1 and P2 cells were different

from each other at both time points (S2 Table). A comparison of these datasets using principle

component analysis of the global expression profiles, confirmed the relationships of the differ-

ent proteomes to each other (S2 Fig).

Comparisons of the proteome between populations P1 and P2 showed few differences at

time points T12 or T50. At time point T12 a total of 4 proteins were significantly downregu-

lated in P1 compared to P2. A total of 27 and 10 proteins were significantly upregulated or sig-

nificantly downregulated respectively in population P1 at time point T50 compared to

population P2 at the same time point. To assess the differences between the proteome popula-

tions, we determined the number of proteins that were significantly up and down regulated

between the different VBNC populations compared to T0 (Table 2). Proteins with a 3-fold

change in level of expression and a q value <0.01 were defined as significantly regulated

(Table 2, S2 Data) and assigned into 23 functional groups (Fig 6). The majority of differentially

regulated proteins were assigned to metabolism functional categories, for VBNC subpopula-

tions P1 and P2 at time points T12 and T50. More of these proteins were significantly regu-

lated at time point T50, compared to the earlier time point of T12 (Figs 6A and 6B and S2). A

collective total of 101 metabolism-associated proteins were upregulated at time point T50

from VBNC subpopulations P1 and P2 (Fig 6B). By contrast, at time point T12, 42 metabo-

lism-associated proteins were upregulated from combined P1 and P2 populations (Fig 6A).

Conversely, more metabolism associated proteins were downregulated at T50 than at time

point T12 (278 and 152 respectively; Fig 6A and 6B). In the metabolism-related functional cat-

egory, ‘energy production and conversion’, there were 15 more upregulated proteins at time

point T50 than at time point T12 (28 versus 13). Overall, we observed more proteins downre-

gulated indicating that as the VBNC state progresses from T12 to T50 more proteins are made

redundant.

Table 2. Differentially expressed proteins in the chromosomes.

Chr 1-upa Chr 1 –downb Chr 2- upa Chr 2 –downb

T0 vs. VBNC state P1-T12 70 (2.3%) 235 (7.6%) 21 (1.2%) 70 (4%)

T0 vs. VBNC state P2-T12 41 (1.3%) 200 (6.5%) 10 (0.6%) 36 (2.1%)

T0 vs. VBNC state P1-T50 160 (5.2%) 420 (13.6%) 37 (2.1%) 97 (5.5%)

T0 vs. VBNC state P2-T50 137 (4.4%) 430 (14%) 35 (2%) 105 (6%)

The differentially expressed proteins were given in total as well as in proportion to the total number of protein-

coding genes in each chromosome in brackets.
aup, upregulated proteins
bdown, down regulated proteins; Chr1, chromosome 1; Chr2, chromosome 2.

https://doi.org/10.1371/journal.ppat.1009194.t002
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Some proteins were differentially expressed (significantly upregulated or significantly down

regulated) in subpopulations P1 and P2 at time points T12 and T50 (Fig 6C) and may be core

proteins which play a central role in the VBNC state (S3 Fig). From this, we identified 11 pro-

teins that were upregulated (Fig 7) and that clustered together during hierarchical clustering

(S3 Fig). These proteins were VPA0166 and VP1267 involved in cell wall membrane, VP0622,

VP0589 (YajC) involved in intracellular trafficking and secretion, VP2817 (HfQ) assigned to

translation category, VPA1499 (LldD), VP1161 and VP1053 involved in energy production

and conversion, VP0240 involved in carbohydrate metabolism and VP0171 and VP0174

involved in inorganic ion transport and metabolism. We identified another 90 proteins that

were downregulated in subpopulations P1 and P2 from both T12 and T50 time points. Of

these 43 were assigned to the information storage and processing categories, 31 were assigned

to metabolism (Fig 6C), 11 were assigned to cellular processing and signalling and 9 could not

be characterised (Fig 6C).

Lactate dehydrogenase promotes resuscitation

A lactate dehydrogenase (LldD; VPA1499) was one of the most highly upregulated proteins

identified in subpopulations P1 and P2 at both time points T12 and T50 (Fig 7A–7D). To

investigate its role in more detail, strain RIMD2210633:ΔlldD was created in which lldD was

deleted. The RIMD2210633:ΔlldD was confimed by whole genome sequencing, assays assess-

ing growth (data not shown) and virulence (S5 Fig) were checked in G. mellonella and showed

Fig 6. Functional categories of differentially expressed proteins of V. parahaemolyticus cells in the different

VBNC subpopulations at each time point. Only significant expressed proteins (q value< 0.01) with expressional

changes of 3 or greater in VBNC subpopulation versus T0 are shown. Bars indicate the portion of the differentially

expressed genes by functional category in each population (100% is the number of regulated proteins in

subpopulations P1 or P2). The number of proteins in each category appears above the median (upregulated) or below

the median bar (downregulated). A: shows proteins regulated at T12 time point B: shows proteins regulated at T50

time point and C: shows core proteins that are shared in subpopulations P1 and P2 at both time points T12 and T50.

