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Antimicrobial peptides (AMPs), as an important part of the innate immune system of
an organism, is a kind of promising drug candidate for novel antibiotics due to their
unique antibacterial mechanism. However, the discovery of novel AMPs is facing a great
challenge due to the complexity of systematic experiments and the poor predictability of
antimicrobial activity. Here, a novel and comprehensive screening system, the Multiple
Descriptor Multiple Strategy (MultiDS), was proposed based on 59 physicochemical and
structural parameters, three strategies, and four algorithms for the mining of α-helical
AMPs. This approach was applied to mine the encrypted peptide antibiotics from
the global human genome, including introns and exons. A library of approximately
70 billion peptides with 15–25 amino acid residues was screened by the MultiDS
system and generated a list of peptides with the Multiple Descriptor Index (MD index)
scores, which was the core part of the MultiDS system. Sixty peptides with top
MD scores were chemically synthesized and experimentally tested their antimicrobial
activity against 10 kinds of Gram-positive bacteria, Gram-negative bacteria (including
drug-resistant pathogens). A total of fifty-nine out of 60 (98.3%) peptides exhibited
antimicrobial activity (MIC ≤ 64 µg/mL), and 24 out of 60 (40%) peptides showed
high activity (MIC ≤ 2 µg/mL), validating the MultiDS system was an effective and
predictive screening tool with high hit rate and superior antimicrobial activity. For further
investigation, AMPs S1, S2, and S3 with the highest MD scores were used to treat
the skin infection mouse models in vivo caused by Escherichia coli, drug-resistance
Escherichia coli, and Staphylococcus aureus, respectively. All of S1, S2, and S3 showed
comparable therapeutic effects on promoting infection healing to or even better than the
positive drug levofloxacin. A mechanism study discovered that rapid bactericidal action
was caused by cell membrane disruption and content leakage. The MultiDS system not
only provides a high-throughput approach that allows for the mining of candidate AMPs
from the global genome sequence but also opens up a new route to accelerate the
discovery of peptide antibiotics.

Keywords: antimicrobial peptide, screening system, antimicrobial activity, antimicrobial mechanism, mouse
model, skin infection, physicochemical parameter, human genome
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INTRODUCTION

With the increase of drug-resistant pathogens and the decline
in the discovery of new antibiotics, the urgent priority is
to develop new available antimicrobial drugs to fight against
bacterial infectious diseases. Antimicrobial peptides (AMPs), as
a promising alternative, have attracted extensive attention due to
their wide antimicrobial spectrum and difficulty in developing
drug resistance. As an important kind of AMP, α-helical AMPs
are usually cationic linear peptides with amphipathic helical
structures in contact with biological membranes (Wang et al.,
2019). The antibacterial effect of AMPs is mainly through the
destruction of microbial lipid bilayers to induce the leakage
of cell contents (Avci et al., 2018; Kumar et al., 2018). The
physicochemical properties and structure features, such as net
charge (Jiang et al., 2008), charge density (Vishnepolsky and
Pirtskhalava, 2014), hydrophobicity (Edwards et al., 2016; Lee
et al., 2018), hydrophobic moment (Wieprecht et al., 1997b),
amphiphilicity (Pathak et al., 1995), angle (Wieprecht et al.,
1997a), length (Gagnon et al., 2017), helicity (Dathe et al., 1996;
Huang et al., 2014), propensities to the disordered structure,
and aggregation (Fernandez-Escamilla et al., 2004; Conchillo-
Solé et al., 2007; De Groot and Ventura, 2010), are essential
to exert antimicrobial activities. In recent years, computational
approaches based on these parameters have been widely used in
the discovery of AMPs, overcoming the difficulties in systematic
experimental identification of AMPs due to the limitations of
current methods. Torres et al. (2021) mined the encrypted
peptide antibiotics in the human proteome via an algorithm
that relied on the sequence length, net charge, and average
hydrophobicity, and the results showed 63.6% of the encrypted
peptides displayed antimicrobial activity against pathogens.
Besides, many algorithms and models, such as quantitative
structure-activity relationship (QSAR; Taboureau et al., 2006),
support vector machines (SVM; Porto et al., 2012), random
forests (RF; Joseph et al., 2012), discriminant analysis (DA),
and artificial neural network (ANN; Fjell et al., 2009), have also
been built and applied to predict and evaluate potential AMPs.
Hou et al. (2019) applied a combination of three databases
(AntiBP2, APD3, and CAMPR3) and four algorithms (SVM, RF,
DA, and ANN) to predict AMPs from the protein hydrolyzate
of Sichuan pepper seeds, one of the 16 potential AMPs with
high scores exhibited moderate antibacterial activity against
Escherichia coli ATCC 25922 with an MIC value of 64 µg/mL
in vitro. The diversity in evaluation strategies and core parameters
showed different predictive performance. The limitation of
existing methods in antimicrobial activity and hit ratio and the
accumulation of antimicrobial activity data provide impetus to
develop a new comprehensive screening method for accelerating
antimicrobial peptide discovery.

