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The endocannabinoid system modulates epileptic seizures by regulating neuronal
excitability. It has become clear that agonist activation of central type | cannabinoid
receptors (CB1R) reduces epileptogenesis in pre-clinical animal models of epilepsy.
The audiogenic seizure-prone hamster GASH/Sal is a reliable experimental model of
generalized tonic-clonic seizures in response to intense sound stimulation. However,
no studies hitherto had investigated CB1R in the GASH/Sal. Although the distribution
of CB1R has been extensively studied in mammalian brains, their distribution in the
Syrian golden hamster brain also remains unknown. The objective of this research is to
determine by immunohistochemistry the differential distribution of CB1R in the brains of
GASH/Sal animals under seizure-free conditions, by comparing the results with wild-type
Syrian hamsters as controls. CB1R in the GASH/Sal showed a wide distribution in
many nuclei of the central nervous system. These patterns of CB1R-immunolabeling
are practically identical between the GASH/Sal model and control animals, varying in the
intensity of immunostaining in certain regions, being slightly weaker in the GASH/Sal than
in the control, mainly in brain regions associated with epileptic networks. The RT-gPCR
analysis confirms these results. In summary, our study provides an anatomical basis
for further investigating CB1R in acute and kindling audiogenic seizure protocols in the
GASH/Sal model as well as exploring CB1R activation via exogenously administered
cannabinoid compounds.
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INTRODUCTION

The endocannabinoid system consists of specific cannabinoid receptors, their endogenous ligands
and the enzymatic systems of their biosynthesis and degradation (Svizenska et al., 2008). This
system is widespread in the central nervous system and is involved in the regulation of the
following processes: neurogenesis, memory, appetite, metabolism, stress, emotions, immune
response, anxiety, analgesia, thermoregulation, sleep, perception, motor coordination, behavior,
and reproduction (Chaperon and Thiébot, 1999; Viveros et al., 2005; Ferndndez-Ruiz et al., 2007;
Crowe et al., 2014; Hillard, 2014; Soria-Gomez et al., 2014; Gatta-Cherifi and Cota, 2015; Lu and
Potter, 2017; Robertson et al., 2017).
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Endocannabinoids inhibit retrograde release of some
neurotransmitters such as y-aminobutyric acid, glutamate
and serotonin (Pazos et al, 2005), since they regulate the
aperture/closing of ion channels (Childers and Breivogel,
1998; Qian et al, 2017) in both excitatory (glutamatergic)
and inhibitory (GABAergic) synapses (Julian et al., 2003), in
response to an increase in the intracellular Ca** concentration
(Ohno-Shosaku and Kano, 2014; Kendall and Yudowski,
2016). These regulatory effects are primarily mediated by
two G-protein-coupled receptors: cannabinoid receptor type
1 (CBIR) and cannabinoid receptor type 2 (CB2R) (Marcu
and Schechter, 2016; Lu and Potter, 2017). The functions of
endocannabinoids in the central nervous system are carried out
by activation of CBIR, while CB2R plays a much more limited
role. CB1Rs are expressed on presynaptic terminals of neurons
of the central nervous system (Pazos et al., 2005; Kendall and
Yudowski, 2016). However, this does not preclude the existence
of CB1Rs at postsynaptic sites, as functional studies demonstrate
self-inhibition in neocortical neurons by endocannabinoids
(Maroso et al., 2016). In addition, a high proportion of CB1Rs, at
steady state, is localized to somatodendritic endosomes (Thibault
et al., 2013). These receptors are also present in the astrocytes,
oligodendrocytes and in the cerebral vasculature. Specifically,
CB1Rs are highly expressed in brain areas responsible for mood
regulation, motor co-ordination, cognition and pain such as the
hippocampus, olfactory regions, caudate putamen, accumbens
nucleus, substantia nigra, globus pallidus, periaqueductal gray
matter, dorsal horn of the medulla, cingulate gyrus, neocortex,
amygdala, hypothalamus, and solitary nucleus (Tsou et al., 1998;
Svizenska et al., 2008; Hu and Mackie, 2015).

CB1 and CB2 receptors can be activated by exogenous
cannabinoids,  producing the biological effects of
endocannabinoids. Cannabis plants contain more than
a 100 terpenophenolic compounds that have been called
cannabinoids (Gould, 2015), the two most abundant being
A9-THC (A9-tetrahydrocannabinol) and CBD (cannabidiol).

Currently, there has been growing interest in the use of
exogenous cannabinoid compounds for the treatment of a
variety of neurological diseases, including epilepsy (Sulak et al.,
2017). CBD has been approved in some countries for the
treatment of drug-resistant epileptic syndromes (Dravet and
Lennox-Gastaut Syndromes) (Devinsky et al, 2014; Thiele
et al., 2018). It is estimated that 25-30% of epileptic patients
suffer from intractable seizures that cannot be controlled by
antiepileptic medications (O’Connell et al., 2017) and they often
require invasive treatments such as neurostimulation or surgical
resection (Reddy and Golub, 2016). In addition, the development
of a single drug which could control seizures would reduce
the probability of developing toxic effects (Wilby et al., 2005).
It has been demonstrated that there is a pathophysiological
reorganization of the endocannabinoid system (Blair et al,
2015; Katona, 2015) and an activation of CBIR as a protective
mechanism against excitotoxicity in epileptic patients (Lupica
et al, 2017). Both direct (the use of CBIR agonists) and
indirect approaches (inhibition of endocannabinoid catabolism)
reduce epileptogenesis in animal models (Rosenberg et al.,
2017). Endocannabinoid signaling mediated through presynaptic

CBIR reduces both glutamate and GABA release (Kathmann
et al., 1999; Misner and Sullivan, 1999; Hgjos et al., 2000),
and therefore is a potent regulator of neuronal excitability.
CBIR agonists have been widely studied for anti-seizure effects
across an array of models of seizures; this has been reviewed
extensively elsewhere (Wallace et al., 2001; Skaper and Di Marzo,
2012; Cristino et al., 2020). The study of the endocannabinoid
signaling pathway, its physiological action and distribution are
key for the development of more treatments based on exogenous
cannabinoid compounds.

We therefore set out to study the distribution of the main
brain cannabinoid receptor, CBIR, in the GASH/Sal epilepsy
model under seizure-free conditions, by comparing the results
with wild-type Syrian hamsters, since these elements can become
pharmacological targets for the treatment of epilepsy, where an
alteration of this system is postulated.

MATERIALS AND METHODS

Animals

Fourteen GASH/Sal and 13 male Syrian hamsters 4 months of
age were obtained from the Animal Facility of the University
of Salamanca (USAL, Spain) and Janvier Labs (Le Genest-
Saint-Isle, France), respectively, to be used in this experiment.
Male hamsters were selected in order to remove potentially
confounding hormonal processes intrinsic to female metabolism.
Animals were maintained under normal conditions of lighting
(12h light/dark cycle) and temperature (22 £ 1°C) in an
acoustically controlled environment, and with free access to
water and food.

All the procedures and experimental protocols were
performed in accordance with the guidelines of the European
Community’s Council Directive (2010/63/EU) and approved
by the Bioethics Committee of the University of Salamanca
(approval number 380).

Quantitative Reverse Transcription PCR
(RT-qPCR)

The primers were designed for Mesocricetus auratus. Gene
sequences were obtained from the Ensembl Genome Browser
database (http://www.ensembl.org/index.html) and the primers
were designed aligned in different exons using the Primer3
software (http://bioinfo.ut.ee/primer3-0.4.0/primer3/) (Table 1).
The primers were synthesized by Thermo Fisher Custom Primers
(Invitrogen - Thermo Fisher).

