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The soluble membrane attack complex (sMAC, a.k.a., sC5b-9 or TCC) is generated on
activation of complement and contains the complement proteins C5b, C6, C7, C8, C9
together with the regulatory proteins clusterin and/or vitronectin. sMAC is a member of the
MACPF/cholesterol-dependent-cytolysin superfamily of pore-forming molecules that
insert into lipid bilayers and disrupt cellular integrity and function. sMAC is a unique
complement activation macromolecule as it is comprised of several different subunits. To
date no complement-mediated function has been identified for sMAC. sMAC is present in
blood and other body fluids under homeostatic conditions and there is abundant evidence
documenting changes in sMAC levels during infection, autoimmune disease and trauma.
Despite decades of scientific interest in sMAC, the mechanisms regulating its formation in
healthy individuals and its biological functions in both health and disease remain poorly
understood. Here, we review the structural differences between sMAC and its membrane
counterpart, MAC, and examine sMAC immunobiology with respect to its presence in
body fluids in health and disease. Finally, we discuss the diagnostic potential of sMAC for
diagnostic and prognostic applications and potential utility as a companion diagnostic.

Keywords: complement, soluble membrane attack complex, sC5b-9, cholesterol-dependent cytolysins, MAC,
diagnostics, sMAC
INTRODUCTION

The complement system is the most complex of the immunological and hematological pathways in
human biology. Composed of ~50 proteins, four activation pathways (classical, lectin, alternative,
and extrinsic) and a terminal lytic pathway, it is an important part of both innate and adaptive
immune responses (1–3). Complement-mediated immune effector functions include
chemoattraction of immune cells, activation of leukocytes, platelets and essentially all cell types
proximal to complement activation, opsonization of invading pathogens, enhancement of the acute-
phase response, lysis of susceptible pathogens and modulation of lymphocyte-mediated immune
responses (1, 2, 4–6). Complement also serves to help in controlling T and B cell activation and
function, stem cells and developmental processes, modulate basic cellular processes in intracellular
sensing and cellular metabolism as it relates to immune responses (7–15), synaptic pruning (16, 17),
modulation of the circadian clock (18), and possible contributions to schizophrenia (19, 20).
Effector functions mediated by complement are driven by the proteolytic generation of activation
fragments that either 1) bind to receptors expressed on both immune and non-immune cells, or 2)
covalently attach to cell surfaces adjacent to sites of complement activation (1–3). These activities
org November 2020 | Volume 11 | Article 5851081
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are tightly controlled by more than a dozen fluid-phase and
membrane-bound regulatory molecules whose function is to
keep complement activation in proportion to the amount of
activator present and to limit damage to host tissues (1, 21, 22).
Additional non-canonical roles of complement are discussed in a
series published in Seminars in Immunology (23).

sMAC: A Unique Activation Fragment
Activation of complement liberates more functional polypeptide
fragments of various molecular species than any other
immunological or hematological pathway. For example,
activation of factor B releases Bb, a serine protease and key
component of the alternative pathway C3 and C5 convertases,
and Ba, a small polypeptide composed of three shushi domains
with no known biological function. In contrast, cleavage of C3
and C4 generates C3a and C4a, respectively, which are small
(~10 kDa) fragments that possess a wide range of functions
including chemoattraction, antimicrobial activity, and
modulation of T cell responses [reviewed in (6, 24)]. In
addition, C3 and C4 cleavage produces multiple polypeptides
from the larger ‘b’ fragments which are equally diverse in
Frontiers in Immunology | www.frontiersin.org 2
function (1, 2, 25). Enzymatic activity of complement serine
proteases is responsible for production of at least a dozen
activation fragments. The soluble membrane attack complex
(sMAC) is an exception to the production of functionally-
active polypeptide fragments. Generated by activation of the
complement pathways, the formation of sMAC in the fluid-
phase starts with the cleavage of C5 by C5 convertases, to C5a
and C5b (Figure 1A). The addition of C6, C7, C8, C9 to C5b
forms a basic MAC structure, which associates with the
regulatory proteins clusterin and/or vitronectin, to form a
soluble MAC complex inhibited from inserting into lipid
bilayers (26–33). sMAC may have one to three C9 molecules
and can bind one to two clusterin or vitronectin molecules, or a
combination of clusterin and vitronectin molecules (Figure 1B).
Thus, sMAC is not a single molecular species, but a family of
closely related multi-molecular complexes. Based on this
stoichiometry, at least fifteen different sMAC complexes are
possible. Since each of the protein subunits in sMAC have
polymorphic variants (34–43), there are many sMAC variants
at the population level (similar to polymorphism at the
population level for MHC molecules). The biological roles of
A