In this study, 59 physicochemical and structural parameters
(also called descriptors), three strategies [decision-tree like
screening model, weighted point (WP) method, and first-
place amino acid preference], and four algorithms (SVM, RF,
DA, and ANN) were integrated to construct a novel and
comprehensive AMP mining approach, the Multiple Descriptor
Multiple Strategy (MultiDS) system, for mining cryptic α-helical

AMPs from global human genome database. The decision tree
is a classification method by a tree structure model to solve the
classification problem. It splits a dataset into subsets according
to different data characteristics until the split data belongs to
the same category (Quinlan, 1986; Tan et al., 2006). The WP
method means a multi-parameter comprehensive rating system,
in which each parameter is endowed with a weight according
to its importance. Then a total point value is calculated by
summing the products of every parameter and its weight. The
WP method can conduct a more intensive and objective analysis
of evaluating items (Thompson, 1990, 1991). Furthermore, the
probability of different amino acids appearing in the N-terminal
of the AMPs collected in the APD3 database1 was analyzed
and defined as “first-place amino acid preference (FAAP).”
Meanwhile, 59 parameters here, refer to the physicochemical
and structural characteristics of AMP, including 28 parameters
reported in the literature, 23 parameters derived by normalization
or denormalization of the reported parameters, and eight
parameters, proposed for the first time in this study, were
selected by exploring their correlations to antibacterial activities
or α-helix structures.

Subsequently, using this MultiDS system, the entire human
genome, including exon and intron, was translated and scanned
to find peptides ranging from 15 to 25 residues in length. From
the tens of billions of possible peptides, a series of potential AMPs
with MD scores were obtained. Then the antimicrobial activities
of 60 peptides with top MD scores were detected against 10 kinds
of pathogens in vitro. Furthermore, AMPs S1, S2, and S3 with top
MD scores were selected to treat mouse skin wounds infected by
pathogenic Gram-positive/negative bacteria and drug-resistant
bacteria. The mechanism study discovered that antimicrobial
action was caused by cell membrane rupture and content leakage.

MATERIALS AND METHODS

The Construction of Multiple Descriptor
Multiple Strategy Screening System
The Collection of Source Data
To establish a predictive and screening system for potential
AMPs in silico, the AMPs in DBAASP (Pirtskhalava et al., 2016)
(Database of Antimicrobial Activity and Structure of Peptides)2

were selected by the following criteria: (1) without modifications,
(2) the length of 5–50 amino acid residues, (3) without
D-amino acids, (4) monomeric peptide, (5) the target object
was lipid bilayer, (6) the antimicrobial activity was recorded as
minimum inhibitory concentration (MIC), and (7) the tested
pathogens were Escherichia coli, Pseudomonas aeruginosa, and
Staphylococcus aureus. Then the selected AMPs were submitted
to the APD3 database (Antimicrobial Peptide Calculator and
Predictor)3 for the prediction of secondary structure. The
obtained peptides were divided into a series of datasets according
to their antibacterial activities and pathogenic bacteria.

1https://aps.unmc.edu/database
2https://dbaasp.org/
3https://aps.unmc.edu/prediction
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The Correlation Analyses Between 59 Parameters
and the Minimum Inhibitory Concentration Values of
Antimicrobial Peptides
According to literature reports, net charge, hydrophobicity,
isoelectric point, amphiphilicity, and a series of physicochemical
and structural parameters were commonly used to evaluate
the activity of AMPs. Furthermore, the Spearman correlation
coefficient of each parameter was analyzed between the parameter
value and the MIC value of the datasets by using GraphPad
Prism 8. The average valid correlation coefficient (AVCC) of
all the Spearman coefficients of each parameter was calculated.
For one given parameter, if there were both positive and
negative correlations in all the Spearman correlation coefficients
for each group, the majority correlation was recognized as an
effective correlation, while the minority was recognized as an
invalid correlation. Removing the non-correlation (p ≥ 0.05)
and invalid correlation, the sum of all the effective correlation
coefficients was divided by the number of the dataset to
obtain the AVCC.

The Development of the Multiple Descriptor Index
The MD index was built based on the WP method, in which,
the negative values of AVCC were assigned as the weight of
parameters. Each parameter value corresponding to the selected
AMPs was calculated and the maximum and minimum values
were identified. Subsequently, the parameter value of each AMP
was mapped to 0–1 using min-max normalization. The formula
(1) was shown as follows:

Parameter′ =
Parameter− Parametermin

Parametermax − Parametermin

where the Parametermax and Parametermin were the maximum
and minimum values of each parameter of the selected AMPs.

Then, the values of normalized parameters of a certain peptide
were multiplied by their corresponding weights, and the MD’
index of each peptide was obtained by summing their products.
The formula (2) was shown as follows:

MD′ =
n=45∑

i=1,...,n

wiP′i

where P’ was the normalized parameter (parameter’), w was the
negative value of AVCC (as the weight of each parameter), and n
was the number of parameters.