A total of 12 animals (6 control hamsters and 6 GASH/Sal)
were deeply anesthetized by isoflurane inhalation and once
areflexia was verified, were decapitated. Different brain
structures were removed for gene expression studies:
brain stem, cerebellum, inferior colliculus, hippocampus
and cortex. All tissues harvested were put into storage at
—80°C until use. The RT-qPCR approach was identical to
that used previously by our group (e.g., Damasceno et al,
2020; Sanchez-Benito et al., 2020). RNA from samples was
extracted in accordance with the protocol of TRIzol™
Reagent (#15596026, Invitrogen). Total RNA concentration
was quantified using the NanoPhotometer® /spectrophotometer
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TABLE 1 | Primers used for RT-gPCRs.

Gen targetet  ID transcript Ensembl Mesocricetus auratus®

Primer forward

Primer reverse Size of products  E®

Cb1r
Actb

ENSMAUG00000074040
ENSMAUG00000008763

TGTTGACTTCCATGTGTTCCA
AGCCATGTACGTAGCCATCC

GGTCTGGTGACGATCCTCTT 171 1.15
ACCCTCATAGATGGGCACAG 105 2.03

List of primers used for RT-qPCRs, indiicating the location of each primer in the corresponding Ensembl sequences of the Syrian hamster (a). gPCR primer efficiency (E°) was calculated

according to the following equation: E = 10(=1/slope),

(Implen, Munich, Germany), taking into account the absorption
ratios 260/280nm and 260/230 nm, and RNA integrity was
checked by electrophoresis in agarose gel (1.5%). Genomic
DNA was degraded using the Ambion™ DNase I (RNase free)
(Thermo Fisher Scientific) following the supplier’s instructions.

Complementary DNA (cDNA) was synthesized from 800 ng
of total RNA using the ImProm-IITM Reverse Transcription
System Kit (Promega Corporation, Madison, SWI, USA). The
relative quantification of the transcripts was performed on ABI
Prism 7000 (Applied Biosystems) using the SYBR Green Master
Mix (#4309155, Applied Biosystems). Initially, a serial dilution
curve was made to verify the efficiency of the primers of the target
and reference genes.

The quantitative reverse transcription real time PCR was
conducted using the SYBER Green method. Each reaction
contained 7 pL of SYBR, 30 ng of total cDNA, 0.8 pL of
each primer (10puM), and MiliQ water free of DNase and
RNase up to 20 pL. The cycling conditions were in accordance
with the protocol of the intercalating agent used. RT-qPCR
experiments were performed in replicates of four to six samples
and conducted in triplicate for the gene product examined, and
p-actin (Actb) was used as a negative control. Following the
removal of outliers (Burns et al., 2005), raw data was used to
determine the PCR amplification efficiency (E). The relative gene
expression value for each transcript was calculated according to
the formula 27(1Ct “condition 1”—1Ct “condition 2”)’ where “condition
17 corresponds to the experimental sample, “condition 2”
corresponds to the sample from the control animal, and 1Ct
of each “condition” is Ct“experimental gene” ~ Ct“endogenous gene”
(Schmittgen and Livak, 2008). The relative mRNA of the groups
was evaluated using an unpaired f-test. The analyses were
performed using GraphPad Prism 7. p < 0.05 was considered
as statistically significant. All quantitative data were expressed
as mean value + standard error of the mean (SEM). Asterisks
indicate significant differences between experimental groups
(*” = p-value < 0.05 “*” = p-value < 0.01; 7 =
p-value < 0.001).

Brain Tissue Processing and

Immunostaining

Brain tissue used for immunohistochemistry (3 control and
4 GASH/Sal hamsters) was processed in accordance with the
routine protocols used in the laboratory (Sanchez-Benito et al.,
2020). Briefly, after injection of a lethal dose of sodium
pentobarbital (60 mgkg™!) and the subsequent perfusion
through the heart with 4% paraformaldehyde in 0.1 M phosphate
buffer saline (PBS), brains were removed from the skull,

cryoprotected by immersion in 30% sucrose, and coronal sections
were cut with a freezing sliding microtome at 40 pm thickness.
Serial sections were collected in PBS and divided into a series of
6 and placed in wells containing 0.1 M-phosphate buffer.

The CBIR was visualized following the indirect method
of immunohistochemical staining described by Sanchez-
Benito et al. (2020). A primary polyclonal antibody anti-CBIR
obtained in rabbit (CB1-Rb-Af380, Frontier Institute, Hokkaido,
Japan) which binds to the C-terminal (NMO007726) of the
mouse protein CBIR was used since there was no primary
antibody Anti-CBIR available specific for GASH/Sal hamster.
Its reactivity in mice was tested by immunoblot following
the manufacturer’s instructions. The CBIl protein sequence
corresponding to the c¢nrl gene was retrieved from the
UNIPROT protein database (https://www.uniprot.org/), and
then analyzed using the EBI-Clustal Omega program (http://
www.ebi.ac.uk/Tools/msa/clustalo/)  (Sievers and Higgins,
2018). The sequence is highly conserved between the CBIR
in the hamster and mouse (Supplementary Material 1).
Washes were made in Tris-buffered saline (TBS), pH 7.4 and
dilutions of antisera in TBS containing 0.2% Triton X-100
(# T9284; Sigma).

For light microscopy analysis, free-floating sections were
blocked for 1h with 5% normal goat serum (#S-1000, Vector
Labs.) in TBS-Tx and were incubated with primary antibodies
at 1:250 dilution for 72h at 4°C. Sections were then washed
and followed an incubation with the biotinylated secondary
antibodies, goat anti-rabbit (#BEA-1000, Vector Labs.), at 1:200
dilution for 2h. After removal of secondary antisera, the
visualization of epitope-antibody interactions was developed
with the avidin-biotin peroxidase complex procedure (#PK-4000,
Vectastain, Vector Labs.), and diaminobenzidine histochemistry
for peroxidase (DAB Kit, #SK-4100, Vector Labs.). All sections
were mounted onto slides, (ordered rostro-caudally), dehydrated
and coverslipped with Entellan® Neu (#¥107961, Merck).

To visualize the morphological features of immunostained
cells, we used brain embedded in paraffin wax (2 control and
2 GASH/Sal hamsters) before cutting into coronal sections of
6 um thickness, according to the protocols routinely used in
our laboratory (Sanchez-Benito et al., 2020). Then, sections
were mounted onto slides and followed the immunohistological
staining procedure to visualize the CBIR protein at optical and
confocal laser scanning microscopes. In order to identify the
possible glial nature of the immunolabeled small cells, a GFAP
marker was used, performing a double fluorescent labeling on the
6 wm brain sections, incubating the horizontally arranged slides
in a humid chamber.
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After deparaffinization and rehydration, endogenous
peroxidase activity was blocked with 2.5% horse serum (#S-
2000-20, Vector Labs.) and incubation with primary antibodies
(rabbit anti CB1R and mouse anti GFAP) was carried out.
Subsequently, the sections were rinsed extensively and reacted
for 30 min with secondary antibody, VectaFluor ™ Duet Reagent
[#DK-8818, DyLight® 488 Anti-Rabbit IgG and DyLight® 594
Anti-Mouse IgG cocktail (anti-rabbit Ig in green, anti-mouse
in red)] made in horse. Finally, sections were coverslipped
with VECTASHIELD® mounting medium for preserving
fluorescence, containing the DAPI counterstain (4,6-diamidino-
2-phenylindole, #H-1200, Vector Labs.). Additionally, alternative
sections were counterstained with Nissl stain, dehydrated and
cover slipped with Entellan® Neu, #107961, Merck. A list of the
antibodies used is shown in Table 2.

