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ABSTRACT

	

Human pulmonary alveolar macrophages synthesized and secreted several charac-
teristic high molecular weight proteins for at least 7 d in vitro. Immunoprecipitates of medium
and cell lysates from metabolically labeled cultures with specific anti-human plasma fibronec-
tin IgG contained one major labeled polypeptide of molecular weight 440,000 (unreduced) or
220,000 (reduced) . An identical polypeptide in conditioned medium from radiolabeled mac-
rophages bound specifically to gelatin-Sepharose, demonstrating that alveolar macrophages
synthesized and secreted a molecule immunologically and functionally similar to fibronectin .
Fibronectin was the major newly synthesized and secreted polypeptide of freshly harvested
alveolar macrophages. Pulse-chase experiments revealed that newly synthesized fibronectin
was rapidly secreted into medium, -50% appearing by 1 h and 80% by 8 h. Immunoperoxidase
staining using antifibronectin F(ab')2-peroxidase conjugates revealed the majority of immu-
noreactive fibronectin to be intracellular, localized to endoplasmic reticulum and Golgi
apparatus. No extracellular matrix fibronectin was visualized, and cell surface staining was
rarely seen, usually appearing only at sites where cells were closely apposed and not at sites of
macrophage-substrate attachment. Similar immunostaining of fibroblast cultures revealed cell
surface-associated fibrillarfibronectin . Ultrastructural localization of fibronectin during binding
and phagocytosis of gelatin-coated and plain latex particles revealed fibronectin only on
gelatin-latex beads and at their cell binding sites. Neither plain latex beads nor their cell
membrane binding sites stained for fibronectin . These results demonstrate that fibronectin is
a major product of human alveolar macrophages, is rapidly secreted, and is localized at cell
membrane binding sites for gelatin-coated particles. In view of the known binding properties
of fibronectin, it may serve as an endogenous opsonic factor promoting the binding of
Staphylococcus, denatured collagen, fibrin, or other macromolecules to macrophages in the
lower respiratory tract.

Fibronectin (FN) is a circulating plasma glycoprotein that
enhances binding of macromolecules and particulate material
to phagocytic cells of the reticuloendothelial system (25, 34) .
Plasma FN (cold-insoluble globulin) increases binding of gel-
atin (22) and fibrin (23) to rodent peritoneal macrophages in
vitro . Binding of gelatin-coated particles by human blood
monocytes (3) and uptake of gelatin-coated beads by rodent
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peritoneal macrophages (11, 17) is also dependent on FN . In
addition, plasma FN mediates binding of Staphylococcus to
human polymorphonuclear leukocytes (43).

In the lung, alveolar macrophages (PAM) play a key role in
the uptake of particulate debris and microorganisms from the
terminal airways and alveoli (14) . However, unlike blood mon-
ocytes and peritoneal macrophages, PAM residing in their



normal anatomic location in vivo lack access to high concen-
trations ofplasma-derived opsonic proteins such as FN.' Thus,
the synthesis of an endogenous opsonic factor by PAM is of
potential importance to local clearance mechanisms and host
defense in the lung . As a first approach to defining the role of
FN in PAM, we studied its synthesis, secretion, and ultrastruc-
tural localization in both nonphagocytizing adherent PAM as
well as during binding and phagocytizing ofgelatin-coated and
plain latex particles . Whereas reports of FN synthesis by other
phagocytic cells have been published (1, 24, 47), we provide
the first detailed biochemical and morphological analysis of
endogenous FN synthesis by a phagocytic cell .

MATERIALS AND METHODS

PAM Culture
Human PAM were obtained from healthy smoking and nonsmoking volun-

teers under informed consent by subsegmental lavage of the right middle lobe
(44) . The recovered cells (average yield 81 x 10 6 cells from smokers, 15 .1 x 10 6
cells from nonsmokers) were washed twice by centrifugation (500 g, 10 min) in
Dulbecco's modified Eagle's medium (DMEM) and resuspended in DMEM at
1-2 x 106 cells per ml. Cell suspensions were plated in 35-mm tissue-culture
dishes (Falcon #3001; Falcon Labware, Div. Becton, Dickinson & Co ., Oxnard,
Calif) or 24 well tissue culture plates (Linbro#76-033-05 ; Linbro Division, Flow
Laboratories, Inc., Hamden, Conn .) and, for histological staining, in Lab-Tek
eight-chamber tissue culture slides (Lab-Tek Products, Div. Miles Laboratories,
Inc., Naperville, Ill.), incubated for 1 h at 37°C in a 5% C02/95% air atmosphere
and rinsed twice to remove nonacherent cells. Adherent PAMwere cultured in
DMEM containing 10% fetal bovine serum (KC Biological, Inc., Lenexa, Kans .)
depleted ofFN bygelatin-Sepharose chromatography (32), 100 U/ml penicillin,
100 pg/ml streptomycin, and 25 pg/ml amphotericin-D . Culture medium was
changed every 2 or 3 d. Viability of adherent cells was <95%, based upon trypan
blue exclusion. Virtually all cells possessed Fc receptors, phagocytized latex
beads, and were nonspecific esterase positive (48) . No colonies of cells resembling
fibroblasts were seen in our PAM cultures from normal volunteers (10) .