Finally, MD’ was conducted centesimal normalization to
obtain the MD index by formula (3) as follows:

MD Index = 100×
MD′ −MD′min

MD′max −MD′min

In order to compare the performance between the MD index
and the commonly used algorithms like SVM, RF, and DA,
the AVCC for SVM, RF, and DA were calculated. The AMPs
collected from the DBAASP database were submitted to the
CAMPR3 database and scored by SVM, RF, and DA algorithms,
respectively. Then, the correlation coefficients were analyzed by
using the scores of each AMP calculated by each algorithm and

its corresponding MIC values, and then, the average effective
correlation coefficient (AVCC) value was obtained. To further
verify the validity of the MD Index, the newly collected AMPs
in the DBAASP database were selected to assess the correlation
between the MD index and MIC by the same method as above.

Determination of the Cutoff Value of Parameters
According to the decision-tree-like screening model, each
parameter was taken as a decision node, and the cutoff value of
each parameter was set as the screening criterion for each node to
evaluate whether the peptide meets the requirement. Therefore,
the parameter values of the selected AMPs were calculated. Then
the AVCC between parameter value and MIC was analyzed to
ascertain whether the correlation was positive or negative. If
the correlation between a parameter and MIC was ascertained
to be negative, it indicated that the larger the parameter, the
smaller the MIC, and the stronger the antibacterial activity.
Subsequently, the histogram distribution of each parameter of
the selected AMPs was drawn, by which the distribution range
and characteristics of a specific parameter could be obtained.
Based on the ascertained negative correlation, the cutoff value of
the parameter was determined a higher value tending to prefer
the right side in the histogram, which was more conducive for
screening of AMPs with high antibacterial activity. If a positive
correlation was ascertained between the parameter and MIC, the
cutoff value was determined tending to prefer the left side in
the histogram with a lower value. In short, different parameters
had different histogram distribution characteristics, furthermore,
the magnitude of correlations and “plus” or “minus” were also
different between different parameters and MIC, the cutoff values
of all parameters were determined manually with the orientation
to maximize the possibility of screening for the AMPs with high
antibacterial activity.

Construction of Decision-Tree Like Screening Model
In this study, a decision-tree-like screening process was used as
the screening model, in which the property screening order and
the cutoff value for each property were manually determined.
During the construction of a decision-tree-like screening model,
the parameters selected in this study and the algorithms
in CAMPR3 were divided into three major screening steps
according to whether they could be calculated offline and in
different databases. Specifically, step 1 was offline calculation
and screening; step 2 was online calculation and screening
by DBAASP; step 3 was online filtering by the algorithms in
CAMPR3. The detailed construction process of the decision-tree-
like screening model was as follows.

Firstly, the parameters, which can be calculated offline,
were connected in series to establish a step-by-step calculation
procedure. In this process, each parameter was set as an
independent evaluating node and the cutoff value was designed
as assessment criteria. Then, the peptide to be evaluated was
calculated step by step according to the evaluation process.
The calculated result of the parameter was compared with the
predetermined cutoff value. If the value is within the cutoff
value, then move to the next parameter; if the parameter value is
without the cutoff value, then stop the screening and the peptide
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is abandoned. Only if one peptide satisfies the cutoff value of all
the parameters in the calculation, it will be output.

Secondly, the outcome peptides from Step 1 were submitted
to the DBAASP website (see text footnote 2, “general property”)
and evaluated by the parameters step-by-step as the calculation
procedure in Step 1, and the outcome peptides that met all the
preset cutoff values were submitted to the CAMPR3 website4 and
calculated online by the algorithms, finally, the peptides that met
all the given criteria were output.

In the step-by-step screening process, different properties
could be applied in different orders, but each candidate peptide
to be evaluated must simultaneously satisfy the preset cutoff value
for all properties before it could be output as a qualified peptide.

The Analysis of First-Place Amino Acid Preference of
Antimicrobial Peptides
The AMPs, with veritable α-helical structure and less than 100
amino acid residues in length deposited in the APD3 database,
were selected, then statistically analyzed the frequency of the first-
place (N-terminal) amino acid to determine whether there was an
amino acid preference, which was defined as an FAAP.

The Establishment of the Multiple Descriptor Multiple
Strategy System
The MultiDS method was built based on physicochemical and
structural parameters, strategies, and algorithms to form an
integrated system for the mining of cryptic α-helical AMPs
in silico. The specific process of MultiDS screening was shown
in section “The Establishment of MultiDS System.”

Mining Cryptic α-Helical Antimicrobial
Peptides From the Human Genome by
Multiple Descriptor Multiple Strategy
The human genome sequence (2,948,583,725 bp) including 22
autosomes, two sex chromosomes, and a mitochondrion genome
were downloaded from the National Center of Biotechnology
Information (NCBI) website5. The whole-genome sequences
were translated into amino acid sequences by six-frame
translation from the beginning to the end, including introns
and exons, coding, and non-coding regions. Subsequently, the
amino acid sequences were scanned and obtained in a huge
peptide library containing approximately 70 billion peptides in
the length of 15–25 amino acid residues. Then, the peptides
were screened and evaluated according to the MultiDS system
procedure. Finally, the obtained potential AMPs were submitted
to the CAMPR3, APD3, and DBAASP database for homology and
similarity analysis to judge their novelty.