Subpopulation P1 is in solid white bars while subpopulation P2 is in solid black bars.

https://doi.org/10.1371/journal.ppat.1009194.g006

PLOS PATHOGENS Characterisation of subpopulations of VBNC cells

PLOS Pathogens | https://doi.org/10.1371/journal.ppat.1009194 January 13, 2021 11 / 26

https://doi.org/10.1371/journal.ppat.1009194.g006
https://doi.org/10.1371/journal.ppat.1009194


no significant diffrences. At T0 time point the cell of ΔlldD (1.899±0.56 μm) was larger in

length size compared to T0 timepoint of the wildtype RIMD2210633 (1.26±0.1 μm). When

microcosms were established with RIMD2210633:ΔlldD the population entered a VBNC state

significantly earlier (17 days earlier; P value <0.0001) than wild type RIMD2210633 (Fig 8A).

Addition of sodium pyruvate to the microcosms was able to restore the rate of entry into the

VBNC state of the RIMD2210633:ΔlldD to that of the wild type (Fig 8B). LldD is responsible

for converting L-lactate to pyruvate (Fig 8D and 8E). When the RIMD2210633:ΔlldD was put

into the VBNC state, it showed at timepoint T12 that the morphology of VBNC cells had

changed. Overall there were less numbers of large coccoid cells in the P2 population (2%) com-

pared to wildtype RIMD2210633 strain (10%). In the RIMD2210633:ΔlldD the large coccoid

cells present in the P2 population were also smaller in size (length 3.16±0.15 μm width 1.76

±0.2 μm) compared to wildtype RIMD2201633 large coccoid cells (length 6.34 ± 1.10 μm,

width 4.30 ± 0.48 μm). Also in the P2 population of the RIMD2210633:ΔlldD, there were larger

number of filaments or chains of cells present (S6 Fig).

An alternative lactate dehydrogenase in V. parahaemolyticus RIMD2210633 (VPA0147)

can also convert L-lactate to pyruvate, but this protein was not expressed in our VBNC cells.

We investigated whether the addition of sodium lactate, sodium pyruvate and sodium acetate

would enable the resuscitation of mid-to late stage VBNC cells, when thermal shift methods

alone were not sufficient. The addition of 2 mM of sodium lactate resuscitated mid VBNC

stage cells (36 days after cells had become unculturable in the microcosm) enabling some cells

to be cultured, whilst control VBNC cells incubated in PBS were not resuscitated (Fig 8C). The

Fig 7. Quantitative cellular proteomics identifies proteins involved in VBNC state. Using quantitative mass

spectrophotometry, the proteome of VBNC populations P1 and P2, derived from time points T12 and T50, was

resolved and compared to that from cells at T0 time point. Volcano plots summarising the proteomic comparison of

total proteins between VBNC subpopulations P1 and P2 at time point T12 and T50 in V. parahaemolyticus. The x-axis

shows the log2 of the fold change of protein expression plotted against the–log10 of the q value. Orange dots indicate

the differentially expressed genes with at least 3-fold change (log2 1.585) and statistical significance (q value< 0.01 [–

log10 2]). The dots at the -9.9 and 9.9 value on the x-axis (downregulated and upregulated, respectively) represent

proteins that were not detected in the VBNC sample or in the T0 sample, respectively in the pairwise comparison (fold

change values of -9.9 and 9.9 were added empirically). Distribution of the differential expression of proteins in VBNC

cells in Panel A P1-T12, Panel B P2-T12, and Panel C P1-T50 and Panel D P2-T50 population. Highlighted dots

represent the 11 proteins that were significantly upregulated in VBNC subpopulations P1 and P2.

https://doi.org/10.1371/journal.ppat.1009194.g007
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addition of other oxidative compunds including sodium pyruvate and sodium acetate did not

resuscitate RIMD2210633 VBNC cells.

When we investigated whether the addition of sodium lactate, sodium pyruvate and sodium

acetate would resuscitate RIMD2210633:ΔlldD VBNC cells in mid-late stage we found that

none of these compounds were able to turn the VBNC cells to culturable forms as seen with

the wildtype.

Discussion

Many bacteria are reported to adopt a survival strategy by entering a VBNC or dormancy

state, when exposed to stressful or non-permissible growth conditions [1,12,32]. Factors

known to induce VBNC formation include nutrient starvation, extreme temperatures, expo-

sure to UV light and chlorination of waste-water treatments. In this study, the VBNC state was

induced in V. parahaemolyticus by nutrient restriction and by lowering the environmental

temperature to mimic conditions that occur in the environment during non-permissible

growth conditions. The lag period before all V. parahaemolyticus cells become VBNC in a

microcosm has previously been shown to differ depending on the conditions used to set it up.