Fibronectin Antiserum

Antiserum against pure human plasma FN (32) was raised in rabbits (titer
1:128,000 by radioimmunoassay) . Anti-FN IgG was isolated by affinity purifi-
cation on human plasma FN-Sepharose (49) and preimmune IgG by DEAE
cellulose chromatography (12) . Specificity of the affinity-purified anti-FN IgG
was established as follows : (a) Immunodiffusion gave a single line of identity
against human plasma or pure FN, and no precipitin reaction against FN-
depleted plasma. (b) Immunoprecipitation of human plasma, cell lysates, or
culturemedium from metabolically labeled human lung fibroblast cultures (1MR-
90) gave one polypeptide of molecular weight 440,000 (unreduced) or 220,000
(reduced) (see below) . (c) Immunofluorescence and immunoperoxidase staining
of cultured human lung fibroblasts revealed typical fibrillarextracellular staining
(5, 19, 31, 49), and (d) Preincubation of the anti-FN IgG with pure human
plasma FN abolished immunostaining and immunoprecipitation reactions noted
above.

Preparation of Gelatin-coated Latex Beads
Gelatin (ICN Nutritional Biochemicals, Cleveland, Ohio) was washed with

ice-cold saline and covalently bound to polystyrene beads (1 .1 pin diameter,
Sigma Chemical Co ., St. Louis, Mo .) by published methods (11, 34). A 10% (wt/
vol) suspension of beads (0.5 ml) was washed twice in 150 mM NaCl and
harvested by centrifugation (12,000 g, 30 min). Solutions of 1-cyclohexyl-3(2-
morpholinoethyl)-carbodiimide-meta-p-toluene sulfonate (45 ttg in 0.1 ml of 150
mM NaCl ; Sigma Chemical Co .) and gelatin (160 gg in 0.1 ml of 150 mM NaCl)
were added to the beads and the mixture incubated for 30 min at room
temperature with shaking . Nonreacted sites were blocked by the addition of4 mg
of gelatin . After an additional incubation for 30 min, the beads were washed five
times with Dulbecco's phosphate-buffered saline (PBS), harvested by centrifu-
gation, and finally resuspended in 4.5 ml of PBS. Plain latex beads were
identically washed and collected .

' Villiger, B., G. Heymach, T. Broekelmann, D. Kelley, and J. A.
McDonald. Bronchoalveolar frbronectin in smokers and nonsmokers .
Manuscript submitted for publication.
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Metabolic Labeling and Immunoprecipitation

PAM, typically2 x l06 cells/35-mm dish, were preincubated for 30 min with
DMEM without cystine and methionine and rinsed with PBS. PAMwere labeled
with 1 .0 ml of DMEM lacking unlabeled cystine and methionine and supple-
mented with 50 pg/ml of ovalbumin and 10 pCi each of [''SS]cystine and
['S]methionine. After labeling, medium was removed, chilled to 0°C, and
centrifuged (1,000 g, 20 min), and proteinase inhibitors (PI; 10 mM disodium
ethylenediaminetetraacetate, 10 mM N-ethylmaleimide, 2.5 MM phenylmethyl-
sulfonyl fluoride) were added to the supernate . Unless specified, all subsequent
steps were carried out at 0°C to minimize proteolysis . The cell layer was rinsed
with PBS and scraped into 1.0 ml of 7.5 mM Tris-HCl, 150 mM NaCl, 0.5%
sodium deoxycholate, 1 .0% Tween-20, 50 pg/ml ovalbumin, pH 7.4 at 25°C
containing PI (buffer A), and the cell suspension was freeze-thawed three times.
Medium and cell lysates were centrifuged (15,000 g, 1 h), and the soluble
supernates were processed immediately or frozen at -80°C. In some experiments,
we used '"C-labeled amino acid mixture (New England Nuclear, Boston, Mass.)
in DMEM containing 1.0% of the usual amino acid content in place of
[35 S]cystine and ["S]methionine .