In vitro Antimicrobial Activity Assay
The potential AMPs were chemically synthesized by GenScript
Biotechnology Co., Ltd., Nanjing, China, with a purity of no
less than 90%. The antibacterial activity measurement was
modified based on the broth microdilution method (Zhong et al.,
2019). A total of 10 kinds of pathogens were used, including

4http://www.camp.bicnirrh.res.in/predict/
5https://www.ncbi.nlm.nih.gov/genome?LinkName=assembly_genome&from_
uid=2334371

Gram-positive bacteria, Staphylococcus aureus (CMCC26003),
multiple-resistant Staphylococcus aureus (MRSA186),
Enterococcus faecium (VRE204) (vancomycin-resistant strain),
and Gram-negative bacteria, such as Pseudomonas aeruginosa
(CMCC10104), Escherichia coli (CMCC44103), Escherichia coli
(SYPB-3820) (multiple-resistant strain), Klebsiella pneumoniae
(CMCC46117), Acinetobacter baumannii (ACCC11038), Shigella
dysenteriae (CMCC(B)51105), and Salmonella paratyphi B
(CMCC50094). Briefly, the bacteria were grown in Mueller
Hinton Broth (MHB) medium (beef extract, 3 g/L, acid
hydrolyzate of casein, 17.5 g/L, starch, 1.5 g/L) at 37◦C to
mid-log phase, and diluted to 5 × 105 colony-forming units per
milliliter (CFU/mL). The samples were diluted to 640 µg/ml
with deionized sterile water and added to a 96-well plate that
pre-contained 180 µl pathogens suspension at a gradient of 64
to 0.125 µg/ml. Thereafter, the 96-well plate was incubated at
37◦C for 16–20 h, then, the absorbance at 600 nm was measured
using a microplate reader (Tecan Infinite M1000 PRO). The
lowest concentration, where the growth of 90% pathogens was
inhibited, was taken as the minimal inhibitory concentration
(MIC). The inhibition rate was calculated by using the following
equation:

Inhibition rate =
OD600nm(positive control) −OD600nm(sample)

OD600nm(positive control) −OD600nm(negative control)
× 100%

Skin Wound Infection Healed by
Antimicrobial Peptides
In order to evaluate the therapeutic effect of AMP S1, S2,
and S3 in vivo, the full-thickness skin infection and healing
experiment was carried out on mice. Briefly, adult female BALB/c
mice (18–22 g) were obtained from the Laboratory Animal
Center of Shenyang Pharmaceutical University and performed in
compliance with the guidelines of the Institutional Animal Care
and Use Committee of Shenyang Pharmaceutical University.
Each mouse was operated on an 8-mm in diameter round-
shape wound under surgery conditions with an intraperitoneal
injection of ketamine (90 mg/kg) and xylazine (10 mg/kg).
The mice were randomly divided into 10 groups, including
one normal group, three model groups, three treatment groups,
and three positive groups (n = 10 in each group), then the
wounds were infected with 40 µl (1 × 108 CFU/mL) of
E. coli (CMCC44103) or drug-resistant E. coli (SYPB-3820) or
S. aureus (CMCC26003), respectively, except for the normal
group. Forty-eight hours later, the wounds of three model groups
were treated with a sterile 0.85% saline solution. The wounds
of the treatment group were treated with 100 µl S1 against
E. coli (CMCC44103), or S2 against E. coli (SYPB-3820), or
S3 against S. aureus (CMCC26003) at 16 µg/mL (8 × MIC),
respectively. In the meantime, 100 µl positive drug levofloxacin
was given at the concentration of 0.24 µg/ml (8 × MIC) against
E. coli (CMCC44103), or 64 µg/ml (8 × MIC) against E. coli
(SYPB-3820), or 0.96 µg/mL (8 × MIC) to against S. aureus
(CMCC26003) for positive groups. All the wounds were treated
twice 1 day and observed every 24 h for 14 days. On days 1,
3, 5, 7, and 10, 100 mg of treated skin tissue was removed and
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FIGURE 1 | The workflow of the Multiple Descriptor Multiple Strategy (MultiDS) screening system. DT represents a decision-tree-like screening model, including
three steps of offline calculation and screening, DBAASP database calculation and screening, and four algorithms screening by CAMPR3. WP represents the
weighted point method, which was taken as the theoretical basis to construct the MD index through three calculation formulas. FAAP represents the first-place
amino acid preference.

homogenized in 0.9 ml of sterile 0.85% saline solution, then
the samples were diluted and plated onto Luria-Bertani (LB)
medium. After incubation at 37◦C for 20 h, the CFUs were
counted to represent the bacterial number in the wounds.