In some cases the lag period has been reported to be 9–15 days [11,18,27] while Wong et al.

Fig 8. Resuscitation of dormant cells using sodium lactate. Panel A shows entry into VBNC state for RIMD2210633:

ΔlldD compared to wildtype RIMD2210633. Panel B shows entry into VBNC state for RIMD2210633 and

RIMD2210633:ΔlldD in the presence of sodium pyruvate to the microcosm. Panel C shows VBNC cells of

RIMD2210633 resuscitated with 2mM sodium lactate 37 days after entering VBNC stage (mid to late VBNC stage).

Panel D shows the lactate metabolism pathway in V. parahaemolyticus RID2210633. Each rectangle stands for an

enzyme in the pyruvate metabolism pathway. The yellow boxes indicate the ortholog genes in V. parahaemolyticus
RIMD2210633 that are not present as proteins in the VBNC subpopulations while the green boxes are significantly

downregulated VBNC proteins. The proteins in the orange box indicates genes that are upregulated in VBNC

subpopulations. Panel E shows the genetic organisation for VPA1499 (lldD) in V. parahaemolyticus RIMD2210633.

https://doi.org/10.1371/journal.ppat.1009194.g008
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showed that environmental strains of V. parahaemolyticus took between 35–49 days to become

VBNC [16]. Jiang et al., found it took 50–80 days for all cells to become VBNC when high salt

concentrations were used in the starvation media [8]. In this study, when fresh cultures (<5

days from culturing from feezer stocks) were used to prepare microcosms, we found that it

took V. parahaemolyticus RIMD2210633 cells approximately 30–35 days to become VBNC.

When older seed cultures were used to establish the microcosms it took 20 days for all of the

population to become unculturable. For the present studies we have consistently used bacteria

that had been cultured <5 days from freezer stocks. Our findings, that the age of the culture

can influence the kinetics of formation and the resuscitation of VBNC cells mirrors some of

the findings with the formation of persister cells, where the culture conditions affects the fre-

quency of persister cells [33]. These findings resolve some of the differences in VBNC forma-

tion reported in the literature.

Bacteria in the VBNC state are viable, or metabolically active, but are unable to form colo-

nies on standard culture media. Following stimuli, such as a temperature upshift, some VBNC

cells can ‘resuscitate’ restoring their abilities to grow. There is much debate about the most

appropriate method for determining the numbers of VBNC cells in a population and many

studies [5,7,10,13,14,34] measure resuscitation on a rich medium. However, some VBNC cells

may not be recovered using this protocol. As V. parahaemolyticus is unable to grow in PBS, we

used this medium and a temperature upshift to measure the number of cells in the population

that could be resuscitated from the VBNC state. This indicated that only 1.3% of cells in an

unculturable population were VBNC. These findings are broadly similar to those reported by

Bamford et al., 2017 who used microfluidics to show that approximately 1% of an antibiotic-

treated population of E. coli formed VBNC cells [35]. In our studies, the resuscitation window

lasted approximately 13 days after all the cells in the microcosm had turned unculturable

which is consistent with published literature [15–17].

Do VBNC cells have the potential to be virulent?

There are some reports that human pathogenic bacteria retain the ability to cause disease in

the VBNC state [3,12,36]. For example, one study showed that VBNC cells of E. coli O157:H7

continued to produce Shiga-like toxins [9]. Other studies showed that V. cholerae VBNC cells

are virulent in animal models of disease, and VBNC cells may be linked to seasonal epidemics

of cholera [2,4]. The detection of V. parahaemolyticus in the environment, and cases of disease

in humans, typically peaks in the summer months when warmer sea temperatures allows bac-

terial proliferation. However, the pathogen is present at low levels, or undetectable (using clas-

sical techniques) in environmental samples taken during the winter months [18]. A recent

study showed that oysters harvested during the winter months contained Vibrio VBNC cells

[37]. V. parahaemolyticus VBNC cells have also been converted to the culturable form when

co-cultured with eukaryotic cells such as HT-29 or Caco-2 cells [38], indicating the potential

for in vivo resuscitation. Due to the possibility that VBNC cells of pathogenic bacteria can

retain their virulence, VBNC cells are a major public health concern in particular in food

microbiological safety. The microbial contamination of a food sample is determined by plate

count methods and if VBNC cells are present then they could go undetected during routine

food microbiology testing due their inherent unculturability. This can lead to an underestima-

tion of the disease potential of that sample. In this study, we found conclusive evidence that V.

parahaemolyticus RIMD2210633 VBNC subpopulations cannot be resuscitated inside G. mel-
lonella. This is supported by the lack of regulation of known virulence proteins including,