Immunoblotting

Cerebellum samples corresponding to age- and sex-matched
animals (two GASH/Sal and two control hamsters, males
with 4 months of age) were used to verify that the primary
antibody against CBIR specifically detects its antigen in a
western blot experiment. In Brief, the cerebellum samples were
homogenized with IKA T10 Basic Ultra Turrax homogenizer
(IKA, Germany) in ice-cold RIPA buffer containing protease
inhibitors (Cell Signaling Technologies, USA). Supernatants of
the homogenates were collected after centrifugation at 14,000
rpm (Centrifuge 5417R, Eppendorf, Germany) for 15min,
and the protein concentration was determined using the
Lowry method. The Samples (150 jg) were separated by
gel electrophoresis, using 10% TGX precast gels (Bio-Rad,
United States), and electroblotted onto a PVDF membrane
(Merck, Germany), which was incubated overnight with the
polyclonal antibody anti-CBIR (dilution 1:1,000) at 4°C. The
membrane was then immunoreacted for 1 h with the HRP-linked
secondary antibody (anti-rabbit IgG) at 1:15,000 dilution (Cell
Signaling Technologies, USA). Finally, the immunoreaction was
visualized with the ImageQuant RT ECL detection system (GE
Healthcare, USA).

Observation and Study of Histological

Samples

Sections were observed using a Leica LB30T microscope
equipped with a digital camera (Olympus DT70). The
photographs were processed with minor modifications in
contrast using Adobe Photoshop CS2. Figures were assembled
using Canvas Draw 2. “A Stereotaxic Atlas of the Golden
Hamster Brain” (Morin and Wood, 2001) was used as a reference
to classify histological sections rostro-caudally arranged. In
all immunohistochemical experiments, omission of primary
antibody resulted in absence of staining of the preparations.
The sections processed for immunofluorescence were studied
on a Leica Stellaris confocal laser coupled to a Leica Zeiss
Axio Observer DMI8 microscope, using the appropriate filters
for DyLight® 594 (red), DyLight® 488 (green) and DAPI
(violet) fluorochromes. These three fluorochromes were detected
sequentially, stack by stack, with the acousto-optical beam
splitter as tunable dichroic filter system, using the laser spectral

lines 488, 594, and 405nm, respectively. The objectives used
were x40 and oil immersion x63/numerical aperture 1.40,
pinhole 1 Airy unit, as well as several electronic zoom factors.
To determine the distribution of the immunolabeled terminals,
series of 10-15 confocal images were obtained to generate a
maximal-intensity z projection of stacks. Colocalization of the
fluorochromes DyLight® 488 and DyLight® 594 within positive
terminals was always verified in the orthogonal view (=xy, xz, yz
planes, for z stacks series). A sequence of 15 serial pictures from
different viewpoints was created to produce a three-dimensional
(3D) animation and the movie document generated from the
image stacks were stored at 30 frames per second as a Windows
Media Video file.

RESULTS

Distribution of CB1 Receptors in the Brain

of GASH/Sal

The antibody wused in a dilution of 1:250 provides
immunoreactivity in the central nervous system of the
Mesocricetus auratus, both in the GASH/Sal line and in Syrian
control hamsters. None of the performed controls yielded false
positives. Significant immunolabeling was observed in numerous
areas of the GASH/Sal brain. Different types of immunolabeling
patterns were distinguished, based on the histology of each area,
as well as differences in the immunostaining intensity (Figure 1).

We found strong and intense CB1R-immunolabeling in the
following brain areas: cerebellum, substantia nigra, motor cortex,
hippocampus, endopiriform nucleus, subtalamic nuclei, globus
pallidus and olfactory bulb. Intense immunoreactivity was also
found in the visual, somatosensory, peripheral, and auditory and
entorhinal cortices. In a more subtle and diffuse way, CB1R-
immunolabeling was found in a high number of brain areas such
as: periaqueductal gray matter, caudate-putamen, solitary tract,
terminal stria, lateral septum, parabrachial nucleus, amygdala,
lateral hypothalamus, arcuate nucleus, cuneiform nucleus, and in
the insular cortex.

In Figures 2A,B, distribution pattern of CB1 receptors in the
brain of GASH/Sal is shown.

Representative images of the CBIR immunoreactivity in the
GASH/Sal are shown in the Figures 3, 4.

In general, CBIR immunostaining were found in brain
microvessels throughout the brain (Figure 5D). Furthermore,
labeling is seen in small cells (asterisk), presumably microglia,
both in the brain stem nuclei (Figure 4D), and in the olfactory
bulb (Figure 4]), cortex and hippocampus (Figure 4M).

In the cerebellum, CBI1R-immunostaining was intensively
present in a punctate form that were densely distributed
in the cerebellar cortex, particularly in the cerebellar
granular and Purkinje cell layers (Figures 3A, 4A, 5;
Supplemental Materials 3, 4). The neuropil within the granule
cell layer of the cerebellar cortex displayed densely CBIR-
immunolabeled puncta that colabeled with GFAP (Figures 5A,
5B; Supplemental Material 3). CBR1-immunolabeled puncta of
varying size were further densely seen in vicinity of Purkinje cells
(Figures 4A, 5C; Supplemental Materials 3, 4). Interestingly,
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TABLE 2 | List of antibodies used.

Antigen Primary AB Dilution Reference Secondary AB Dilution Reference Objective

CB1R Rabbit anti CB1R 1/250 CB1-Rb-Af380-Fr Biotinilated goat anti rabbit-Vec 1/200 BEA-1000-Vec Light Microscopy
DyLight® 488anti-rabitt-Vec 1/200 DK-8818-Vec Confocal Microscopy

GFAP mouse anti GFAP 1/2,000 G6171-Sig DyLight® 594anti-mouse-Vec 1/200

Comercials.

Fr- Frontier Institute, Hokkaido, Japdn.
Sig-Sigma-Aldrich, Taufkirchen, Germany.
Vec- Vector Laboratoires, Burlingame, CA, USA.

FIGURE 1 | Different patterns of immunostaining of CB1 receptors in the
hamster GASH/Sal brain. Immunostaining of CB1 receptors in the brain of
GASH/Sal in which a representation of the different staining patterns shown in
coronal sections of different brain areas. (A) Dot-like staining surrounding the
Purkinje cells bodies of the cerebellum; (B) Network of fibers (reticular staining)
in the globus pallidus nucleus; (C) Plexiform staining in the primary motor
cortex; (D) Diffuse staining in the substantia nigra.

the large CBIR-immunolabeled puncta distributed around
the soma and the initial axonal segment of the Purkinje cells
(Figures 4A, 5C; Supplemental Materials 3, 4), giving rise to
an arrangement described as “Pinceaux formation” (Sudrez
et al., 2008) that were flanked by GFAP-immunolabeled glial
fibers (Figure 5C; Supplemental Materials 3, 4). CB1R- and
GFAP-immunolabeling was also frequently found in the vicinity
of blood vessels of the cerebellar cortex (Figures 5D, 5E).

Nuclei more directly involved in the genesis of seizures, such
as the auditory nuclei (ganglion cells, cochlear nuclei, or the
inferior colliculus) (Figures 4B,C) or the brainstem reticular
formation (data not shown), showed CB1R immunoreactivity as
well. In ganglion cells (Figure 6), CBIR immunoreactivity was
distributed in the cytoplasm. In the cochlear nuclei, most of the
main neurons appear immunostained in all their divisions, being
more intense in the dorsal cochlear nucleus. Interestingly, this
labeling is intracytoplasmic.