To immunoprecipitate labeled FN we added anti-FN IgG or preimmune IgG
(15 Rg/ml, final concentration) to medium and cell lysates, and incubated them
for 30 min at 37°C and overnight at 4°C. Immunoglobulin-bound antigen was
precipitated by adding 50 MI of a 10% suspension of formalin-fixed, heat-killed
Cowan strain S. aureus (IgSORBR; Enzyme Center, Boston, Mass .) and incubat-
ing at 37°C for 30 min. IgSORB' was pelleted by centrifugation (10 min, 2,500
g) and washed three times with buffer A, and bound labeled proteins were eluted
by heating in SDS gel sample buffer (32) for 5 min at 100°C. Analysis of labeled
polypeptides was performed by SDS PAGE and autofluorography exactly as
previously described (32) . We used double antibody immunoprecipitation with
goat anti-rabbit IgG in place of IgSORB" (39). Both methods quantitatively
removed exogenous labeled FN introduced into samples .

Labeled proteins were quantified by densitometric scanning of autofluoro-
grams using a Zeineh soft-laser densitometer (LKB Instruments, Inc., Rockville,
Md.) (26, 39). Incorporation of label into nondialyzable polypeptides was deter-
mined by adding SDS to a final concentration of2% to medium and cell lysates,
and PI to the same concentration as in buffer A. Samples were boiled for 5 min
and dialyzed (Spectra/Por 2, putative molecular weight cutoff 12,000-14,000;
Spectrum Medical Industries, Inc., Los Angeles, Calif) exhaustively against 0.2%
SDS. Incorporated counts per minute were determined by liquid scintillation
spectrometry. Dialyzed samples were lyophilized, and labeled peptides were
displayed by SDS PAGE autofluorography. Where indicated, labeled samples
were precipitated and washed with 10% TCA and dissolved in hot SDS PAGE
sample buffer for SDSPAGE (32).

Pulse-chase experiments were carried out in a manner similar to continuous
labeling experiments, but the PAM cultures were incubated in cystine- and
methionine-free DMEM for 45 min, and then labeled with 20 pCi/ml of each
isotope for 30 min. After removal of labeling medium, cells were rinsed with
DMEM and incubated in DMEM plus 50 pg/ml ovalbumin for the indicated
period, and cell layers and medium were processed for immunoprecipitation as
above.

lmmunocytochemistry
F(ab')2 fragments of anti-FN IgG and preimmune IgG were obtained by

pepsin digestion and Sephadex G-100 chromatography (13) . F(ab') 2 were con-
jugated to horseradish peroxidase (type VII; Sigma Chemical Co.) using a two-
step method (40), and resulting F(ab') 2-peroxidase conjugates isolated by
Sephacryl S-300 chromatography . Molecular weights of F(ab')z and conjugates
were determined by SDS PAGE as above. F(ab')2 were fluoresceinated with
dichlorotriazinylaminofluorescein (4) to a molar ratio of2:1 fluoresceinfab')2.

Cells were fixed with periodate-lysine-paraformaldehyde (PLP) (33) for 2 h at
4°C, washed with PBS plus Pl. incubated with F(ab'),peroxidase conjugates for
30 min at 4°C, and washed with PBS plus PI for 1 h at 25°C . Bound conjugates
were detected by incubation with 0.05% diaminobenzidine/0.01% H202/50 mM
Tris-HCI, pH 7.4 for 10 min. Where indicated, cells were permeabilized with
0.05% Triton X-100 (electron microscopy) or ice-cold acetone (light microscopy)
before incubation with conjugates.

Light microscopy was performed on cells mounted in 95% glycerol/5% PBS,
using an Olympus BH microscope . Light micrographs were taken with Kodak
Plus-X film, using the same light intensity and exposure for each experimental
treatment to allow comparison between intact and permeabilized cells incubated
with control or immune conjugates . Negatives were printed using identical
conditions to allow direct comparison of different experimental treatments.
Stained cells were processed for electron microscopy by washing in 0.1 M
cacodylate buffer, postfixing in 1% OS04 for 30 min, graded dehydration,
embedding, and thin sectioning . Specimens were examined with a Philips EM
200 microscope .



Immunoelectron Microscope Visualization of
Binding and Uptake of Plain and Gelatin-coated
Latex Beads by PAM

PAM were cultured in 24-well culture dishes (4 x 105 cells per well) as
described above, washed three times with PBS and incubated with 0.5 ml of
serum-free DMEM . Gelatin-coated or plain latex beads (20 pl of a 1% [wt/vol]
suspension) were added and incubated for l h at 37°C . After incubation, culture
medium was aspirated and the cells were washed six times with cold PBS to
remove nonbound beads. Cells were then fixed with PLP fixative, incubatedwith
anti-FN or preimmune F(ab')2-peroxidase conjugates, and processed for immu-
noelectron microscopy as described above.

PAM FN Gelatin Binding

Medium from metabolically labeled PAMwas treated with PI and incubated
with gelatin-SepharoseCl-4B or cyanogen bromide-activated andethanolamine-
blocked control beads (32) for l h at 25°C with constant tumbling, using a ratio
of2:1 vol/vol medium :beads . Beads were washed with buffer Alacking deoxy-
cholate by repeated vortexing and sedimentation until the supernate was free of
radioactivity. Bound protein was eluted with 8M urea in 50 mM Tris-HCI, pH
7.4, and displayed by SDS PAGE and autotluorography .