B

FIGURE 1 | Schematic depicting complement activation and soluble membrane attack complex (sMAC) and MAC formation. (A) The classical, lectin and alternative
pathways generate C3 and C5 convertases that cleave C3 and C5 into their biologically active fragments. Direct cleavage of C3 and C5 occurs through the extrinsic
protease pathway which utilizes several enzymes of the coagulation system such as activated thrombin and plasmin and others. Activation through any of the
pathways can generate C5b which initiates the formation of MAC and sMAC through the terminal pathway. (B) Schematic of MAC formation on a pathogen surface.
Generation of C5b as a result of complement activation allows the non-covalent association of C6 through C9 and the production of the pore-forming membrane
attack complex. Simultaneously with MAC formation, C5b in the fluid-phase can associate with C6 through C9 forming soluble intermediates leading to sMAC
generation. All of the soluble intermediates and sMAC associate with vitronectin and/or clusterin preventing their insertion into pathogen or human cell membranes.
November 2020 | Volume 11 | Article 585108
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these sMAC species in homeostatic conditions and disease
pathophysiology are undefined. In contrast, studies in recent
years have demonstrated that the MAC contributes to
intracellular signaling, inflammation, and other functions
(44–47).

Several intermediates leading to the formation of sMAC and
MAC have been well characterized biochemically (Table 1).
Cryo electron microscopy structures of sMAC (33) and MAC
(33, 52, 53) suggests a similar overall arrangement of
complement proteins within the complex (Figure 2A). In both
complexes, C5b serves as a structural scaffold that organizes C6,
Frontiers in Immunology | www.frontiersin.org 3
C7, C8 and C9 into an arc through their pore-forming
membrane attack complex perforin (MACPF) domains.
During MAC formation, the core MACPF domains of C6, C7
C8 and C9 undergo a dramatic structural rearrangement in
which two helical bundles unfurl to form a pair of b-hairpins
that insert into the lipid bilayer. While it remains unclear from
the low-resolution sMAC structure if these transmembrane-
hairpins domains have unfurled, both complexes are of a
similar length suggesting that at least some of sMAC b-
hairpins maybe extended (Figure 2B). Negative stain electron
microscopy images of vitronectin-labeled sMAC suggest that
TABLE 1 | Physicochemical parameters of soluble membrane attack complex (sMAC) and related complexes.

sMAC complex Subunit composition Mol. Wt. Sedimentation coefficient (S) Reference

sC5b-9 C5b C6, C7, C8, C9 (1 each), clusterin and/or vitronectrin ~1 MDa 23 (29)
C5b-6 C5b, C6* 328 kDa 11.5 (48)
sC5b-7 C5b, C6, C7, vitronectin or clusterin** 668 kDa 18.5–20 (49)
sC5b-8 C5b, C6, C7, C8, vitronectin, and/or clusterin** 800–850 kDa 19 – 21 (50)
MAC C5b C6 C7 C8 (1 each),

C9 (up to 18), vitronectin and/or clusterin
1.6 MDa 33 (26, 51)
November 2020 | Volume 11 | Art
*Studies have shown that vitronectin inhibits lytic activity of C5b,6, but no tri-molecular complex containing vitronectin has been characterized.
**The precise number of clusterin or vitronectin subunits binding to sC5b-6, sC5b-7, and sC5b-8 is currently unknown.
A