In the brainstem, there is slight immunoreactivity, with a
diffuse staining pattern. It should be noted that structures such as
the periaqueductal gray matter presented a slightly more intense
marking than the adjacent inferior colliculus (Figure 3C), in

which diffuse marking continues, although few immunoreactive
neurons are visualized (Figure 4D).

In the substantia nigra pars reticulata (Figure 3D), dense
CBIR immunoreactivity appears as fine dots or puncta
(Figure 4E).

Rostrally, in the cingulate cortex (Cg), intensely stained
plexus of fibers were found in the superficial layer (Figure 3E),
extending to the motor (Mo) and somatosensory (Sm) cortices
and, and the same plexiform staining (Figure 4H) is weaker
in deeper layers. The hippocampus (Figure 3F) is distinctively
immunoreactive in the principle cell layers. In both the CAl,
CA2, and CA3, the stratum pyramidale (s.p.) exhibit the strongest
immunostaining, with the distribution being very similar in all of
them (Figures 4K,L). The intensity of the labeling in the stratum
radiatum (s.r.) increase laterally. In the dentate gyrus (DG), CBR1
signal is found mainly in the granular layer (s.g.) with strong
immunostaining (Figure 4M). Also, in the hilus (hil) the staining
is weaker than in the pyramidal cell layer.

Larger immunoreactive fiber bundles are observed in the
subthalamic nucleus (STh), as they approach the globus pallidus.
In the amygdala complex (AN) (Figure 3G), an intense plexiform
immunostaining is observed in all its areas, being more intense in
the basomedial amygdala nucleus (Figure 4F).

The globus pallidus (GP) exhibit a strong network of fibers
(reticular staining) surrounding the immunonegative traversing
fascicles (Figures 1B, 3H, 4I), and the caudate putamen (Cpu)
also exhibits diffuse CB1R immunoreactivity in the bundles of
fibers that target the GP (Figure 3H).

Strong diffuse immunostaining is found in the accumbens
nucleus (Figure 3I).

CBI1Rs are also present in glomeruli of the main olfactory bulb
(OB), robustly expressed in the granular layer (Figures 3], 4])
whereas a weakly immunostained fiber plexus is found in
the external plexiform layer of the olfactory bulb (EPL) and
in the white matter (WM). The density of labeling in this
structure is lower than that observed in the different areas of the
cerebral cortex.

Differential Gene Expression Analysis of
Cb1r in the Brain of GASH/Sal and Control

Hamsters

In control hamster brains, a uniform distribution of CB1R-
immunolabeling pattern was observed across all the brain areas
mentioned above. The immunostaining pattern was the same in
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FIGURE 2 |
(Continued)
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FIGURE 2 | (A,B) Distribution pattern of CB1 receptors in the brain of GASH/Sal. Schemes showing the coronal sections of the brain at different rostro-caudal levels
(referenced with respect to Bregma), according to a stereotaxic atlas of the golden hamster brain. The distribution of CB1 receptors in the GASH/Sal is shown in red.
Each coronal section includes a semi-section contrasted with Nissl staining as a cytoarchitectural reference of the different nuclei. 10, Dorsal motor nucleus of the
vagus; aca, Anterior commissure, anterior part; AcbC, Accumbens nucleus, core; aci, Anterior commissure, intrabulbar part; ACo, Anterior cortical amygdaloid
(Continued)
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FIGURE 2 | nucleus; AID, Agranular insular cortex, dorsal part; AIP, Agranular insular cortex, posterior part; AlV, Agranular insular cortex, ventral part; AO, Anterior
olfactory nucleus; AP, Area postrema; APir, Amygdalopiriform transition area; Arc, Arcuate hypothalamic nucleus; Au, Primary auditory cortex; BL, Basolateral
amygdaloid nucleus; BST, Bed nucleus of stria terminalis; BSTAI, Bed nucleus of stria terminalis, anteromediate part; BSTAV, Bed nucleus of stria terminalis,
anteroventral part; CA, Hippocampus; Cb1-10, Cerebellar lobule 1-10; CeC, Central amygdaloid nucleus; Cg, Cingulate cortex; CG, Central gray; CGPn, Central gray
of the pons; CLi, Caudal linear nucleus of the raphe; CM, Central medial thalamic nucleus; Cop, Copula of the pyramis; CPu, Caudate putamen; Crus1-2, Crus 1-2 of
the ansioform lobule; Cu, Cuneate nucleus; DC, Dorsal cochlear nucleus; DG, Dentate gyrus; DI, Dysgranular insular cortex; DR, Dorsal raphe nucleus; E/VO,
Olfactory ventricle; Ect, Ectorhinal cortex; En, Endopiriform nucleus; Ent, Entorhinal cortex; F1, Flocculus; Gl, Granular insular cortex; GP, Globus pallidus; GR, Gracile
nucleus; Hb, Habenula nuclei; IL, Infralimbic cortex; 10, Inferior olive; IP, Interpeduncular nucleus; LC Locus coeruleus; LH, Lateral hypothalamic area; LOT, Nucleus of
the lateral olfactory tract; LS, Lateral septal nucleus; M, Motor cortex; M1, Primary motor cortex; MS, Medial septal nucleus; M2, Secondary motor cortex; Mea,
Medial amygdaloid nucleus; MGP, Medial globus pallidus; MnR, Median Raphe nucleus; MPO, Medial preoptic area; Pa, Paraventricular hypothalamic nucleus; PAG,
Periagueductal graymatter; Pas, Parasubiculum; PBP, Parabrachial pigmented nucleus; PF1, Paraflocculus; Pir, Piriform cortex; Pm, Paramedian lobule; PMCo,
Posteromedial cortical amygdaloid nucleus; PRh, Perirhinal cortex; PrL, Prelimbic cortex; Rip, Raphe interpositus nucleus; RLi, Rostral linear nucleus of the raphe;
RMg, Raphe magnus nucleus; Rob, Raphe obscurus nucleus; Rpa, Raphe pallidus nucleus; RSA, Restroplenial agranular cortex; RSG, Restrosplenial granular cortex;
S, Subiculum; S1, Primary somatosensory cortex; S2, Secondary somatosensory cortex; SC, Superior colliculus; SCN, Suprachiasmatic nucleus; SimA-B, Simple
lobule A-B; SN, Substantia nigra; Sol, Nucleus of the solitary tract; st, Stria terminalis; scp, Superior cerebellar penduncle; Tea, Temporal Association Cortex; Tu,
Olfactory tubercle; V1, Primary visual cortex; V2L, Secondary visual cortex, lateral part; V2M, Secondary visual cortex, medial part; VC, Ventral cochlear nucleus; VCP,

ventral cochlear nucleus, posterior part; VLTg, Ventrolateral tegmental area; VP, Ventral pallidum; VTA, Ventral tegmental area; X, Nucleus X.

the two hamster lines used, although some areas appeared with a
slight difference in the intensity of the immunostaining.

To confirm this, differential gene expression analysis of CB1R
gene (Cblr) was carried out in brain structures of control and
GASH/Sal animals under seizure-free conditions (naive animals)
(Figure 7). These structures included the inferior colliculus (IC)
(epileptogenic focus in the audiogenic strain), the hippocampus,
the cerebellum, the motor and somatosensory cortices, and
the brainstem. As shown in Figure7, the RT-qPCR analysis
in the IC showed significantly lower expression (*** p <
0.0001) of the CbIr in GASH/Sal animals than in the control.
On the other hand, as in immunohistochemical studies, lower
levels of Cblr expression were detected in the cerebellum of
GASH/Sal hamsters compared to controls, although this decrease
is not significant in RT-qPCR analyses. For the motor and
somatosensory cortices and the hippocampus, there was an
increase in Cblr expression in the GASH/Sal in both cases
compared to controls (*** p < 0.0001). Finally, expression levels
of CbIr in the brainstem were significantly lower in naive
GASH/Sal compared to naive Syrian control hamsters (** p<
0.01). The raw data of RT-qPCR used for analyses are included
in Supplementary Material 2.