T3SS1 (VP1658-VP1702), pathogenicity islands (PAIs) PAI-1 (VP0380-0403), PAI-2

(VP0634-0643), PAI-3 (VP1071-1095), PAI-4 (VP2131-2144), PAI-5 (VP2900-2910), PAI-6
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(VPA1253-1270), PAI-7 (VPA1312-VPA1395), TDH, capsular polysaccharide (CPS) proteins

(VPA1403-1412), lipopolysaccharide (LPS) proteins (VP0218-VP0234), T6SS1 (VP1386-

VP1414) and T6SS2 (VPA1025-VPA1046), and we found only eight proteins significantly

upregulated (4% of known virulence related proteins) (Fig 4C). If VBNC cells cannot be resus-

citated inside the host under these conditions as shown in this study, then the pathogenic

nature of the V. parahaemolyticus would appear to be curtailed. However, the risk to the con-

sumer would be if there was a lag period or a change in conditions, which then allowed the

VBNC cells in the food product time to resuscitate, thus restoring pathogenesis.

So what could account for the death seen in larvae when whole microcosms where injected?

It is possible that the death seen in larvae when injected with whole microcosm or with super-

natant samples may have been due to a virulence compound present which does not appear in

VBNC cell populations collected after FACS. We observe the presence of extracellular matrix

that holds VBNC cells in biofilms that are visible in SEM images (Fig 4A). During FACS the

microcosm is stained with SYTO9 and the extracellular matrix is not detected on FACS plots

and/or is flushed out due to the pressure of the rapid flow stream and thus would not be col-

lected unless it was tightly bound to VBNC cells. This extracellular matrix may be in abun-

dance when cells are injected into larvae without prior separation by FACS resulting in

toxicity and the death of larvae recorded. A study by Sarkisova and co-workers [39] showed

that the extracellular matrix of Pseudomonas aeruginosa in biofilms consisted primarily of the

virulence factor alginate and other extracellular proteases that played a role in virulence. Nota-

bly, we found a protein VP2692 that is involved in alginic acid biosynthetic process to be upre-

gulated at time point T12 (3.80 fold).

Formation of distinct VBNC subpopulations

To the best of our knowledge, we report unequivocally that different populations of VBNC

cells exist (under the VBNC induction conditions tested in this study) and this is the first

report of the quantification of these different VBNC cell types and their different resuscitation

potentials. Most studies with VBNC cells in other Gram negative bacteria report cell dwarfing

and/or rounding when in the VBNC state [4,6,8,18,40–44]. This study demonstrates that 90%

of V. parahaemolyticus cells change from rod shaped to small coccoid shaped bacteria when

they enter the VBNC state. These cells could be resuscitated for up to 14 days after the popula-

tion has become VBNC. We also show that 10% of the V. parahaemolyticus VBNC population

forms large coccoid cells. There was a longer window of time (up to 50 days) during which

these cells could be resuscitated. These large coccoid cells retained metabolic activity and once

resuscitated again were virulent in G. mellonella. Coutard et al., also observed a heterogeneous

population of V. parahaemolyticus VBNC cells in their microcosms using SEM where there

were small coccoid cells as well as flattened larger cells [18]. Importantly, we have also demon-

strated using the IFC and FACS approach that large coccoid VBNCs exist in a seafood sample

that tested negative for V. parahaemolyticus by conventional techniques.

Lactate dehydrogenase promotes VBNC resuscitation

A number of previous studies have demonstrated that pyruvate, through its properties as an

antioxidant, can assist in the VBNC resuscitation process [45,46]. Pyruvate can detoxify the

effects of H2O2, hydroxyl radicals and lipid peroxidation; it can also remove oxygen radicals

via a non-enzymatic oxidative decarboxylation reaction to produce water and acetic acid

[47,48]. Pyruvate is a key intermediate in central metabolism involved in the TCA cycle, fatty

acid synthesis, and the biosynthesis of amino acids which feed into gluconeogenesis.
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Recently, the role of pyruvate sensing and transport during resuscitation of E. coli VBNC

cells following periods of extended cold stress has been reported [45]. Proteomic analysis of E.

coli VBNC cells have revealed that several enzymes involved in pyruvate metabolism are signif-

icantly upregulated, these include the pyruvate formate lyase (PflA), phosphoenolpyruvate car-

boxykinase (PckA) and L-lactate dehydrogenase (LldD) [45]. Cellular proteomics of V.

parahaemolyticus VBNC cells combined with genetic analysis led to the discovery of L-lactate

dehydrogenase (LldD:VPA1499) being significantly up-regulated in VBNC cells. L-lactate

dehydrogenase catalyses the oxidation of lactate to pyruvate (Fig 8D) and feeds electrons back

into the electron transport chain, thereby fueling cellular respiration. Our results show that

deletion of LldD created a strain that when, in microcosms, entered the VBNC state signifi-

cantly quicker than the WT strain. It was also shown that supplementation with lactate aided

resuscitation and extended the resuscitation window. Furthermore the addition of pyruvate

(the product of lactate oxidation) to microcosms of the ΔLldD strain restored the WT charac-

teristics and reduced the rate of VBNC formation.