B

FIGURE 2 | Structures of membrane attack complex (MAC) and soluble MAC (sMAC). (A) CryoEM reconstruction of MAC at 4.9 Å resolution (EMD-0110) (53)
shows a ring-like arrangement of complement proteins that comprise MAC (left). By contrast, the cryoEM reconstruction of sMAC at 24 Å resolution (EMD-1991) (33)
reveals that the ring is stopped short by chaperones vitronectin and clusterin to form an arc (right). Vitronectin and clusterin may act to cap the arc and/or bind
exposed hydrophobic residues of unfurled beta-hairpins. (B) The left depicts the MAC (PDB-6H04) as a ribbon diagram in which complement proteins are colored:
C5b (gray), C6 (blue), C7 (orange), C8b (dark purple), C8a (light purple), C8g (cyan), and C9 oligomer (green). On the right is a single copy of each protein that may
fill the arc of density depicted in the low-resolution sMAC structure.
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chaperones may bind to exposed hydrophobic hairpins (29),
however, the molecular details of how clusterin and vitronectin
prevent membrane insertion of sMAC are still unresolved. In
MAC, the helix-to-hairpin transition of membrane-interacting
residues exposes a charged surface of the MACPF. Charge
complementarity between MACPF-MACPF interfaces is one of
main factors that determines the direction of MAC assembly,
and likely plays a similar role in formation of sMAC (53). The
non-pore forming domains of complement proteins act as
regulatory auxiliary modules, preventing the premature release
of transmembrane b-hairpins during MAC assembly. How these
regulatory domains are oriented in sMAC remains to be seen.
High resolution structures of inhibited MAC complexes will be
necessary to understand how regulators, such as vitronectin and
clusterin, block membrane association of MAC.
sMAC in Biological Fluids in Normal
and Disease States
sMAC was first quantitated in plasma in healthy individuals
almost 50 years ago (54). Numerous studies since that time have
documented the presence of sMAC in most body fluids as
discussed below. Although sMAC is present in many of these
fluids, the mechanism(s) that generate tissue-specific, basal
sMAC levels have received little attention. The continuous
activation of complement at low levels through C3 tickover,
first described in the early 1970s (55, 56), likely contributes to
sMAC generation. In addition to tickover, it is well established
that the coagulation system, like complement, is continuously
active at a basal level, and thus basal activation of the coagulation
and fibrinolytic systems may also contribute to sMAC generation
(57–61). This mechanism of complement activation is known as
the extrinsic pathway, and it bypasses convertase formation and
directly activates C3 and C5 [reviewed in (62, 63)]. The relative
contribution of each of these mechanisms and any others that
may be involved in basal sMAC generation remains to be
established. Once complement is activated however, the high
plasma concentration of vitronectin (200–400 mg/ml, (64) and
clusterin [150–540 mg/ml, (65)] relative to C9 [~50–60 mg/ml,
(66)] suggests formation of sMAC is favored, particularly since
both regulatory proteins are elevated in concentration in the
acute phase response (67, 68). Mathematical modeling supports
this possibility revealing that sMAC is generated rapidly on
activation of the classical and alternative pathways reaching
peak concentration within 15 min (69). In contrast, MAC
production and deposition on pathogens surfaces is
characterized by a lag phase of ~20 min, followed by rapid
production and deposition that peaks after 50 min (70).

Timing is important for the formation of functional MAC
pores and could tip the balance to sMAC production. Rapid
over-activation of the complement terminal pathway may
overwhelm the C5 convertase. In addition to the proteolytic
cleavage of C5, the C5 convertase also plays an important role in
orienting MAC assembly precursors at the membrane (71).
Improperly inserted precursors could then be scavenged by
fluid-phase vitronectin and clusterin, to produce sMAC. On a
bacterial surface, convertase generated C5b6 must rapidly recruit
Frontiers in Immunology | www.frontiersin.org 4
C7 to form functional MAC (72). If there is a delay in availability
of C7, the inert C5b7 complex could be scavenged by clusterin
and vitronectin. Indeed, C5b7 is the first MAC intermediate to
bind these two chaperones.