DISCUSSION

CB1-Mediated Neuromodulation in
Epilepsy

Although there are two types of endocannabinoid receptors,
CBIR and CB2R, it is the former that is expressed in greater
proportion in the central nervous system (Rosenberg et al.,
2017). In fact, it is one of the most widely expressed G-protein-
coupled receptors in the brain (Herkenham et al., 1991a). The
endocannabinoid system acts as a retrograde control mechanism
for excessive presynaptic neuronal activity (Lutz, 2004). When
excessive presynaptic activity is detected, endocannabinoids are
secreted from the postsynaptic terminals, bind to the CBIR
of the presynaptic terminals and activate signaling cascades
to decrease the liberation of neurotransmitters (Freund et al.,

2003). The effects of CB1Rs depend on their location, i.e.,
increased CBIR signaling on glutamatergic terminals induces
inhibition and neuroprotective effects, while those located on
GABAergic terminals induce excitatory effects (Chiarlone et al.,
2014; Guggenhuber et al., 2015).

The direct relationship between CB1R and the development of
seizures in animal epilepsy models is well-documented (Lazarini-
Lopes et al., 2020a). CBIR agonists exert anticonvulsant effects
(Shafaroodi et al., 2004; Tutka et al., 2018), whereas CBIR
antagonists block its anticonvulsant action (Wallace et al.,
2002) and potentiate seizure duration and frequency (Muccioli
and Lambert, 2005), suggesting that endocannabinoids might
be suppressing seizure activity (Wallace et al, 2003). This
hypothesis is reinforced by the fact that the activation of CB1
receptors protects against acute clonic and generalized tonic-
clonic seizures in the pentylenetetrazole model (Bahremand
et al., 2008). Moreover, in experiments where CBIR is blocked,
audiogenic seizures become more severe (Vinogradova et al.,
2011). Therefore, knowing the exact location of CBIR in animal
models of epilepsy turns out to be essential to search for
drugs which would enhance endocannabinoid signaling and thus
modulate seizures.

In the genetically audiogenic seizure-prone hamster
GASH/Sal, CBIR is distributed throughout the central nervous
system. This receptor is also located in the peripheral, specifically
in the spiral ganglion cells of the organ of Corti, as previously
described in birds (Stincic and Hyson, 2011) and mice (Toal
et al., 2016).

Distribution of CB1R in the GASH/Sal

Neither the reactivity of the CBIR antibody used in our
study nor the distribution of CBIR-immunolabeling in the
cochlear has been previously tested in the brain hamster.
Our study provides several evidences that indicate this CBIR
antibody can be used as a marker of CBIR in brain tissue
of the golden hamster as efficiently as reported in another
mammal species (Fukudome et al., 2004; Rivera et al., 2014;
Puighermanal et al., 2017). First, the multiple sequence alignment
showed that the specific target epitope is highly conserved
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FIGURE 3 | Immunostaining of CB1R in the GASH/Sal brain. Photomicrographs of GASH/Sal coronal sections referencing their rostrocaudal position as a function of

Bregma and indicating its dorsoventral orientation. (A) Cerebellar lobe. (B) Dorsal and posteroventral cochlear nucleus. (C) Periaqueductal gray matter (delimited by

dots) and the inferior colliculus. (D) Substantia nigra. (E) Somatosensory and motor cortices. (F) Hippocampal formation. (G) Piriform cortex, amygdaloid nuclei, and
(Continued)
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Stratum radiatum; STh, Subthalamic nucleus; WM, White matter.

FIGURE 3 | subthalamic nucleus. (H) Caudate putamen and globus pallidus. (I) Accumbens nucleus. (J) Olfactory bulb. Scale bar = 1 mm. Acb, Accumbens
nucleus; AN, Amygdaloid nuclei; CA1-3, Cornu Ammonis area 1-3; BLA, Basolateral amygdala nucleus; BMA, Basomedial amygdala nucleus;Cg, Cingulate cortex;
CPu, Caudate putamen; DG, Dentate gyrus; DCN, Dorsal cochlear nucleus; EPL, External plexiform layer olfactory bulb; GL, Glomerular layer olfactory bulb; GrO,
Granule cell layer olfactory bulb. GP, Globus pallidus; hil., Hilus; HF, Hippocampal formation; IC, Inferior colliculus; LA, Lateral amygdala nucleus; Mo, Motor cortex;
OB, Olfactory bulb; OV, Olfactory ventricle; PAG, Periaqueductal gray matter; Pir, Piriform cortex; PrL, Prelimbic cortex; PVCN, Ventral cochlear nucleus, posterior
part; s.g., Stratum granulosum; s.m., Stratum moleculare; Sm, Somatosensorial cortex; SN, Substantia nigra; s.o., Stratum orients; s.p., Stratum pyramidale; s.r.,

for CBIR in the golden hamster. Second, the pattern of
CB1R-immunolabeling in the cerebellar cortex of the hamster
was consistent with that described in other rodent species
(Herkenham et al., 1991b; Matsuda et al., 1993; Egertova and
Elphick, 2000). Furthermore, the CB1R-immunolabeled pattern
in our experiments was consistently obtained using different
cutting or immunodetection methods. Finally, the western blot
analysis confirmed the specificity and selectivity of the CBIR
antibody verifying the antibody’s ability to recognize and bind to
its target antigen (Supplementary Material 5).

Auditory Nuclei and Periaqueductal Gray Matter

In the peripheral auditory system, CB1R was located inside the
cell bodies. By using specific presynaptic labeling antibodies,
Stincic and Hyson (2011) showed that CB1R is in the presynaptic
neuron in the chick spiral ganglion cells. Discrepancies in
the location of CBIR in ganglion cells may be due to
differences between birds and mammals, or due to the
presence of CBIR in the cellular endosomes at steady state
(Thibault et al., 2013).

The activation of endocannabinoids in the spiral ganglion
has been associated to a protective effect, helping to maintain
consistent response amplitudes across a long duration stimulus
(Stincic and Hyson, 2011). On the other hand, CB1 receptor
knockout mice possess poorer hearing thresholds than wild-type
mice (Toal et al., 2016). The GASH/Sal has been described to
exhibit a significant loss of spiral ganglion neurons (Sanchez-
Benito et al, 2017), which results in a reduction in the
amount of CBIRs in the spiral ganglion, consistent with
the significant hearing deficit in this model (Muioz et al,
2017).

The strongest immunoreactivity for CBIR in both dorsal and
ventral cochlear nuclei, has been described in the cytoplasm of
main cells using autoradiographic (Herkenham et al., 1991a)
and immunohistochemistry approaches (Zheng et al., 2007; Zhao
et al,, 2009). Zheng et al. (2007) showed the spatial distribution
of CBIR in the cochlear nucleus. In that study, substantial
labeling was found on many different cell types, such as stellate
cells, giant cells, fusiform cells, and corn cells in the DCN,
as well as globular bushy cells, elongated cells, and octopus
cells in the VCN. The cytoplasmic labeling found in these cells
appeared inconsistent with the reported presynaptic localization
of CBI1 receptors, with almost no exceptions in adult animals
(Schlicker and Kathmann, 2001); however, it has since been
reported that the CBI receptor undergoes extensive trafficking
between the cytoplasm and the presynaptic terminals in brain
regions where it is very active (Mikasova et al., 2008). Using
electron microscopy, the synaptic location of these receptors

in the cochlear nucleus was confirmed (Tzounopoulos et al.,
2007), in both GABAergic and glycinergic terminals, but not at
auditory nerve inputs (Zhao and Tzounopoulos, 2011; Zhao et al.,
2011).