The proteomic analysis also identified the regulatory protein Hfq (VP2187) as a signifi-

cantly up-regulated protein in the V. parahaemolyticus VBNC population. Hfq in V. parahae-
molyticus has been shown to down regulate catalase (CAT: VPA0453) and superoxide

dismutase (SOD: VP2118) [49], both of which aid VBNC resuscitation and play a key role in

the oxidative stress response. Our analysis also shows that CAT and SOD are down-regulated

in both the VBNC subpopulations. Interestingly, Hfq is more highly up-regulated in P1 cells

than in P2 (P1-T12: 7.87 fold change and P2-T12: 6.64 fold change); concomitant with both

CAT and SOD being more down regulated in the P1 subpopulation. The combined analysis

from our biochemical and proteomic studies suggest that V. parahaemolyticus VBNC resusci-

tation potential is (at least in part) dependent on the ability to combat oxidative stress.

In summary, we have distinguished two key subpopulations (P1 and P2) of V. parahaemoly-
ticus VBNC cells that are able to stay dormant in the VBNC state for long periods of time. It

has been demonstrated that these different subpopulations of VBNC cells display distinctive

abilities for revival under favourable conditions and through proteomic analysis have identi-

fied a number of key proteins expressed in populations P1 and P2 at different time points that

may play an important role in VBNC formation and resuscitation.

Methods and materials

Bacterial strains and cultures conditions

Bacterial strains used in this study are shown in Table 3. V. parahaemolyticus strains were ini-

tially cultured aerobically onto selective media Thiosulphate Citrate Bile Sucrose (TCBS) agar

(Oxoid) at 37˚C for 24 h. For enumeration of colony counts, routine sub culturing and growth

on Marine Agar (Conda Labs, Spain) was used and incubated at 30˚C for 24 h.

Table 3. Bacterial strains and plasmids used in this study.

Bacterial Strain Description Source or Reference

V. parahaemolyticus strains
RIMD2210633 Clinical isolate [50]

RIMD2210633:ΔlldD lldD mutant This study

E. coli strains

DH5α Δpir recA1 gyrA (Nal) Δ(lacIZYA-argF) (ϕ80dlacΔ[lacZ]M15) pirRK6 [51]

pKR2013 (helper strain) plasmid mediates conjugation-based plasmid transfer; Kanamycin resistance [52]

Plasmids

pDM4 Suicide vector with R6K origin: Chloramphenicol resistance [53]

https://doi.org/10.1371/journal.ppat.1009194.t003
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Microcosm assay for preparation of VBNC cells

To prepare V. parahaemolyticus high density microcosms, V. parahaemolyticus strain

RIMD2210633 was grown overnight in Marine Broth at 37˚C. The following day 50 ml of

fresh Marine Broth was incubated with the overnight culture and allowed to grow until an

OD595 of 1.3 was reached. The culture was centrifuged at 15000 x g for 10 mins at 6–8˚C. The

cells were washed in 40 ml modified PBS solution (0.4 g/L NaCl, 0.1 g/L KCl, 1.45 g/L

Na2HPO4, 0.1 g/L KH2PO4) and finally re-suspended in 40 ml of modified PBS. The prepared

microcosm was placed in the fridge (6–8˚C) until required. Plate counts of culturable cells

were carried out periodically over subsequent days until the microcosm had no culturable cells

visible on Marine agar. Three time points are described in this work, firstly, T0 on day 0 when

cells were first set up into the microcosm, secondly, time point T12 which was taken 12 days

after the whole microcosm had turn unculturable and thirdly, time point T50 which was taken

50 days after the whole microcosm had turned unculturable.

Resuscitation of VBNC cells

Basic resuscitation: When no culturable cells were detected in the microcosm, basic resuscita-

tion of VBNC cells was carried out by placing 500 μl of the microcosm into 4.5 ml of PBS for

5–6 h at room temperature and then incubated at 30˚C overnight (18 h). Cell counts of VBNC

cells in the microcosm were carried out on Marine agar. Resuscitation using 2 mM sodium

pyruvate, 2 mM Sodium D-Lactate or 2 mM Sodium acetate was carried by centrifuging 2–5

ml of microcosm at 13000 rpm. Collected cells were then re-suspended in pyruvate/lactate/ace-

tate containing medium and left at room temperature for 5–6 h and then incubated at 30˚C

for 36–48 h before cells were plated out onto Marine agar and TCBS agar for counts.