Plasma and Serum
Although sMAC was detected in plasma several decades ago (54),
the first quantitative assays based on sMAC neo-epitopes were not
developed until the mid-1980’s (73, 74). sMAC levels of plasma or
serum were frequently measured with in-house assays using serum
activated zymosan or inulin as a standard control. These standards
and assays were not well characterized and interpretation of the
results were complicated by variable assay sensitivity, sample
handling, and sample storage (73–77) as highlighted in recent
study by Yang and colleagues (78). The International Complement
Standardization Committee has since defined an activation
standard for quantitation of complement activation products,
including sMAC, termed International complement standard #2
(79). International complement standard #2 was derived from
healthy donor-derived pooled serum activated with heat-
aggregated IgG and zymosan. The utility of this standard
(defined as complement activation units, CAU) is limited by
variability in pooled serum between different donor cohorts and
the reagents used to activate complement. The relationship of
CAU to standard measures of protein concentration remains
poorly defined. However, immunoassays using purified sMAC
as a reagent for generating quantitative standard curves overcomes
these limitations.

A recent study using a sMAC ELISA (Quidel, Corp., San
Diego, CA) reported mean plasma and serum levels of sMAC of
121 ± 3.7 ng/ml (n=199) and 175 ± 8.1 ng/ml (n=49)
respectively, in healthy adult donors (80). Plasma sMAC levels
were similar between African-Americans and Caucasians and
between males and females. Interestingly, plasma sMAC levels in
individuals above 50 years of age were significantly higher than
those in their 40’s and younger. The levels of sMAC in neonates
have been measured in cord blood plasma samples obtained
immediately after birth and were markedly lower than adult
levels (81). This study, and a number of others, have shown that
terminal pathway proteins comprising the MAC (C6-C9) are
significantly lower in pre-term and full term infants, as are
proteins of the classical and alterative pathways [reviewed in
(82)]. In addition, a recent study determined that the blood levels
of C9 in children less than one year of age were significantly
lower compared to adults, and adult levels were reached between
two and eighteen years of age (83). These studies indicate that
sMAC levels in are lower in children, in part, because the
concentration of proteins that compose the MAC are lower.
Nonetheless, sMAC levels in children increase during infection,
and activation of complement in neonatal serum by cobra venom
factor also increased sMAC levels (81). Additional studies to
determine sMAC blood levels in healthy adults and children are
warranted to determine the value of sMAC as a diagnostic and
prognostic tool in disease settings.

The sMAC in plasma and serum has been measured in many
clinical settings including infectious and autoimmune disease,
transplantation, trauma, and complement deficiencies (Table 2).
November 2020 | Volume 11 | Article 585108
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The level of sMAC increases in these conditions in a disease-
dependent fashion. However, an encompassing generalization
regarding the magnitude and kinetics of the responses is not
possible due to the variability in assay types used to quantify
sMAC, and the baseline differences of sMAC concentration
between serum and plasma. For this reason, we have not
included the level of sMAC for the diseases and conditions
listed in Tables 2–4. In vivo studies in rabbits have
demonstrated that sMAC is eliminated with a half-life of 30–
50 min (170), but no half-life studies have been reported for
human sMAC. It is clear the diagnostic and prognostic value of
sMAC in blood requires assay and sample handling
standardization, particularly as complement therapeutics move
into the clinical treatment repertoire (171).

Cerebrospinal Fluid
The normal range of sMAC concentration in cerebrospinal fluid
(CSF) of healthy individuals has not been established, in part,
because of the clinical risk and discomfort surrounding
Frontiers in Immunology | www.frontiersin.org 5
procuring CSF via lumbar puncture. As a result, normal levels
of sMAC in CSF have frequently been derived from cohorts with
“other neurological diseases” or from patients who underwent
lumbar puncture as a part of standard clinical care and had
negative bacterial cultures. In most studies using the Quidel
sC5b-9 ELISA, CSF sMAC levels range from undetectable to the
low nanogram/ml range (10–20 ng/ml) (130, 142, 144, 172, 173).
Studies analyzing the sMAC CSF/serum quotient using Reiber–
Felgenhauer nomograms of IgM suggest that sMAC is
intrathecally produced rather than diffusing across the blood
brain barrier (BBB) as has been shown for C9 (173, 174). There
are exceptions to this low normal range. For example, Aly and
colleagues reported mean levels of sMAC CSF to be ~50 ng/ml in
TABLE 4 | Mucosal and synovial soluble membrane attack complex (sMAC)
changes in various clinical conditions.