The inferior colliculus (IC) is critical in audiogenic seizures
(AGS) initiation (Garcia-Cairasco et al., 2017; Muifioz et al,,
2017). Given the involvement of CBIR in seizures, a higher
density of this receptor would be expected to be observed in
the GASH/Sal’ IC. However, a low expression of CBIR has been
described in the IC of the GASH/Sal, the same thing that happens
in other rodents (Moldrich and Wenger, 2000; Gerdeman and
Lovinger, 2001). The activation of cannabinoid system in the
IC through CBI receptors can influence both GABAergic and
glutamatergic neurons and exert a role in the modulation of
motor behavior (Medeiros et al., 2016; Santos et al., 2020).

In summary, the presence of CB1R throughout the auditory
system suggests that they play a major role in synaptic regulation
(Gerdeman and Lovinger, 2001), though studies examining
how activation of cannabinoid receptors affect the function of
the auditory system and how CBIR expression changes after
triggering seizures are needed.

Furthermore, the existence of moderate levels of CB1
receptors found in the periaqueductal gray (PAG) midbrain has
been widely reported by various authors in rodents (Tsou et al,,
1998; Azad et al,, 2001). It has been described that, in this
structure, the endocannabinoids are involved in the control of
pain sensation, including stress-induced analgesia (Walker et al.,
1999; Hohmann et al., 2005).

Cerebellum

CBIR location in GASH/Sal cerebellum, surrounding Purkinje
cells (PC) had already been described (Herkenham et al., 1991a;
Mailleux and Vanderhaeghen, 1992; Sudrez et al., 2008). It is a
typical arrangement in most rodents, though not in primates,
where CBIR is found inside PCs, being postulated that these may
be the substrates for the effects of cannabinoids on movement
co-ordination (Ong and Mackie, 1999).

In the underlying granule cell layer, the unstained cellular
bodies surrounded by scattered labeled puncta of CBRI found
in the GASH/Sal is similar to the pattern already described both
in rodents (Egertova and Elphick, 2000; Sudrez et al., 2008) and
primates (Ong and Mackie, 1999). In our material, positive GFAP
marking has also been seen in the cerebellum. It is known that
in the cerebellar cortex of adult mammals there are glial cells,
astrocytes and oligodendrocytes, which are classified according
to their morphology (Araujo et al,, 2019). In the GASH/Sal we
also found CBIR and GFAP immunoreactive colocalization in
some terminals of the granular layer, which could correspond to
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FIGURE 4 | CB1 immunoreactivity in the GASH/Sal brain. (A) Micrographs showing CB1 receptors (arrows), around the soma and the initial part of the axon of
unstained Purkinje cells, constituting the so-called “Pinceaux” formation. (B) Strong and diffuse CB1 immunoreactivity in the dorsal cochear nucleus. Neurons of this
nucleus appear immunostained. (C) Neurons of the posteroventral cochlear nucleus showing slight immunoreactivity for CB1R. (D) CB1 expression in the central
nucleus of the inferior colliculos, exhibiting diffuse immunoreactivity. Scarce medium-size neurons appears labeled intracelularlly. Asterix indicate small immunoreactive
glial cells. (E) CB1 immunoreactivity is observed in not strong delineate fibers in the substantia nigra. (F,G) CB1R immunostaining in the basomedial (BML) and
basolateral (BLA) amygdala, showing the neuropil granular/reticular staining. Labeling is slightly weaker in BLA. (H) Strong CB1 immunoreactive fibers with a plexiform
pattern in the motor cortex. (I) High CB1 expression in the globus pallidus, where a strong network of immunoreactive fibers surround immunonegative-traversing
fascicles (arrows). (J) CB1 immunoreactivity of the Olfactory bulb, exhibiting moderate immunoreactivity of Granule cell layer (GrO) and weakly immunoreactivity of the
external plexiform layer (EPL). Asterisk indicates small immunoreactive glial cells. (K-M). CB1 expression in rat hippocampal formation. CB1 positive fibers surround
the somata of pyramidal cells in CA1 (K) and CA3 (L) fields of the hippocampus. Numerous varicosities, corresponding to terminals is apparent. Receptor levels are
particularly high in the granule cell layer (sratum granulosum) of the dentate gyrus. Scale bar = 20 um for all panels. BLA, Basolateral amygdala nucleus; BMA,
Basomedial amygdala nucleus; CA1-3, Cornu Ammonis area 1-3 CB, Cerebellum; DCN, Dorsal cochlear nucleus, DG, Dentate gyrus; fc, Fusiform cells; EPL,
External plexiform layer olfactory bulb gc, Globular cells; GP, Globus pallidus; GrO, Granule cell layer olfactory bulb; hil, Hilus; IC, Inferior colliculus; mc, Multipolar cells;
Mo, Motor cortex; OB, Olfactory bulb; oc, Octopus cells; pc, Purkinje cells; PVCN, Ventral cochlear nucleus, posterior part; SN, Substantia nigra; s.g., Stratum
granulosum; s.p., Stratum pyramidale.

astrocytes (velate astrocytes) that are located both in the granular Thus, CB1 receptors are found on virtually the main
layer and surrounding the blood vessels (Schachner et al., 1977;  glutamate and GABA inputs to cerebellar Purkinje cells, and
Farmer and Murai, 2017). cannabinoids may modulate GABAergic output of the Purkinje
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FIGURE 5 | Details of CB1- and GFAP-immunolabeling in the cerebellum of the GASH/Sal. Details of CB1- and GFAP-immunolabeling in the cerebellum of the
GASH/Sal (depicted in green and red, respectively). (A) Low magnification confocal microscopy image of a 6- um coronal section shows immunolabeling for
GFAP-immunolabeling (in red) in the cerebellum of a control hamster. (B) High magnification photomicrographs corresponding to the dashed square in (A) shows
details of CB1-immunolabeled puncta (arrowheads) as well as GFAP-immunolabeled glial fibers (arrows) distributed around cerebellar granule cells. (C) High
magnification confocal microscopy images corresponding to the white square in (A) shows large putative axonal puncta immunolabeled for CB1 (white stars) nearby a
Purkinje cell and small CB1-immunolabeling punctate (arrowheads) in close apposition to granular cells. Note that GFAP-immunolabeled glial fibers distributed around
cerebellar granule cells (arrows) as well as in the vicinity of CB1-immunolabeled terminals (black stars in the merge panel). The maximum projection of confocal images
corresponding to the panels in (C) was displayed in the 3D video of Supplementary Material 4. (D) Low magnification confocal microscopy image show
GFAP-immunolabeling (in red) associated with blood vessels in the cerebellum. (E) High magnification photomicrograph corresponding to the square in D shows
details of CB1- and GFAP-immunolabeling in the vicinity of a blood vessel. Colocalization of CB1 with GFAP can be observed in the orthogonal view of the merged
confocal images. DAPI (in blue) was used for nuclear staining to show cell position. Scale bars = 50 um in (A,D); 5 wm for all panels in (B,C); 10 wm for all panels in
(E). By, Lumen of blood vessel; Gr, Cerebellar granular layer; Mo, Cerebellar molecular layer; Pu, Purkinje cell layer.

cells PGs, therefore modulating the ongoing movement and finely ~ already showed high levels of CB1 and this hippocampal CB1R

regulate them. distribution pattern (Herkenham et al., 1991a; Jansen et al.,
1992), confirmed in multiple studies in rodents (Kishida et al.,
Hippocampal Formation 1980; Dove Pettit et al., 1998; Moldrich and Wenger, 2000),

In the GASH/Sal hippocampal formation, the main cell layers  primates (Ong and Mackie, 1999), and birds (Stincic and
are distinctively immunoreactive. Early autoradiographic studies ~ Hyson, 2011). In the hippocampus, CB1 is selectively located
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CBI+DAR] D

FIGURE 6 | Details of CB1- and GFAP-immunolabeling in the spiral cochlear ganglion of the GASH/Sal. (A,B) Low magnification confocal microscopy images show
spiral ganglion neurons stained with DAPI (in blue) and CB1-immunolabeling (in green) in the spiral cochlear ganglion. Note that the perikaryon of the spiral ganglion
neuron is enveloped by satellite cells (arrows). (C-E) High magnification confocal microscopy images show CB1-immunolabeling in the cell body of a spiral ganglion
neuron. Weak GFAP-immunolabeling was observed in the spiral cochlear ganglion. Scale bars = 20 um in (A,B); 10 wm in (C-E).