Fluorescent activated cell sorting (FACS) to separate VBNC cells

For flow cytometry analysis, 1 ml of microcosm was stained with 2 μl of Syto9/Propidium

Iodide (PI) mix (equal volumes) (live/dead staining for viability) and left in the dark for 15

mins. Fluorescence of prepared samples was measured using a BD FACS Aria III (Becton Dick-

enson, USA) equipped with a 100 μm nozzle. Particle forward scatter and side scatter were

obtained using a 488 nm laser and 488 ± 10 nm detector. Particle fluorescence was measured at

488 nm excitation, 530 ± 30 nm emission for the PI stain, and 561 nm excitation, 610 ± 20 nm

emission for the Syto9 stain. Control experiments using log phase bacteria were used to focus

population gates around V. parahaemolyticus cells that were alive and had an intact cell mem-

brane (using Syto9 stain) (S4 Fig). Boiled bacterial suspensions were used to focus population

gates around dead/damaged cells (using propidium iodide (PI) stain) (S4 Fig). Approximately

50–250,000 cells/events of different subpopulations were collected into PBS. The FACS collected

cells were centrifuged for 20 min at 4000 rpm and re-suspended in 1 ml of PBS. They were left

at room temperature for 5–6 h and then placed at 30˚C for 48 h to allow resuscitation. Cell

counts of VBNC cells in the microcosm were carried out on Marine agar.

Analysis of imaging flow cytometry (IFC) data on VBNC cells

Imaging flow cytometry was applied to characterise the morphology of cells in the identified

subpopulations. A total of 10,000 cells from each subpopulation were sorted by FACS into

mPBS. Cells were centrifuged at 13000 rpm and re-suspended in 500 μl of mPBS containing

Syto9 stain and left for 15 min. The stained cells were then centrifuged at 13,000 RPM for 5

min and re-suspended in 500 μl of 4% paraformaldehyde (PFA) and left for a further 15 min

to be fixed. The cells were then washed twice in PBS and stored at 4˚C until required.
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IFC data acquisition was performed using a fully calibrated (ASSIST tool) ImageStream X

MkII (ISX, Luminex Corp, Seattle, USA) configured with a single camera and 405, 488, 642

and 785 nm excitation lasers, brightfield illumination and a six channel detection system. For

maximum resolution and high sensitivity, fluidics were set at low speed, magnification was set

at 60x (0.3 μm2/pixel) and excitation lasers were set accordingly: 488 nm (100 mW) and SSC

(785 nm) at 10 mW.

A minimum of 2000 in-focus single cell events were collected for each sample. Only data

from relevant channels were analysed including Channel 02 (CH02 for Syto9 Green detection

533/55 nm), Channel 04 (CH04 brightfield (BF) 610/30 nm) and Channel 06 (CH06, side scat-

ter (SSC) 762/35 nm). To adjust for spectral overlap between these channels, a compensation

matrix was applied, calculated from data acquired excluding BF and SSC laser excitation.

Analysis of IFC data was achieved using the IDEAS software (Version 6.2, EMD Millipore,

Seattle, USA). Firstly, a scatter plot of fluorescence intensity of Channel 02/Channel 06 was

used to exclude background material, and image captures of multiple cells. The default ‘mask’

for each channel, a region superimposed over channel images used for displaying feature-

value calculations, was refined using the adaptive erode, intensity and raw max pixel mask

tools. This enabled a more accurately defined Brightfield (BF) image and fluorescence signal

from which quantitative morphological and intensity data were derived.

Next, a gradient RMS (root mean square for image sharpness) histogram was used to

exclude unfocused cells. Subsequently, the average size of focused cells was determined using

length (BF or fluorescence) and width (BF or fluorescence) histograms.

Scanning electron microscopy (SEM) of VBNC cells

For SEM, we analysed healthy log phase bacteria of RIMD2210633, cells when they were just

set up into the microcosm (T0) and FACS sorted VBNC cells from two subpopulations. Cells

suspended in medium were fixed in 2% glutaraldehyde and 2% paraformaldehyde in 0.1 M

sodium cacodylate buffer pH 7.2 for 1 h at room temperature and could be stored in fixative at

4˚C until further processing. Cells were subsequently washed 3 x 5 min in buffer then post-

fixed in 1% aqueous osmium tetroxide for 1 h. After 3 x 5 min washes in deionized water cells

were dehydrated through a graded ethanol series (30, 50, 70, 80, 90, 95% ethanol for 5 min per

step then followed by 2 x 10 min in 100% ethanol). While suspended in 100% ethanol cells

were passed through a 0.22 micron polycarbonate filter (Osmonics Inc., Lenntech, Delfgauw,

The Netherlands) using a mild vacuum and the filter instantly suspended in ethanol again.