The Study of the Bactericidal Mechanism
of Antimicrobial Peptides
Acridine Orange/Propidium Iodide Double Staining
Assay
To investigate the impact of S1, S2, and S3 on the bacterial cell
membrane permeability, AO/PI (Acridine Orange/Propidium

Iodide) double staining assay was carried out by using Live/Dead
Cell Double Staining Kit HR 0462 (Beijing Baiaolaibo Technology
Co., Ltd., Beijing, China). Bacteria were cultured to the
logarithmic growth stage, then washed three times in a 0.01
M phosphate-buffered saline (PBS) solution (pH 7.4) and
resuspended to 1 × 108 CFU/mL in PBS. Afterward, E. coli
(CMCC44103) was treated with S1, E. coli (SYPB-3820) with S2,
and S. aureus (CMCC26003) with S3, respectively, at the final
concentration of 2 µg/mL (1 × MIC), then incubated at 37◦C
for 90 min. After centrifugation, the bacteria were subsequently
treated with AO and PI at 4◦C for 20 min. The samples were
washed with 0.01 M PBS solution (pH 7.4), then observed and
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FIGURE 2 | The probability of the 20 amino acids present at the N terminal.
The X-axis represents 20 amino acids, and Y-axis represents the probability
of each amino acid occurring in the first place at the N terminal.

photographed by a fluorescence microscope (Olympus BX53F,
Olympus, Japan). The bacteria untreated with AMPs were used
as a negative control.

Inner Membrane Permeability Assay
The inner membrane permeability of bacteria was measured
by the released activity of β-galactosidase utilizing ONPG (o-
nitrophenyl-β-D-galactoside) as a substrate. E. coli was harvested
at a logarithmic phase in the MHB medium containing 5% lactose
and washed by centrifugation at 1,000× g for 10 min. Afterward,
the pellet was washed and resuspended to 1 × 108 CFU/mL in
PBS buffer. Exactly 100 µl of E. coli suspension and 90 µl of
peptides solution (final concentration of 1 and 4 × MIC) were
mixed with 10 µL of ONPG solution (30 mM) in a 96-well
microtiter plate. A total of 0.5% of NaCl and 1% of Triton X-
100 were served as negative and positive control, respectively.
The change of absorbance at 420 nm was monitored by utilizing
a microplate reader.

Outer Membrane Permeability Assay
The OM permeability was measured by using N-Phenyl-1-
naphthylamine (NPN) fluorescent probe assay. The bacteria were
harvested at the logarithmic phase and washed by centrifugation
at 1,000 × g for 10 min and resuspended to 1 × 108 CFU/mL in
5 mM 2-[4-(2-hydroxyethyl)-1-piperazinyl]ethanesulfonic acid
(HEPES) buffer (pH 7.2). Then, 100 µl of bacteria suspension
and 50 µl of peptides (final concentration of 1, 2, and 4 ×MIC)
were mixed with 50 µl of NPN (final concentration of 10 µM) in
a 96-well microtiter plate. A total of 0.5% of NaCl solution and
1% of Triton X-100 solution were served as negative and positive
control, respectively. The changes of fluorescence within 10 min
were recorded by employing a microplate reader. The excitation
and emission wavelengths were 350 and 420 nm, respectively.

Peptide and DNA Binding Assay
The gel retardation experiment was conducted according to the
method described by Kim et al. (2018) for exploring the influence
of AMPs on the bacterial genome. The bacterial genomic DNAs
were extracted by using a Vazyme FastPure R© Bacteria DNA
Isolation Mini Kit (Nanjing Vazyme Biotech Co., Ltd., Nanjing,
China). A total of 10 µl genomic DNA (approximately 400 ng)
was dissolved in TE buffer (10 mM Tris–HCl and 1 mM EDTA,
pH 8.0) and mixed with different concentrations of peptide (final

concentration of 0.5, 1, 2, 4, and 8 × MIC), and then, incubated
at 37◦C for 30 min. DNA treated with Penetratin (reported
as cell-penetrating peptide) (de Mello et al., 2019) and DNA
untreated with AMP were served as positive and negative control,
respectively. The extent of DNA migration was measured by
agarose gel electrophoresis using a gel imaging system (Beijing
Sage Creation Science, Beijing, China).

Nucleic Leakage Assay
In order to study the effect of AMP on plasmalemma integrity,
the leakage of nuclear acids (RNA/DNA) was determined by
measuring the absorbance at 260 nm. Bacteria were harvested at
the logarithmic phase by centrifugation at 3,000 × g for 10 min,
washed three times in PBS (pH 7.4), and resuspended to an
absorbance at 600 nm of 0.5. The suspensions were treated with
S1, S2, or S3 at the final concentration of 1, 2, and 4 × MIC.
After incubation at 37◦C for 1, 2, 4, 6, and 8 h, the samples
were passed through a 0.22-µm Millipore and detected the
absorbance at 260 nm.