RESULTS

Protein Synthesis by Human PAM In Vitro

Human PAM are readily maintained in vitro in serum
containing medium for periods up to 54 d (7) . However,
although biochemical, functional, and histological observations
have been performed on human PAM in vitro (see references
20 and 35 and references therein), little information about the
effect of culture conditions upon protein synthesis and secretion
are available . Dog and rabbit PAM synthesize and secrete
metabolically labeled proteins in vitro, but the rate of protein
synthesis decreased rapidly with labeling periods >1-2 h (28,
30) . Moreover, PAM maintained in suspension appeared to be
less active metabolically than adherent PAM (27). Because
PAM are usually adherent in vivo (46), we studied protein
synthesis and secretion by adherent PAM in vitro .
PAM were maintained for 5 d in DMEM supplemented with

10% fetal bovine serum depleted of FN (32), and total protein
synthesis and secretion were determined by continuous labeling
with ["S]cystine and [35S]methionine in serum-free medium .
As shown in Fig . 1 A, protein synthesis and secretion was linear
through 4 h . The qualitative pattern of cellular and secreted
proteins as displayed by SDS PAGE and autofluorography
was identical from 1 h through 4 h of labeling (Fig . 1 B).
However, after 24 h of labeling in the absence of serum,
polypeptides of >90,000 mol wt were absent, suggesting sig-
nificant proteolysis (not shown) . Based upon these results, we
maintained PAM in DMEM plus fetal bovine serum depleted
of FN for the experiments discussed below, and limited contin-
uous labeling experiments to 4 h or less .
Human blood monocytes maintained in vitro for several

days exhibit changes in the pattern of secreted proteins (38).
To determine whether human PAM exhibit similar changes in
vitro, we examined the pattern of secreted proteins from PAM
maintained in vitro and labeled on days 1, 3, 5, and 7 . As
shown in Fig . 2, the qualitative pattern of high molecular
weight polypeptides as displayed by SDS PAGE and autofluo-
rography did not change significantly during culture for 7 d .
New polypeptides of <68,000 mol wt did appear by day 3,
reflecting either proteolysis or synthesis of new polypeptides .

FIGURE 1

	

(A) Time-course of [ 35 S] cystine and [ 35 S] methionine
incorporation into nondialyzable cell and medium proteins by PAM .
Cells were maintained for 7 d in DMEM supplemented with 5% FN
depleted fetal bovine serum as described in Materials and Methods,
and continuously labeled in the absence of serum for the indicated
period . Cellular protein synthesis and secretion is linear through 4
h . Panels on B show the pattern of newly synthesized cellular and
secreted proteins displayed by SDS 10% PAGE and autofluorography .
Molecular weight standards (in kdaltons) include fibronectin (220),
myosin (200), phosphorylase (94), serum albumin (68), ovalbumin
(43), chymotrypsinogen (25), and lysozyme (14) .

FN Synthesis by PAM
Fig . 3 displays the total cell and medium proteins from a 4-

h continuous labeling experiment and the corresponding im-
munoprecipitates with anti-FN IgG . One labeled polypeptide
of220,000 mol wt (reduced) is present in both cell and medium
immunoprecipitates . Immunoprecipitation of metabolically la-
beled medium from human lung fibroblasts (IMR-90) gave
similar results. Human PAM FN comigrated with fibroblast
FN on SDS PAGE and, although not shown in this gel, slightly
slower than plasma FN, as previously shown for fibroblast
cellular FN (50) .

Specificity of immunoprecipitation was tested by incubating
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FIGURE 2 Effect of maintenance in vitro upon PAM polypeptide
secretion . PAM were maintained as described (Materials and Meth-
ods) and continuously labeled for 4 h on days 1, 3, 5, and 7 . Secreted
proteins were displayed by SDS 10% PAGE and autofluorography .
Note that several high molecular weight polypeptides are continu-
ously secreted through 7 d in vitro . Molecular weight standards (in
kdaltons) are the same as shown in Fig. 1 .