CB1+DAPI

GFAPHDAR]

in GABAergic axons (Katona et al., 1999). CB1 agonists have
been reported to decrease the release of GABA and glutamate at
hippocampal synapses, interfering with the phenomenon of long-
term potentiation, which is consistent with the increased long-
term potentiation observed in the CB1 knockout mice (Bohme
et al., 2000). Further, rimonabant (which specifically blocks
CB1Es) was shown to improve memory in rodents (Terranova
et al, 1995). These data suggest that CB1R stimulation inhibits
the mechanisms by which short-term memorization occurs, and
its abundance in the hippocampus is related to its effects on
memory processes and also makes the hippocampal formation
particularly sensitive to chronic treatment with cannabinoids
(Escobar Toledo et al., 2009).

Amygdala and Olfactory Bulb

The olfactory bulb and the amygdala are fundamental in behavior
and receive highly processed sensory information. There are
multiple published data about the presence of CBIR in the
amygdaloid complex (AC), mainly in their cortical component,
the basolateral, lateral, and basomedial nuclei (Kishida et al.,
1980; Gulyas et al., 2004; Svizenskd et al., 2008; Yoshida et al.,
2011). In contrast to the cortical component of the amygdala, the
striatal component of the AC (e.g., central and medial nuclei)
displays much lower levels of CB1 receptors (Marsicano and
Lutz, 1999). In our material, a moderate plexiform marking
appears in their cortical component, being more intense in

the basomedial nuclei. Although in the GASH/Sal we did
not observe immunolabeled neurons in the AC, other authors
describe moderately stained neurons in the amygdala (Tsou
et al., 1998). CBI receptors are primarily found on GABA
neurons of the amygdala (Katona et al., 2001; Yoshida et al,
2011), and functional studies suggest that CB1 receptors and
endocannabinoids facilitated extinction of fear conditioning via
inhibiting GABA release in this area (Marsicano et al., 2002).

Regarding the olfactory bulb, there are important differences
in CBIR labeling according to phylogeny. The immunostaining
pattern in GASH/Sal is very similar to that found in other
rodents, such as rats and mice, being the granular cell layer
(GrO) the one that presents the highest amount of CBIR,
followed by the inner plexiform layer, while less is expressed
in the external plexiform layer (EPL) and the glomerular layer
(GL) (Herkenham et al., 1991b; Tsou et al., 1998; Egertova and
Elphick, 2000). In the glomerular layer (GL), there is slightly
more CBIR labeling in rat and mice that in the GASH/Sal.
Interestingly, no CB1R immunoreactivity was observed in the
EPL in mice (Soria-Gémez et al., 2014). Other mammals, such
as the dog, exhibit a labeling pattern in the OB different from
rodents, being not only intense in the glomerular layer, but
also in the granular layer (Freundt-Revilla et al.,, 2017). There
are also differences with men, since CBIR is not expressed in
the olfactory bulb or in the olfactory epithelium (Létsch and
Hummel, 2015).
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FIGURE 7 | Differences in CB1R mRNA expression levels between GASH/Sal model and control. Relative quantities of transcripts in different areas of the central
nervous system of the Syrian golden hamster and the GASH/Sal. In the graph, X-axis: Relative quantities of mRNA in arbitrary units; Y-axis: Experimental groups:
naive Syrian hamster (control); naive audiogenic group (GASH/Sal). (A) Hippocampus; (B) Cerebellum; (C) Motor and somatosensorial cortices; (D) Inferior colliculus;
(E) Brainstem Bars represent mean + SEM. Statistical analyses: Unpaired t-test. *o < 0.01; **p < 0.001, and **p < 0.0001.
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In rodents, CBIR have been reported/described to be
abundantly expressed on axon terminals of centrifugal cortical
glutamatergic neurons that project to inhibitory granule cells
of the main olfactory bulb (MOB) and seem to be associated
with the odor detection increasing, promoting food intake (Soria-
Gomez et al., 2014).

Basal Ganglia: Globus Pallidus, Substantia Nigra, and
Caudate Putamen

In the GASH/Sal, as in most rodents, CB1 receptor levels in
the basal ganglia are among the highest in the entire nervous
system, and within these structures, the GP and SN present
the highest expression (Herkenham et al., 1991b; Egertova and
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Elphick, 2000). These receptors are in fibers that surround
immunonegative neurons (Egertova and Elphick, 2000; Egertova
et al., 2003) and GP immunonegative fascicles (Saiiudo-Pefia
et al., 1999), that arise from incoming axonal projections from
other brain regions (Matsuda et al, 1993). In the caudate
and putamen, there are numerous bundles of immunoreactive
fibers that target the GP. It has been described that, CB1 is
found presynaptically in the neurons of this nucleus, in fibers
that come from the striatum through GABAergic pathways
(striatonigral and striatopalidal) (Romero et al., 2002). Also, a
low but significant percentage of CBI-immunoreactivity is co-
localized with tyrosine hydroxylase (TH), a marker for both
noradrenergic and dopaminergic terminals (Ko6falvi et al., 2005).
This suggests that there is a sophisticated presynaptic regulation
in the basal ganglia, involved in the initiation and execution
of a movement, and its motor activity is regulated in part by
CBI receptors. This is supported by publications that describe
that CB1 receptor binding was altered in the basal ganglia of
humans affected by several neurological diseases (Consroe, 1998)
and of rodents with experimentally induced motor disorders
(Zeng et al., 1999; Romero et al., 2000). Once again, the need
to investigate the possible changes in the activation of these
receptors in GASH/Sal after seizures is confirmed, to see their
possible role in the convulsive process.

Cortical Areas

We found CBI receptors densely expressed in all regions
of the GASH/Sal cortex, similar to the plexiform pattern
reported in other rodents, particularly in the somatosensory,
cingulate, perirhinal, entorhinal, motor, and piriform cortices
(Tsou et al., 1998; Marsicano and Lutz, 1999; Egertova and
Elphick, 2000; Moldrich and Wenger, 2000; Mackie, 2005). These
cannabinoid receptors may have a major role in inhibiting
presynaptic calcium channels, reducing release of number of
neurotransmitters, which implies a role for endocannabinoids in
modulating processes as important as perception, attention, and
behavior, depending on the cortical zone. CB1-immunoreactivity
is quite similar within primates, with small differences in the
CBIR distribution in the different cortical layers, and also in
the localization both pre- and post-synaptic, suggesting that
the CBIR role is broader than merely mediating presynaptic
inhibition (Glass et al., 1997; Ong and Mackie, 1999).