Scanning Electron Microscope Assay
The bacteria were cultured to the logarithmic phase, harvested,
and resuspended to 108 CFU/mL in PBS (pH 7.4), then treated
with S1, S2, or S3 at the final concentration of 2 × MIC at 37◦C
for 2 h. After being washed with PBS buffer, the samples were
fixed in 2.5% (v/v) glutaraldehyde solution at 4◦C overnight, then
dehydrated through a gradient series of ethanol (50, 70, 90, and
100%) for 15 min at each gradient, and finally dehydrated further
in tert-butanol for 30 min. After coating with gold using an ion
sputtering device (Hitachi E-1010, Japan), the specimens were
observed using SEM (Hitachi S-3400N, Japan).

Transmission Electron Microscopy Assay
The logarithmic phase strains were harvested and resuspended
to 108 CFU/mL in PBS (pH 7.4) and treated with S1, S2, or S3
(2 × MIC) at 37◦C for 2 h. Then a 10-µl bacterial suspension
was dropped onto the copper grids. After sedimentation for
10 min, the liquid was absorbed away, and the samples
were stained with 1% phosphotungstic acid (w/v), dried at
room temperature, and examined by applying TEM (Hitachi
HT7700, Japan).

Statistical Analysis
All the results were performed by GraphPad Prism 8.0 (GraphPad
Software, San Diego, CA, United States). Data represent the
mean ± SD of three replicates. ∗, ∗∗ and ∗∗∗ represent p < 0.05,
0.01, and 0.001, respectively.

RESULTS

The Establishment of the Multiple
Descriptor Multiple Strategy System
To construct a comprehensive and efficient assessment method,
the MultiDS system was established based on 59 parameters,
three strategies (decision-tree like screening model (DT), WP
method, and FAAP), and four algorithms (SVM, RF, DA, and
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FIGURE 3 | The schematic diagram of the screening of cryptic α-helical antimicrobial peptides (AMPs) with the MultiDS system.

ANN). The specific operation process was carried out according
to the following steps (Figure 1).

Step 1: Offline calculation and screening. The stepwise
computation and inspection were conducted for the evaluation
of putative peptides using each parameter as a decision node. If
a peptide satisfies all the predetermined cutoff values, it will be
output to the next step.

Step 2: Online calculation and screening by DBAASP. The
outcome peptides from Step 1 were submitted to the DBAASP
website (see text footnote 2, “general property”) and evaluated by
27 parameters. If a peptide satisfies all the predetermined cutoff
values, it will be outputted to the next step.

Step 3: Online filtering by four algorithms (SVM, RF, DA, and
ANN) in CAMPR3 (Waghu et al., 2016). The eligible peptides
from Step 2 were submitted to the CAMPR3 (see text footnote 4)
and calculated online by four algorithms, namely Support Vector
Machines (SVM), Random Forests (RF), Discriminant Analysis
(DA), and Artificial Neural Network (ANN). The only the scores
given by SVM, RF, and DA were no less than 0.85 and the peptide
was judged as “true” by the ANN algorithm simultaneously,

can the peptide be submitted to Step 4. The above three steps
constituted the decision-tree-like screening model (DT).

Step 4: Offline MD Index calculation. The peptides obtained
by Step 3 were calculated according to formula 1 to get P’,
and then calculated MD’ by formula 2, finally calculated MD
Index by formula 3.

Step 5: Offline screening by the FAAP. The peptides that came
from Step 4 were selected by FAAP strategy to filter out peptides
whose first amino acid was not G, F, K, I, A, L, R, V, S, M.

Through the above five steps, the large peptide library could be
rapidly compressed, which was conducive to mining new AMPs
from large samples rapidly and efficiently.

The Collection of Antimicrobial Peptides Data and
Determination of 59 Parameters
A total of 1,028 α-helical AMPs and their 3,273 data (MIC
values) in the DBAASP database were collected and divided into
16 datasets according to different MIC groups and pathogenic
bacteria (Supplementary Table 1). Meanwhile, a total of
59 physicochemical and structural parameters (P1–P59) were
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TABLE 1 | The antimicrobial activities of S1–S60.