Body fluid Clinical setting Reference

Urine Autoimmune disease:
Diabetic nephropathy
ANCA-associated glomerulonephritis

(146)

Kidney disease:
Membranous nephropathy
Acute tubulointerstitial nephritis
Diabetic nephropathy
Focal segmental Glomerulosclerosis
Acute post-streptococcal
Glomerulonephritis

(147–152)

Transplantation (153–155)
Preeclampsia (156)

Synovial Fluid Arthritis (92, 94, 157)
Pleural Fluid Tuberculosis

Rheumatic disease
Malignancy
Dengue shock syndrome

(88, 158–163)

Peritoneal Fluid/
Ascites

Endometriosis acute pancreatitis (158, 164–166)

Pericardial Fluid Pericarditis (158)
Burn Bullae (Blister)
Fluid

Burn injury (158)

Ovarian Follicular
Fluid

Infertility (167)

Seminal Plasma Infertility (168)
Aqueous Humor Glaucoma (169)
November 2020 | Volume 11
TABLE 2 | Soluble membrane attack complex (sMAC) changes in blood,
plasma, and serum in various clinical conditions.

Body
fluid

Clinical setting Reference

Blood Infectious disease:
Pneumoniae
HIV
Systemic meningococcal infection
Sepsis
Dengue shock syndrome
Malaria

(80, 84–90)

Autoimmune disease:
Arthritis
Lupus
ANCA-associated vasculitis
Anti-phospholipid syndrome
Multiple sclerosis
Neuromyelitis optica
Myasthenia gravis
C3 nephritic factors (immune complex-
membranoproliferative glomerulonephritis)

(91–105)

Complement deficiency/mutations:
PNH
aHUS
CFHR3/1
AMD
TTP

(106–112)

Transplantation/ECMO:
Heart
Lung
Kidney/dialysis
Autologous stem cells
Red blood cells
Transplant-associated thrombotic Microangiopathy

(113–118)

Trauma (119, 120)
Dialysis & related treatments:
Hemodialysis
Peritoneal dialysis
Intravenous iron treatment

(121–125)

Cardiac failure/disease (126–128)
Psychiatric disorders:
Bipolar disorder

(129)
TABLE 3 | Soluble membrane attack complex (sMAC) changes in cerebrospinal
fluid (CSF) in various clinical conditions.

Body fluid Clinical setting Reference

CSF Infectious disease:
Bacterial/cryptococcal meningitis
Intraventricular shunt infections

(80, 130–134)

Autoimmune disease:
Multiple sclerosis
Neuromyelitis optica
Clinically Isolated syndrome
Guillain–Barré syndrome
Sjogren’s syndrome
Systemic lupus erythematosus

(91, 135–141)

Traumatic brain injury (142, 143)
Subarachnoid hemorrhage (144)
Alzheimer’s disease (145)
|
 Article 585108
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neonates with hypoxic-ischemic encephalopathy (175). The
reasons for this higher level are unclear, but may be due to
developmentally-reduced integrity of the BBB shortly after birth,
to the elevated level of plasma proteins found in neonatal CSF
compared to adults, or to the transport of plasma proteins across
choroid plexus epithelial cells in fetal and neonatal brain
[reviewed in (176)]. It is also possible that CSF sMAC in
neonates is generated as a result of complement-mediated
synaptic pruning (16) during neurodevelopment, which is
subsequently cleared postnatally. Other studies have reported
sMAC concentrations in control groups range from high ng/ml
to low mg/ml levels (131, 135, 136). Although non-standardized,
in-house sMAC assays were used many of these studies, one
likely reason for the high sMAC levels in the control groups was
the inclusion of patients with tumors, Huntington’s disease,
stroke, seizure disorder, cerebellar degeneration, progressive
supranuclear palsy, or undetermined infections, which are, at
least in part, inflammatory in nature.