Cells were then fully dehydrated in hexamethyldisilazane (HMDS, Merck, Southampton, UK)

for 3 min followed by air drying. Alternatively, cells were passed through a 0.1 micron polycar-

bonate filter (Whatman nucleopore track-etch membrane, Merck, Southampton, UK) directly

following the initial fixation and then processed as described above.

The filter with the dehydrated cells was then mounted on an aluminium stubs and coated

with a 10 nm layer of gold/palladium (80/20) using a Q150TES sputter coater (Quorum Tech-

nologies Ltd, Laughton, UK) and could be imaged using a GeminiSEM 500 scanning electron

microscope (Carl Zeiss Ltd, Cambridge, UK) operated at 5 kV.

Mass spectrophotometry analysis of V. parahaemolyticus VBNC proteome

For proteomics, we used FACS to sort, collect and isolate protein from V. parahaemolyticus
VBNC cells from subpopulations P1 and P2 at two different time points; T12 and T50. Col-

lected cells were immediately centrifuged and resuspended in BugBustergee Protein Extraction

reagent (Novagen, Merck and Co. Inc) to lyse the bacterial cells and release proteins. Control

extractions of bacterial proteins were carried out on Day 0 (T0) when bacterial cells were first
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prepared in microcosms and had not been subjected to cold stress. Mass spectrometric analysis

of protein samples from either 2 or 3 biological replicates was done by the University of Bristol

Proteomics Facility. Proteomics was performed as described previously using an UltiMate™
3000 nano HPLC system in line with an LTQ-Orbitrap Velos mass spectrometer (Thermo Sci-

entific) [54]. The raw data files were processed and quantified using Proteome Discoverer soft-

ware v1.2 (Thermo Scientific) and searched against V. parahaemolyticus RIMD2210633 RAST

ORFs using the SEQUEST algorithm. The reverse database search option was enabled and all

peptide data was filtered to satisfy false discovery rate (FDR) of 5%. Abundance of each protein

in each sample was calculated using the average area measurements of the three most abun-

dant peptides matching to each protein (Top3 method) [55]. This value was then expressed in

the fraction of the signal derived from all the proteins detected in each sample. Comparisons

were then made for each protein detected in the different time points and population types.

Statistical significance of the fold change difference was calculated by performing Bayes mod-

erated t test using R programming. All proteins with a q-value <0.01 and at least 3-fold change

difference in expression were considered significantly regulated.

Online tools

Cellular localisation of the proteins encoded in the V. parahaemolyticus RIMD2210633

genome was predicted using PSORTb v.3.0.2 (https://www.psort.org/psortb/) [56]. V. parahae-
molyticus RIMD2210633 proteins were classified into functional categories based on clusters

of orthologous gene (COG) designations; COG categories were assigned to each protein using

eggNOG-mapper (http://eggnog-mapper.embl.de/) [57,58]. Global proteomes were compared

by principal component analysis (PCA). Heatmap and hierarchial clustering of the (signifi-

cantly) expressed proteins were generated using Heatmapper (http://heatmapper.ca/

expression/) [59].

lldD mutant construction

DNA fragments (500bp) including upstream and downstream regions of lldD and flanked by

SphI and SpeI restriction enzymes were created using GeneArt Gene Synthesis services (Ther-

moFisher Scientific). The DNA fragment was cloned into plasmid pDM4 via the SphI and

SpeI sites. The presence of the cloned DNA was confirmed by PCR using primers 5’-CAGGT

AACATGATTGCCATTCACAACG-3’ and 5’-ATCTCAAGCAAGTGTGAGAGTGTATTG

G-3’. The plasmid pDM4-lldD was maintained in E. coli DH5α cells and selected on LB agar

containing 50 μg/ml chloramphenicol. For conjugation of V. parahaemolyticus RIMD2210633

1 ml of an overnight culture of the recombinant E. coli pdm4-lldD (donor strain), E. coli
pKR2013 (helper strain) and the V. parahaemolyticus RIMD2210633 (recipient strain) were

centrifuged for 2 min. Supernatants were discarded and the pellets re-suspended in 0.5 ml LB

medium. A 100 μl aliquot was spread onto a LB agar plate, either individually or with donor,

helper and recipient mixed together (ratio 1:1:4), and incubated overnight at 37˚C. The cells

were then re-suspended in 1 ml sterile PBS. Aliquots of 100 μl were plated onto LB agar plates

supplemented with 100 μg/ml chloramphenicol and incubated overnight at 37˚C. Colony

growth was scraped off using a sterile 10 μl loop and re-suspending in 1 ml of sterile PBS and

aliquots of 100 μl were plated onto TCBS plate’s supplemented with 50 μg/ml chlorampheni-

col. After incubation at 37˚C for 5–7 days, colonies were transferred onto fresh LB plates

containing chloramphenicol. The transconjugants were grown in LB broth without supple-

mentation overnight, serially diluted in PBS and plated onto salt free LB agar containing 10%