Name MD 1 2 3 4 5 6 7 8 9 10

S1 77.43 2 16 2 8 2 4 2 4 4 4

S2 77.30 2 16 2 8 2 4 2 2 2 4

S3 77.22 2 16 2 2 2 2 2 2 2 2

S4 76.64 32 >64 64 64 16 8 16 8 16 32

S5 76.63 4 >64 8 64 8 8 8 4 4 8

S6 76.60 4 >64 8 64 8 16 16 4 4 8

S7 76.46 32 >64 64 >64 64 64 64 8 16 32

S8 76.39 4 >64 16 64 16 16 16 2 2 2

S9 76.39 16 64 16 64 32 64 64 16 16 32

S10 76.22 8 >64 32 64 16 32 32 4 4 8

S11 76.16 8 32 8 16 8 16 8 16 4 16

S12 76.15 4 32 4 16 2 4 4 4 4 4

S13 76.06 4 64 16 16 4 8 4 4 4 8

S14 75.96 8 >64 32 64 8 16 16 8 4 32

S15 75.85 2 64 4 32 4 8 4 4 4 8

S16 75.72 4 16 4 8 4 8 4 4 4 8

S17 75.61 4 16 4 8 4 4 8 8 4 8

S18 75.54 32 >64 16 32 64 8 64 32 16 32

S19 75.33 4 >64 4 16 4 4 4 8 2 8

S20 75.26 8 >64 16 32 4 8 4 8 4 16

S21 75.22 4 64 16 16 4 8 8 8 4 16

S22 75.18 4 >64 16 16 4 8 8 8 4 16

S23 74.99 8 64 32 16 8 16 8 8 4 16

S24 74.74 4 8 8 8 4 8 4 8 2 4

S25 74.72 8 >64 64 32 8 16 8 8 2 16

S26 74.71 4 64 8 32 8 16 16 16 2 8

S27 74.70 4 16 4 8 8 8 8 16 4 8

S28 74.62 >64 >64 >64 >64 >64 >64 >64 >64 64 >64

S29 74.61 8 32 8 16 16 16 16 8 4 8

S30 74.44 4 16 4 8 8 8 8 8 2 4

S31 74.40 8 32 8 64 16 >64 16 16 2 2

S32 74.35 4 64 8 >64 8 >64 32 8 2 4

S33 74.34 4 32 16 16 8 8 4 8 4 2

S34 74.34 8 64 16 64 8 8 8 16 2 2

S35 74.27 16 >64 32 64 8 >64 8 16 4 4

S36 74.26 4 4 4 8 4 >64 4 8 2 2

S37 74.26 8 >64 32 64 32 32 >64 >64 64 64

S38 74.25 4 >64 32 32 8 8 4 4 2 4

S39 74.17 8 64 32 16 8 4 2 8 2 16

S40 74.13 4 32 4 8 8 4 2 8 2 8

S41 74.08 8 >64 16 16 8 4 4 8 2 4

S42 74.06 >64 >64 >64 >64 >64 64 >64 >64 16 >64

S43 74.03 16 >64 64 16 8 4 4 4 4 8

S44 74.01 8 >64 8 8 8 8 4 8 2 4

S45 74.00 32 32 16 32 16 16 32 16 16 32

S46 73.91 8 16 4 8 8 2 8 4 2 8

S47 73.87 16 64 32 32 16 16 8 8 4 16

S48 73.86 32 >64 >64 >64 16 8 8 8 4 64

S49 73.84 4 >64 >64 >64 32 32 16 8 32 >64

S50 73.80 32 >64 >64 32 16 4 4 4 4 16

S51 73.79 32 >64 32 64 32 32 32 16 16 64

S52 73.78 32 >64 32 64 32 16 16 16 8 32

S53 73.75 8 >64 16 8 8 8 4 4 4 8

(Continued)

TABLE 1 | (Continued)

Name MD 1 2 3 4 5 6 7 8 9 10

S54 73.65 8 >64 32 16 8 4 4 4 4 16

S55 73.64 >64 >64 >64 >64 >64 >64 >64 >64 >64 >64

S56 73.63 8 >64 64 32 8 8 4 8 4 16

S57 73.61 4 16 4 8 8 8 8 4 4 8

S58 73.45 16 >64 64 32 16 16 16 8 8 16

S59 73.36 4 16 4 8 4 4 4 4 2 8

S60 73.35 4 64 4 16 4 2 4 4 2 16

Levofloxacin 0.12 – – 0.5 0.03 0.03 8 0.06 0.06 0.03

Vancomycin – 1 32 – – – – – – –

The color from dark red to dark blue represents the MIC from 2 to >64 µg/ml. The
numbers in the first line: 1. S. aureus (CMCC26003), 2. multiple-resistant S. aureus
(MRSA186), 3. E. faecium (VRE204) (vancomycin-resistant strain), 4. P. aeruginosa
(CMCC10104), 5. E. coli (CMCC44103), 6. K. pneumoniae (CMCC46117), 7.
E. coli (SYPB-3820) (multiple-resistant strain), 8. A. baumannii (ACCC11038), 9.
S. dysenteriae (CMCC(B)51105), 10. S. paratyphi B (CMCC50094). Levofloxacin
and vancomycin were used as control.

designed for the model construction, among which 28 were
from literature reports, 23 were derived from the parameters in
the literature by normalization or unnormalization, and eight
were proposed in this study including α-helix index, normalized
α-helix breaker index (Nα-B), α-helix breaker index (α-B),
consecutive α-helix breakers index (Cα-B), index of two or three
consecutive amino acid residues with identical charges (CC2,
CC3), disulfide bond index (DSB) and α-helix Index II. The
definition and parameter value calculation of 59 parameters were
displayed in Supplementary Table 2.