Despite the contrasting reports on the levels of CSF sMAC in
healthy individuals, it is clear the levels increase in a number of
pathological conditions. Table 3 lists a number of neurological
diseases in which sMAC increases relative to levels in other
neurological diseases. In bacterial meningitis and shunt
infections, sMAC levels have been reported to increase
compared to uninfected controls (130, 132–134). In shunt
infections, the increase in sMAC was remarkably high (over
100-fold) compared to control CSF (130). Similar dramatic
changes in sMAC levels have been reported for traumatic brain
injury (as high as 1,800-fold) and subarachnoid hemorrhage
(~200-fold) compared to control CSF (142–144). sMAC
concentration of this magnitude in CSF suggests its production
is derived through multiple mechanisms and sources including:
1) increased intrathecal complement production and activation,
2) blood-derived sMAC leaking across a compromised BBB, and
3) in situ generation of sMAC at injury site(s). Interestingly,
admixture experiments using human CSF and serum
demonstrated that sMAC could be generated in a dose-
dependent fashion (up to 5-fold over CSF alone) (144).
However, there are cases where sMAC levels are not elevated
in infectious or other pathological conditions. For example, in
viral and fungal infections, CSF sMAC levels do not increase or
increase minimally (131). In idiopathic normal pressure
hydrocephalus, a disorder characterized by faulty CSF
mechanical dynamics and associated neurodegeneration and
inflammation (177), median sMAC levels were a low ~13 ng/ml
(173). The reason for the differences in sMAC levels in these latter
pathological conditions is unclear, but if verified by additional
studies, they could provide differential diagnostic opportunities.

In central nervous system, autoimmune diseases such as
multiple sclerosis (MS), Guillain-Barre syndrome, Sjogren’s
syndrome and systemic lupus erythematosus, there have been
reports of increased levels of sMAC (91, 135–138). However,
other MS studies have reported no increases in sMAC (139, 178).
Studies also present conflicting findings for sMAC levels in
neuromyelitis optica (91, 139, 178). Clinically isolated
syndrome, a neurodegenerative disease reminiscent of MS
Frontiers in Immunology | www.frontiersin.org 6
(179), has also been examined for changes in CSF sMAC
levels. Although sMAC has been detected, the levels do not
appear to increase in a clinically meaningful way, but the number
of studies is limited (140, 141). There are several other central
nervous system diseases where the MAC contributes to disease
pathogenesis and, by extension, sMAC levels may change during
the course of disease progression. These include epilepsy (180),
Parkinson’s disease (181) amyotrophic lateral sclerosis (182),
Alzheimer’s disease (183), various psychiatric conditions (20,
184) and possibly autoimmune encephalitis (185, 186). The
inconsistencies noted in some of the above-mentioned studies
most likely stem from the use of different sMAC assays,
differential sample handling and storage, and the rarity of
healthy patient CSF as a negative control. Going forward it
would be important to agree on a standard assay for quantitating
sMAC and to adopt standardized protocols for handling CSF
samples such as that employed by the BioMS-eu network
(187, 188).