(w/v) sucrose. The plates were incubated at 24˚C for 2 to 5 days and colonies screened for

chloramphenicol sensitivity and on TCBS agar. In order to confirm that chloramphenicol
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sensitive colonies contained the desired mutation, PCR was carried out using ΔlldD confirma-

tion primers 5’ ACG TAT CTT CAT CAA CTC AGG TGT GAA C-3’ and 5’TGACTATGCG

CTTGTACATAGTTTTGTAAATC-3’. The genotype of the RIMD2210633:ΔlldD was con-

firmed by genome sequencing using an Illumina HiSeq 2500 platform. Sequence data was

aligned against the RIMD2210633 reference genomes using the Illumina GA software. The

aligned reads were then visualised using the software program Intergrated Genomincs Viewer

(IGV) [60]. Genomic regions with no reads were interpreted as missing from the sequenced

genome. The deletion mutant RIMD2210633:ΔlldD was used in our subsequent experiments.

Infection of Galleria mellonella larvae

G. mellonella larvae called TruLarv were purchased from Biosystems Technology, Exeter,

Devon, UK. Larvae weighing between 0.2–0.35 g were chosen for experiments. For each experi-

ment a total of 10 larvae were used per strain to be tested. A total of 50,000 cell/events were col-

lected of cells in the microcosm at both time points T12 and T50 and from population P1 and

P2. Cells were resuscitated in PBS with increasing temperature as described previously. Cells

were then centrifuged (at 13000 rpm) and resuspended in 100 μl of fresh PBS. The larvae were

infected by micro-injection (Hamilton Ltd) into the right foremost proleg with approximately

5000 CFU of V. parahaemolyticus in 10 μl volumes. For comparison, 10 μl of cells from the

microcosm were directly injected into each larvae, a further 1 ml of the microcosm was centri-

fuged and 10 μl supernatant was injected into each larvae, while the pellet was re-suspended in

fresh PBS and then injected into each larvae. For control purposes, 10 larvae were inoculated

with PBS. The larvae were incubated at 37˚C and survival was recorded for all strains after 24 h

and 48 h. Larvae were scored as dead when they ceased moving, and failed to respond when

gently manipulated with a pipette tip. Observation findings were also recorded if larvae colour

changed from their normal pale cream coloration to brown or black indicative of melanisation.

Sample preparation and testing

Frozen samples of Penaeus vannamei (shrimp) were received from a UK food supplier and

stored at -20˚C until testing was performed. Within one month of receipt, the sample was ana-

lysed according to ISO 21872–1 with minor modification [19]. Twenty-five grams of prawn

meat (taken from a minimum of six prawns) was stomached before the addition of 225 ml of

alkaline salt peptone water (ASPW; Oxoid Ltd., Basingstoke, Hampshire, UK). All samples

were incubated at 41˚C for 6 h after which a 5 μl loopful was taken from directly below the sur-

face of the broth and streaked onto TCBS plates. All TCBS plates were incubated at 37˚C for

24 h. Typical sucrose negative (green) colonies were subcultured onto marine agar (Conda

labs, Spain) and incubated at 30˚C for 24 h. Presumptive colonies were identified as V. para-
haemolyticus if they met the following criteria; positive for oxidase, negative for Voges Pros-

kauer and Ortho-nitrophenyl-β-D-galactopyranoside, no growth in 0% NaCl and no acid

from sucrose. Further identification by API 20E strips (BioMerieux) was also carried out. All

biochemically identified V. parahaemolyticus strains were further analysed by PCR amplifica-

tion using the species target toxR [61].

After 20 months of storage at -20˚C the prawns sample was analysed again using FACS and

IFC methods to identify any VBNC V. parahaemolyticus cells in the sample. In brief, 25 g

grams of prawn meat (taken from a minimum of six prawns) was stomached before the addi-

tion of 225ml of PBS was added. Approximately 50–70 ml of the supernatant was filtered

through a 100 μm cell strainer to remove excess prawn meat. Of this filtrate, 1 ml was stained

with Syto9 stain and IFC data was collected immediately on the sample as described in detail

above. Another, 1 ml was stained using Syto9/Propidium Iodide (PI) and using FACS 50,000
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events were collected in gated areas for populations P1 and P2 as determined from experi-

ments described above. The FACS collected cells were centrifuged for 20 mins at 4000 rpm

and re-suspended in 1ml of PBS. They were left at room temperature for 5–6 h and then placed

at 30˚C for 48 h to allow resuscitation. Cell counts of any typical V. parahaemolyticus colonies

were carried out on TCBS plates and 5–10 colonies were confirmed by PCR amplification

using the species target toxR [61].
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