Non-neuronal Cells

Finally, CBIR was found in astrocytes and blood vessels.
All major cell types involved in cerebrovascular control
pathways (i.e., smooth muscle, endothelium, neurons,
astrocytes, pericytes, microglia, and leukocytes) are capable
of synthesizing endocannabinoids and/or express some or
several of their target proteins, as CB1 and CB2 receptors
(Galiegue et al.,, 1995). Therefore, the endocannabinoid system
may importantly modulate the regulation of cerebral circulation
under physiological and pathophysiological conditions in a very
complex manner. Experimental data accumulated since the late
1990s indicate that the direct effect of cannabinoids on cerebral
vessels is vasodilation mediated, at least in part, by CB1 receptors
(Wagner et al., 2001).

In summary, the pattern of distribution of cannabinoid
receptors in the GASH/Sal is highly similar to that described in
other mammal species (Freundt-Revilla et al., 2017; Silver, 2019).

Differential Gene Expression Analysis of
CB1 Receptor in the Brain of GASH/Sal

and Control Hamsters

There were some areas in the brain of control animals
that showed small immunoreactivity differences compared the
GASH/Sal model, such as the inferior colliculus, cerebellum, the
anterior commissure or the periaqueductal gray matter (data not
shown). These results were correlated with expression analysis
of the gen encode the CBIR, CbIr. In the caudal brainstem
and the inferior colliculus, the highest levels of Cblr mRNA
were obtained in the control hamster. This decrease in the CbIr
in the GASH/Sal was detected under basal conditions, as the
animals were not subjected to any acoustic stimulation and
therefore did not have any seizures. The cannabinoid system
has been described as having a role in the downward regulation
of auditory stimuli in some neurons of the inferior colliculus
(Valdés-Baizabal et al., 2017). Since CB1 receptors are known
to inhibit the release of many neurotransmitters, it is therefore
conceivable that a change in the number or function of CB1
receptors could alter their excitability and calcium influx. The fact
that our model has a lower gene expression of Cb1r in this region
could favor the loss of this type of intrinsic physiological control,
which could be precipitating a pro-epileptogenic environment in
the inferior colliculus.

Specific experiments are necessary to determine which specific
neurons contain these CB1 receptors to better understand the
scope of the variation of endogenous CB1R expression in the
audiogenic nucleus.

No significant results were obtained when comparing
Cblr expression between the GASH and control cerebellum.
However, we found higher expression of Cblr in the motor
cortex, the somatosensory cortex and the hippocampus of
epileptic animals, despite not having shown differences in
the immunohistochemical study (data not shown). It is
well-reported that in the somatosensorial cortex, CB1Rs are
expressed exclusively expressed in Cholecystokinin-positive
and Calbindin-positive GABAergic interneuron axons (Bodor
et al., 2005). Knowing that these cells could adjust population
synchrony inhibition and the input plasticity in intracortical
circuits, one may think that higher expression of these
receptor and activation by endocannabinoids could enhance
the depolarization-induced suppression of inhibition in these
circuits, heightening their excitatory inputs and, therefore,
affecting intracortical communication. In the motor cortex layers
II-I1I, GABAergic neurons express CB1R (Marsicano and Lutz,
1999). Moreover, these receptors regulate dopamine secretion
and activity (Melis et al,, 2004; Laviolette and Grace, 2006),
which in last term promotes the growth of pyramidal neurons
in particular areas of the cortex via D1 receptors (Stanwood
et al., 2005; Ballesteros-Yafez et al., 2007). Hence, upregulation
of Cblr mRNA may have an effect in the extension of pyramidal
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neurons, increasing its arborization and, therefore increasing
their synaptic capacity.

The increase of Cblr expression in the hippocampus, and
in the amygdala, has been described in other epileptic animal
models (Lazarini-Lopes et al., 2020b). It has been postulated that
this constitutive increase in endocannabinoids in animal models
of epilepsy could have a possible neuroprotective mechanism
(via decreasing excitability and synchronization by reducing
glutamate and GABA release) (Guggenhuber et al., 2010; Goffin
etal, 2011).

Additionally, in the Wistar audiogenic rat strain (WAR), a
genetic model of audiogenic epilepsy, exhibit and endogenous
increase of CBIR immunostaining in the hippocampus and
amygdala after acute and chronic audiogenic seizures (Lazarini-
Lopes et al., 2020b). These recent data reinforce the link between
the limbic system and seizure susceptibility and provide new
knowledge on the role of the endocannabinoid system in the
control of neuronal excitability.

Preliminary results in our laboratory show that, after repetitive
acoustic stimulation in controls and in GASH/Sal, there is
an increase in Cblr expression in the IC of GASH/Sal (data
not shown).

An increase in the activity of the endocannabinoid system
in stressful situations has been described as a mechanism to
reduce anxiety (Lutz et al., 2015). The CB1R increase observed
after the seizures, could be part of the physiological response
of the GASH/Sal to mitigate the stress produced by the
crisis. New experiments are necessary to study the changes in
CB1 receptors after seizures and after the administration of
cannabinoid agonists/antagonists, to see more directly the role
of this cannabinoid receptor in the generation and maintenance
of seizures in our epilepsy model.

CONCLUSION

The endocannabinoid system is widely distributed in the central
nervous system of the animals analyzed in this study. We showed
the immunohistochemical and gene expression analysis of the
GASH/Sal model, comparing it with control hamsters and with
what has already been described in the literature.

There is a lower density of CBIR in the epileptogenic focus
of the GASH/Sal model, the inferior colliculus, which could
lead to hyperexcitability. However, the presence of CBIR in
the peripheral auditory system indicates that the activation of
endocannabinoids may also regulate the encoding of auditory
information at its earliest stages in the brain, which is important
due to the alterations found in the spiral ganglion of the
genetically audiogenic seizure-prone hamster GASH/Sal. On the
other hand, we find higher gene expression of the CB1 receptors
in the motor cortex and the hippocampus, which has been related
to a neuroprotective mechanism in epileptic animals. Despite
these differences, we consider that the endocannabinoid system
in the GASH/Sal hamster is extremely similar to that of other
rodents. These results can be used as a basis for further studies
aiming to better understand the pharmacological and behavioral
effects associated with cannabinoid exposure.
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Supplementary Material 1 | Conserved sequence from CB1R identified by EBI
Clustal Omega program. The table shows sequence alignment of the CB1R
sequences in mouse and hamster, with only two aminoacid differences in the
region 120 (green square). The epitope sequence, C-terminal 31aa (hm007726) is
the same in mouse and hamster (red square).

Supplementary Material 2 | Raw data of RT-qgPCR used for analyses. The gPCR
data included a set of six biological replicates (sample cases) for each
experimental group (treatment condition), triplicate technical replicates for all
structures and genes as well as the Ct values of g-actin housekeeping gene used.
Undetermined replicates were not used for analysis due to Cts differences over
0.5. Undetermined data were excluded of the statistical analysis due to high
differences among the Ct value among replicates. Also, some samples were
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discarding for the low quality of RNA. Actb, p-actin used as housekeeping gene;
Cb1r, the cannabinoid receptor type 1.

Supplementary Material 3 | Confocal microscopy images of the GASH/Sal
cerebellum showing CB1-immunolabeled puncta (in green) distributed around
unlabeled cell bodies and dendrites of Purkinje cells (asterisks) as well as
GFAP-immunolabeled glial fibers (in red). Note the dense CB1-immunolabeling
punctate in the cerebellar granular and Purkinje cell layers. The confocal images
were taken from a 6- pm coronal section and DAPI (in blue) was used for nuclear
staining to show cell position. Gr, cerebellar granular layer; Mo, cerebellar
molecular layer; Pu, Purkinje cell layer. Scale bars = 10 um for all panels.
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