Urine
Most complement proteins are too large to be excreted in
urine. Even factor D, the smallest of the complement proteins
(~ 24 Kd), does not pass through the tubular epithelium unless
there is a kidney defect (189, 190). With a molecular weight
approaching 1 MDa (29), studies have suggested that urinary
sMAC is most likely locally generated rather than transported
from blood into urine (147, 148, 153, 191). A number of factors
may contribute to local sMAC generation in the kidney including
high levels of proteinuria, cellular debris, urinary ammonia, and
low urinary pH (153). In healthy individuals, sMAC is generally
undetectable in urine regardless of the type of assay employed.
The kidney appears particularly susceptible to complement-
mediated damage for a variety of reasons [reviewed in (192)].
Not surprisingly then, nearly all studies examining for sMAC in
urine are derived from patients with a variety of acute and
chronic kidney diseases or post-kidney transplantation (147–
155) (Table 4). A number of urinary biomarkers have been
identified for acute kidney injury including kidney injury
molecule-1 (KIM-1), IL-18, and others (193). Recent studies
suggest that sMAC urinary levels are diagnostic for interstitial
inflammation in acute kidney injury associated with nephritis
(150) and severe preeclampsia (156) particularly in combination
with KIM-1.

Surprisingly there is little known regarding sMAC and
urinary tract infections (UTI). It has been shown that C3
promotes colonization of the upper urinary tract by E. coli and
that C3- and C4-deficent mice develop fewer renal infections
(194). Furthermore, in animal studies, C5a appears to exacerbate
UTI through enhancing inflammation and recruitment of
leukocytes as C5aR-deficient mice had less renal injury and
reduced bacterial load compared to wild type mice (195).
These studies indicate that complement contributes to UTI, at
least for some pathogens, and that the terminal pathway could be
involved since C5a is generated. It would be worth determining
baseline levels of sMAC (once assays with higher sensitivity have
been developed) in the urine of healthy individuals and comparing
November 2020 | Volume 11 | Article 585108
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it to the levels inUTI patients. sMACmight be an easy biomarker to
monitor in UTI, especially in chronic pyelonephritis.