FIGURE 3

	

Immunoprecipitation of metabolically labeled PAM cell
lysates and conditioned medium with anti-FN-IgG . PAM were la-
beled with [35 S]cystine and ["S]methionine (Materials and Meth-
ods) . Total labeled polypeptides and corresponding anti-FN-IgG
immunoprecipitates from cell lysate (A and B) and conditioned
medium (C and D) were displayed by SDS 10% PAGE autofluorog-
raphy . Lane E is an immunoprecipitate of metabolically labeled
human lung fibroblast medium . Autofluorograms of the FN immu-
noprecipitates shown in B and D were exposed five times longer
than the starting cell lysate and medium samples to enhance inten-
sity of the FN band (arrow) .

metabolically labeled PAM medium with anti-FN IgG, preim-
mune IgG, or IgSORBR alone . Anti-FN IgG precipitated only
one labeled polypeptide of 220,000 mol wt . Preimmune IgG
and IgSORBR alone precipitated trace amounts of the same
polypeptide, but no other labeled polypeptides were seen . This
may represent limited solubility of PAM FN or slight binding
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by the heat-killed S. aureus (43) . Double antibody immuno-
precipitation with preimmune IgG gave no labeled polypep-
tides . Smaller fragments were seen occasionally in immunopre-
cipitates of PAM culture medium or cell lysates labeled without
serum, probably reflecting proteolysis .

Metabolic labeling with cystine and methionine can intro-
duce bias because of different amounts of these residues in
various proteins . Therefore, to determine the relative propor-
tion ofFN to other polypeptides secreted by PAM, we labeled
with ' 4C-amino acid mixture. In three experiments with PAM
from different volunteers, FN constituted up to 30% of the
total newly synthesized and secreted nondialyzable polypep-
tides from PAM, demonstrating that FN is the major secreted
product of freshly harvested human PAM in vitro . We found
no differences between qualitative patterns of protein synthesis
by PAM adherent to plastic or maintained in suspension .

Subunit Composition and Gelatin Binding
of PAM FN
Immunoprecipitates of metabolically labeled PAM medium

were analyzed on SDS 5% PAGE with and without reduction
(Fig . 4) . Without reduction, the major polypeptide was of
440,000 mol wt, whereas reduced samples migrated with a
molecular weight of220,000 as previously shown. These results
demonstrate that PAM FN is dimeric, composed oftwo similar-
sized monomers of 220,000 mol wt . FN characteristically
binds tightly to gelatin (denatured collagen), and this property
probably underlies its opsonization of gelatin for binding to
macrophages (3, 11, 17, 22) . As shown in Fig . 4, only a 220,000
mol wt polypeptide (reduced) from conditioned medium bound
to gelatin-Sepharose, whereas no polypeptide binding to con-
trol-Sepharose was noted . Taken together, these experiments
demonstrate that PAM FN shares similar subunit organization
and gelatin-binding activity with other described vertebrate
FNs (37) .

Time-course of FN Secretion by PAM
Continuous labeling experiments (Fig . 1) showed that -10%

ofnewly synthesized, nondialyzable polypeptides were secreted
into medium . However, much more FN was found in immu-
noprecipitates from medium than from cell lysates (Fig . 3 B
and D), suggesting that most newly synthesized FN was se-
creted. After pulse labeling, PAM rapidly secreted a variety of
labeled polypeptides including FN into medium (Fig. 5 A) . The
time-course of secretion was similar for all visualized polypep-
tides . In immunoprecipitates of cell lysates and medium (Fig.
5 B), FN first appeared in medium between 30 min and 1 h,
whereas cellular FN decreased progressively with time. Den-
sitometric scanning of the immunoprecipitates (Fig. 5 C) re-
vealed that -50% of the total FN was secreted by 1 h, and
>80% appeared in medium by 8 h . This experiment was
complicated by a small amount of FN proteolysis, as shown by
lower molecular weight fragments in the immunoprecipitates.
However, the pattern of FN secretion into medium was iden-
tical to that in Fig . 5 C if we plotted (a) total immunoprecipi-
tated counts, (b) density of all immunoprecipitated bands, or
(c) density of the 220,000 mol wt band in medium vs . time .
Although fibroblast cell-associated or matrix FN requires de-
naturing agents such as urea or SDS for solubilization, this was
not the case for PAM FN, as we could account for all of the
newly synthesized FN solubilized by hot SDS in immunopre-
cipitates of cells plus medium . These results show that almost



FIGURE 4

	

Secretion of newly synthesized polypeptides and FN by
PAM . PAM (7 d after harvesting) were pulse labeled (Materials and
Methods), and the secreted polypeptides were displayed by SDS
10% PAGE autofluorography at the indicated period after labeling
(A) . Kinetics of secretion were similar for all visualized polypeptides .
B shows the results of immunoprecipitating cell lysates (C) and
medium (M) at the indicated intervals after pulse labeling . FN
(indicated by the arrow) first appeared in medium between 30 min
and 1 h after labeling, whereas cell-associated FN decreased pro-
gressively with time. C displays the results of densitometric scanning
of the 220,000 mol wt bands from immunoprecipitates of cell lysates
(") and medium (IM shown in B . Immunoreactive FN was rapidly
released into medium, 80% of the total appearing after an 8-h chase .

all (80%) newly synthesized FN is destined for secretion, in
contrast to fibroblasts, where >60% remains cell associated up
to 10 h after synthesis (2, 41) .