Synovial and Mucosal Fluids
In addition to blood, CSF, and urine, sMAC is found in synovial,
pleural, pericardial and peritoneal fluid under conditions of
infection, malignancy, or autoimmune disease (listed in Table
4). These fluids are routinely collected for diagnostic purposes,
primarily to identify bacterial or viral infections, as well as other
medical conditions (196–201). Less commonly analyzed is blister
fluid from burn patients. Blister fluid is receiving more attention
as a possible diagnostic tool based on recent biochemical and
proteomic studies [reviewed in (202, 203)]. sMAC and other
complement activation proteins have been detected in blister
fluid, however their diagnostic utility remains to be determined
(158). Complement components are present in male and female
reproductive systems and play a role in both fertility and
infertility (204, 205). The presence of sMAC in ovarian
follicular fluid and seminal plasma not only indicates
complement activation, but suggests possible complement-
mediated contributions to infertility (204). This remains an
understudied topic and is worth pursuing given the general
worldwide decline in fertility (206). sMAC has also been
detected in aqueous humor of patients with exfoliating
glaucoma (169), but not in patients with neovascular age-
related macular degeneration (207). sMAC may be present in
other body fluids such as tears, nasopharynx secretions, intestinal
secretions, and gingival crevicular fluid, but these have not yet
been reported. Support for this possibility comes from studies
demonstrating the presence of C5a in normal tears and aqueous
humor from patients with cataracts, glaucoma, anterior uveitis,
or gingival crevicular fluid (208–210).
sMAC in Complement Diagnostics
Changes in the blood levels of either complement proteins or
complement functional activity have served as a valuable
diagnostic tool for autoimmune diseases, syndromes, and
complement deficiencies for over 60 years [initially reviewed in
(211)]. Since then our understanding of the complement system
and its relationship to the pathophysiology of infectious and
autoimmune disease has increased significantly, and most
clinical laboratories routinely run at least some complement-
related diagnostic assays (212–214). In addition, commercial
diagnostic laboratories offer an extensive array of assays to
quantitate blood levels of many complement proteins, measure
overall complement function, assess pathway- and protein-
specific function and identify auto-antibodies to complement
proteins. Identifying complement genetic mutations that
contribute to syndromes such as hereditary angioedema,
hemolytic uremic syndrome, and rare variants that contribute
to deficiency or dysfunction [reviewed in (215)], is now offered
by some diagnostic laboratories. The value of complement
diagnostics will continue to grow as understanding of the role
of complement in autoimmune, infectious, psychiatric diseases,
and malignancies expands in the coming years (17, 216–218).
Frontiers in Immunology | www.frontiersin.org 7
Although sMAC levels in blood, CSF, and other body fluids have
been studied as a possible biomarker for diseases and inflammatory
conditions (Tables 2–4), those studies have not translated into
common use of sMAC as a clinical diagnostic tool. The literature
provides numerous examples of the utility of sMAC as a diagnostic
biomarker, but the lack of comprehensive reviews on this topic may
be one contributing factor to the under-appreciation of its potential.
There is no evidence to suggest that intermediates on the way to
sMAC formation (sC5b-7 and sC5b-8) have any diagnostic value
and there are currently no assays to specifically measure these
MAC-related complexes. The advent of complement therapeutics
may, however, be a game-changer for sMAC as a diagnostic tool.
The anti-C5 antibody eculizumab prevents MAC and sMAC
formation by blocking the cleavage of C5 into C5a and C5b,
thereby inhibiting the terminal pathway (219). Initially used for
treatment of patients with paroxysmal nocturnal hemoglobinuria
and atypical hemolytic uremic syndrome, eculizumab has more
recently been used in the management of myasthenia gravis,
antibody-mediated graft rejection, neuromyelitis optica, and other
conditions (220). Several studies have demonstrated that sMAC
levels correlate well with eculizumab dosing further indicating that
sMAC may be a useful biomarker for monitoring dosing and also
aid in developing personalized patient treatment plans. This would
usher in a new era in complement diagnostics particularly if
patients could measure sMAC (and/or other complement
fragments) at home and relay the information directly to their
physician or clinic. This could include patients being treated for
paroxysmal nocturnal hemoglobinuria and atypical hemolytic
uremic syndrome (106, 221, 222), age-related macular
degeneration (107), glomerulonephritis (223), hematopoietic
stem cell transplantation (transplant associated thrombotic
microangiopathy) (224), thrombotic thrombocytopenia purpura
(108, 225), and acute post-infectious glomerulonephritis (226).
sMAC monitoring may also have diagnostic value in anti-TNF-a
treatment of spondylarthropathies (227), indicating the diagnostic
value of sMAC exists beyond complement-specific therapeutics. By
extension, sMAC may have diagnostic value in monitoring
treatment in rheumatoid, psoriatic arthritis, and other
autoimmune diseases given the findings in spondylarthropathies.
Complement therapeutic drugs that target the terminal pathway
directly or that inhibit the alternative pathway [through which
mostMAC/sMAC is generated (228)] are currently in development,
and it may be beneficial to use sMAC as a biomarker in companion
diagnostics to monitor drug efficacy and help manage
patient dosing.
CONCLUSION

The terminal complement pathway gives rise to the MAC and
multiple sMAC isoforms. Although multiple immunological roles
have been identified for the MAC, little is known regarding the
immunobiology of sMAC and intermediates generated during the
formation of sMAC. There is, however, a large body of preclinical
and clinical studies suggesting that sMAC may be a valuable
diagnostic tool in multiple disease settings. In order to fully
November 2020 | Volume 11 | Article 585108
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appreciate the diagnostic potential of sMAC, a number of points
should be addressed going forward. These include:

• Assay standardization for quantitating sMAC to allow
comparison between datasets and disease settings

• Sample handling and storage standardization to maximize
sample stability

• Increased reliance on true healthy controls instead of “non-
inflammatory” or “other disease” control sample sets

• Studies to determine basal sMAC fluid levels across multiple
demographics

In addition to formalized standardization, there is still much
we do not know regarding sMAC with respect to basic
physiology and biology. For instance, does sMAC containing
vitronectin mediate unknown complement functions or
contribute to hematological or cancer-related functions? The
multi-functional roles of clusterin and vitronectin may provide
insight into sMAC immunobiology, including identification of
receptors used in the course of sMAC turnover. These would
further aid in the use of sMAC as a biomarker for disease.
Frontiers in Immunology | www.frontiersin.org 8
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