Immunohistochemical Localization of PAM FN

Human PAM maintained in vitro displayed morphology
typical for alveolar macrophages (7, 20, 29, 44). Freshly ob-
tained PAM spread rapidly on glass or plastic substrates in
serum-free medium by 1 h, and remained tightly adherent .
PAM maintained in DMEM plus FN-depleted fetal bovine
serum were typically either elongated, bipolar cells exhibiting
lamellipodia at the ends of the longest axis of the cell, or were
rounded with circumferential lamellipodia (Fig . 6).
Attempted immunostaining of PAM with anti-FN IgG using

either the double antibody immunofluorescence or peroxidase-
antiperoxidase technique was not successful because marked
nonspecific surface staining with preimmune IgG . Probably,
this was a result of surface Fc receptors, as noted in similar
studies with blood monocytes (1) . In contrast, there was no
nonspecific staining of intact or permeabilized PAM when
preimmune F(ab)2-peroxidase conjugates were employed (Fig .
6A and B) . Staining of intact, nonpermeabilized PAM with
anti-FN-F(ab')2-peroxidase conjugates revealed only an occa-
sional lightly stained cell (Fig. 6 C and D) . Treating the fixed
PAM with dilute Triton X-100 or acetone before staining to
allow penetration ofthe conjugate resulted in marked granular
perinuclear and diffuse cytoplasmic staining of virtually all
cells (Fig . 6 E and F) . Identical patterns of FN distribution
were seen in PAM stained immediately after plating or after 7
d in vitro . Blocking the immune conjugate with purified plasma
FN abolished staining (not shown) . A similar staining pattern
was seen with fluoresceinated anti-FN-F(ab')2 conjugates, only
rare cells showing surface staining, while intracellular staining
was granular and perinuclear (not shown).
Using electron microscopy to visualize immunoreactive FN

at the subcellular level, osmiophilic peroxidase reaction prod-
uct was localized to endoplasmic reticulum and to cisternae of
the Golgi apparatus (Fig. 7A and B) . Focal cell surface staining
was frequently seen where cell membranes were closely ap-

FIGURE 5

	

Subunit organization and gelatin binding activity of PAM
FN . Immunoprecipitates of conditioned medium (see Fig . 3) from
radiolabeled PAM were run unreduced (A) and reduced (B) on
parallel slots of the same SIDS 5% PAGE and labeled polypeptides
displayed by autofluorography . Slot C displays one labeled polypep-
tide of 220,000 mol wt from similar conditioned medium that bound
to gelatin-Sepharose, while slot D shows the absence of binding to
control-Sepharose (See Materials and Methods) . Slots C and D are
from a separate SDS 10% PAGE autofluorogram .
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FIGURE 6 Cellular localization of immunoreactive PAM FN . PAM from a nonsmoking volunteer were plated in multichamber
culture slides (Materials and Methods) and stained with preimmune F(ab') z-peroxidase conjugates after permeabilizing the cells
with acetone (A, phase contrast ; 6, bright field) . Note the absence of significant staining . Staining of nonpermeabilized PAM with
anti-FN-F(ab') Z resulted in virtually no detectable extracellular staining (C, phase contrast ; D, bright field), whereas permeabilized
PAM stained with the same conjugate resulted in granular perinuclear and diffuse cytoplasmic staining of virtually all cells (E,
phase contrast ; F, bright field) . The differences in staining intensity between different cells are probably related to the degree of
spreading and hence distribution of intracellular staining . Staining was blocked by preincubation of the anti-FN-F(ab') z with pure
plasma FN (not shown) . Bar, 50 ,um .



FIGURE 7

	

Immunoelectron microscopic localization of PAM FN . A shows osmophilic reaction product localized to endoplasmic
reticulum (ER), whereas B shows staining in the Golgi apparatus. C displays focal staining of the cell membrane at a region where
two PAM are closely apposed, but absence of staining at other areas of the cell membrane. D displays diffuse cell membrane
staining, only rarely seen in PAM (<1% of cells) . E is a section tangential to the substrate displaying the absence of immunoreactive
FN where the PAM is adherent to the tissue culture plate . F shows the absence of staining when preimmune F(ab') z -peroxidase
conjugates were substituted for anti-FN conjugates . Similar results were obtained when anti-FN conjugates were blocked with
purified FN before staining . Bars, 0 .5 R,m .

posed (Fig. 7 C) . However, rare cells (<1%) exhibited areas of
diffuse cell surface staining (Fig . 7 D) . Sections of PAM cultures
tangential to the substratum revealed no extracellular fibrillar
structures, nor was any staining suggestive of FN-mediating
PAM substratum interaction noted (Fig. 7 E). Cell surface
staining appearing to represent cell membrane-associated FN
in a fibrillar distribution was seen in human lung fibroblasts

with the immunoperoxidase technique (Fig . 8 A and B) .
The positive intracellular staining for FN of all cells in the

population is important, because the clonal proliferation of
fibroblasts in PAM cultures obtained from patients with lung
fibrosis has been observed. However, fibroblast proliferation
occurs very rarely in PAM obtained from normal volunteers
(10) . The uniform staining of PAM for intracellular FN shows
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FIGURE 8

	

Immunoelectron microscopic localization of human lung
fibroblast (IMR-90) FN . A is a low-power view of a cell cut parallel
to the surface of the tissue culture plate and stained with anti-FN-
F(ab') z-peroxidase conjugate . Note the extensive staining associated
with the cell membrane . B is a high-power view of the same cell,
demonstrating fibrillar extracellular FN deposits associated with the
cell membrane . Bars, 1 Am .

that fibroblast contamination ofPAM cultures was not respon-
sible for FN synthesis and secretion.

Ultrastructural Localization of FN during
Binding of Gelatin-coated Latex Particles
The absence of generalized cell surface FN from PAM

contrasted with our findings in fibroblasts, which demonstrated
that the ultrastructural methods used could detect extracellular
FN. Moreover, the lack of cell surface FN in PAM indicated
that FN could not be a diffuse membrane-associated receptor
for macromolecule binding .
To begin to clarify the involvement of endogenous FN in

macrophage binding of gelatin-latex particles, we studied FN
localization during binding of plain latex and gelatin-coated
latex particles by PAM. Gelatin-coated latex particles incu-
bated with PAM in serum-free medium were uniformly stained
for FN (Fig. 9A, C and D). Interestingly, not only were the
gelatin-coated particles coated with immunoreactive FN as
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expected, but their binding sites on the cell membrane were
also stained for FN (Fig . 9A, C and D) . The cell membrane
staining was focal, occurring only at binding sites, but staining
did extend some distance from the actual site ofcell membrane/
gelatin-coated bead binding . After uptake by PAM, FN stain-
ing of gelatin-coated latex particles was not visualized (Fig.
9A), either because of failure of the immune conjugate to
penetrate the cells, or because of proteolysis after formation of
phagolysosomes. Despite the similar binding and uptake of
plain latex particles by PAM, neither anti-FN nor preimmune
peroxidase conjugates gave any staining of plain latex beads or
their cellular binding sites (Fig. 9B) .

DISCUSSION
Several conclusions may be drawn from our biochemical stud-
ies . First, human PAM in vitro synthesized and secreted FN,
a dimeric glycoprotein with important biological activities, as
well as other unidentified polypeptides, for at least 1 wk . In
PAM studied just after harvesting, FN was the major newly
synthesized and secreted polypeptide. Second, our experimen-
tal conditions allowed linear protein synthesis and secretion by
PAM for at least 4 h in serumfree medium, in contrast to earlier
investigations of protein synthesis and secretion by nonhuman
PAM (27, 28, 30) . Third, human PAM FN is structurally,
immunologically, and biologically similar to other described
vertebrate FNs (36, 37) . Because of the difficulty of obtaining
sufficient quantities of PAM to chemically isolate FN, we
cannot comment upon those characteristics that distinguish
cellular from plasma FN (50). Fourth, FN is primarily a soluble
secretory product of human PAM in vitro . Thus, PAM differ
from mesenchymal cells such as fibroblasts that also synthesize
and export FN, but organize an insoluble extracellular matrix
containing FN, collagens, and glycosaminoglycans (6, 18) .

Morphological analysis of PAM FN by immunohistochem-
ical techniques confirmed and extended our biochemical find-
ings. First, virtually all PAM stained positively for intracellular
FN. Thus, FN synthesis is a general property of PAM obtained
from the terminal respiratory tract ofnormal individuals, rather
than the product of a particular subset of the recovered cell
population. Second, the intracellular localization of FN at the
electron microscopy level correlated well with biochemical
analysis, as staining of endoplasmic reticulum and Golgi ap-
paratus was compatible with synthesis and secretion of FN .
The general absence of extracellular FN at sites of cell-tissue
culture plastic attachment and from the cell membrane was
compatible with pulse-chase analysis of the fate of newly
synthesized PAM FN. Similarly, iodination of the cell surface
ofmouse peritoneal macrophages and human blood monocytes
failed to reveal cell membrane-associated FN (I, 42).
Taken together, these observations suggested that the pri-

mary role of PAM FN was extracellular . As a first step to
investigate this question, we visualized FN during binding and
uptake of plain and gelatin-coated latex beads by PAM. PAM
bound and internalized both plain latex and gelatin-coated
latex beads in serum-free medium not supplemented with FN .
Despite the qualitatively identical fate of both particles, FN
was visualized only on gelatin-latex beads and their cell mem-
brane binding sites. Thus, particle binding and ingestion per se
does not appear to involve endogenous FN. This, coupled with
the absence of generalized cell membrane FN, demonstrates
that FN is not a cell membrane component promoting nonspe-
cific binding . Studies upon the effect of anti-FN Fab' and
exogenous FN on plain and gelatin-coated latex particle bind-



FIGURE 9

	

Immunoelectron microscopic localization of FN during binding and uptake of gelatin-coated and plain latex beads by
PAM . A shows FN staining on extracellular gelatin-coated beads and their binding sites on the cell membrane . Note that the focal
staining on the cell membrane extends some distance from the actual site of cell-bead interaction, but does not occur at other area
of the cell surface . The arrow indicates a particle in a phagocytic vacuole. 9 shows the absence of staining on plain latex beads and
their binding sites . Similar results were obtained when gelatin-coated beads were stained with preimmune-F(ab')2-peroxidase
conjugates . C and D provide a high-power view of FN localization on gelatin-coated beads and cell membrane during binding (C)
and internalization (D) . Bars, 1 um .

ing and uptake by PAM support this view .'
Studies with fibroblast cell strains (15, 16), as well as blood

monocytes (3) and peritoneal macrophages (17), suggest that
cell membrane receptors for FN or FN-gelatin complexes exist.
The localization of endogenous FN to gelatin-latex beads and
their cell membrane binding sites in PAM by immunoelectron
microscopy provides additional evidence for this hypothesis.
However, the presence of binding sites for FN-gelatin com-
plexes does not appear to completely explain the presence of
FN on the PAM cell surface close to where the FN-gelatin-
latex beads are bound. It may be that FN-gelatin is transferred
to the cell membrane during binding, or that receptors for FN
are elicited or concentrated adjacent to cell membrane binding
sites for FN-gelatin-latex beads.
One critical remaining question is the physiological role of

PAM FN. Unlike blood monocytes (3) and elicited guinea pig
peritoneal macrophages (9), PAM do not appear to utilize FN
as an attachment factor .' It seems clear that FN promotes

' Villiger, B ., D . Kelley, T . Broekelmann, and J . A. McDonald. Effect
of exogenous fibronectin on attachment, spreading and uptake of
gelatin-coated beads in human alveolar macrophages . Manuscript in
preparation .

binding of denatured collagen and fibrin by other phagocytic
cells (22, 23) . Moreover, it appears likely that PAM FN serves
as a nonimmune opsonin for the binding of S. aureus. Two
lines of evidence support this notion. First, Hofand co-workers
(21) have demonstrated that human PAM bound and internal-
ized S. aureus in serum-free medium containing only trace
amounts of serum albumin, and that immunoglobulin and
complement played no role in this binding . Second, human
polymorphonuclear leukocytes utilize exogenous FN and
plasma transglutaminase (coagulation factor XIIIa) to bind S.
aureus (37) . Because we have found that inclusion of small
amounts ofproteins such as ovalbumin are necessary to prevent
degradation of secreted PAM FN in serum-free medium, it
appears likely that the uptake of S. aureus observed by Hof et
al . resulted at least in part from endogenous FN secretion by
PAM, and that albumin merely protected secreted FN from
degradation.
Our studies serve to emphasize the importance of studying

differing phagocytic cell types under appropriate conditions .
Most studies of FN-promoted binding of macromolecules to
phagocytic cells have appropriately used exogenous FN (3, 11,
17, 22, 23, 34), although macrophages derived from blood
monocytes (1), peritoneal macrophages (24), polymorphonu-
clear leukocytes (47), and PAM synthesize and secrete FN.
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Certainly for the PAM, studies of endogenous FN appear to
be more relevant than those using high concentrations of
plasma FN as an opsonic factor, because this cell type is not
exposed to high FN concentrations in vivo . l The reason for the
apparent differences between human PAM, rodent peritoneal
macrophages, and human blood monocytes in the FN require-
ment for particle binding and cell spreading is unclear but
possibly related to the stimulated state of elicited peritoneal
macrophages or to the less-differentiated state of monocytes .
Blood monocytes may not synthesize FN until differentiation
into macrophagelike cells in vitro occurs (1), and the require-
ments for adherence, spreading, and particle or macromolecule
binding may differ with the differentiated state of monocyte-
macrophages. Direct comparison of different phagocytic cell
types under our experimental conditions will be necessary to
verify these apparent differences.

Finally, studies of FN interaction with cells and macromol-
ecules such as fibrin-fibrinogen complexes have been hampered
by large amounts of extracellular insoluble FN in fibroblastic
cell cultures (8, 45). PAM, which lack significant quantities of
extracellular insoluble FN, may prove of value in studying
FN-cell membrane interaction and elucidating the molecular
mechanisms underlying FN-mediated opsonization of macro-
molecules .
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grants HL 26009-01, HL-16118, and a Biomedical Research Support
Grant to the Jewish Hospital of St . Louis.
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