Establishment and Verification of the Multiple
Descriptor Index
In order to construct the MD index, 16 Spearman correlation
coefficients and the AVCC between the value of 58 parameters
(except P59, which was only used to distinguish helical structures)
and the MIC of AMPs in 16 datasets were analyzed and
listed in Supplementary Table 3. Most correlation coefficients
between the MIC and parameter values of P1–P45 were valid
(p < 0.05), and their absolute values of AVCC were greater
than 0.06, displaying relatively steady and sufficient correlation
strength with MIC values. Therefore, P1–P45 was selected to
construct the MD Index, while, as for P46–P59, due to their
own characteristics (the correlation was weak or unrobust to
the MIC), they did not meet the request of the construction
of the MD index, so they were not incorporated into the MD
index, but designed as an independent limiting parameter in the
decision-tree like screening model. For the calculation of the MD
index, the maximum and minimum values of each parameter
were calculated and listed in Supplementary Table 4. The MD
index of 1,028 AMPs was obtained by min-max normalization for
each parameter and centesimal normalization after the weighted
sum. The Spearman correlation coefficients between the MD
Index and MIC values of the 16 datasets were carried out. The
obtained AVCC value was −0.352, which showed a consistent
negative correlation (p < 0.05) (Supplementary Figure 1A).
Moreover, the absolute value of AVCC of the MD index was larger
than that of SVM, RF, and DA (−0.093, −0.206, and −0.202)
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FIGURE 4 | The therapeutic effects of S1, S2, and S3 in mice skin wound infection. Skin wound bacterial burden on days 0, 1, 3, 5, 7, and 10 in mice skin infected
by (A) E. coli (CMCC44103), (B) E. coli (SYPB-3820), and (C) S. aureus (CMCC26003). *, **, *** represent p < 0.05, p < 0.01, and p < 0.001, respectively.
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FIGURE 5 | The effects of S1, S2, and S3 on promoting wound healing. The
healing of wounds on days 1, 3, 5, 7, 10, 12, and 14 in mice skin infected by
(A) E. coli (CMCC44103), (B) E. coli (SYPB-3820), and (C) S. aureus
(CMCC26003).

(Supplementary Table 5), which indicate that the MD index has
better relevance to the antibacterial activity than the commonly
used algorithms.

To verify the validity of the MD Index, the latest 351 eligible
AMPs with 989 MIC values deposited in the DBAASP database
were selected according to the above criteria. The correlation
coefficient between MD Index and MIC was carried out and the
AVCC value was obtained (−0.336), which showed a consistent
negative correlation (p < 0.05) (Supplementary Figure 1B),
indicating that the MD index can be used as a valid and stable
indicator for the evaluation of AMPs.

The Determination of the Cutoff Value of 59
Parameters
In the stepwise screening procedure of a decision-tree-like
screening model, parameters P1–P58 were used as a separate
indicator in the MultiDS system for screening potential AMPs, so
the priority task was to determine the optimal value range (cutoff
value) of each parameter. For example, the histogram distribution
for P1 (net charge) of 1,028 AMPs ranged from −3 to 23, most
of which were concentrated between 2 and 7 (Supplementary
Figure 2). Considering that the AVCC between P1 and MIC was
−0.447, which meant P1 (net charge) was negatively correlated
with MIC, the cutoff value of P1 was manually determined
tending to prefer a higher value of no less than 5. The cutoff
value was relatively tight because the DNA sequence pool (such
as the human genome used later in this study) is large enough to
satisfy the screening criteria. If the object’s DNA is a small sample,
moderately broad boundary values may be helpful to improve
the coverage of screening targets. Therefore, the cutoff value can
be designed flexibly and subjectively according to the DNA pool
scale. The cutoff values of P2–P58 were manually assigned by
the same method.

The P59 (α-helix II index) value of 999 AMPs with
exact secondary structures (Helix, Rich, Beta, Bridge, Combine
Helix, and Beta) in the APD3 database (Antimicrobial Peptide
Calculator and Predictor, see text footnote 3) were calculated.
The cutoff value was determined according to its histogram
distribution, in which most α-helix AMPs were greater than 0,
while the other four structures were less than 0 (Supplementary
Figure 3). Therefore, the boundary of P59 was manually taken as
no less than 0. The cutoff values of 59 parameters were listed in
Supplementary Table 6.

Establishment of Decision-Tree Like Screening Model
The decision-tree like screening model was established by using
the 59 parameters and four online algorithms as evaluating nodes
and divided into three major screening steps including offline
calculation and screening composed of 32 parameters, online
calculation, and screening by the DBAASP database composed
of 27 parameters and online filtering by four algorithms (SVM,
RF, DA, and ANN) in CAMPR3. Through the above three major
and 63 minor steps, the target peptides could be rapidly screened
out for the subsequent assessment.

The First-Place Amino Acid Preference of
Antimicrobial Peptides
A total of 414 AMPs that met the criteria were selected for the
first amino acid preference analysis. Statistical analyses showed
that 10 kinds of amino acids (G, F, K, I, A, L, R, V, S, and M)
presented with high frequency (sum up to 91.5%) in the first-
place of AMPs. The top 10 amino acid were listed in descending
order: Glycine (G, 36.23%), phenylalanine (F, 12.80%), lysine
(K, 8.21%), isoleucine (I, 7.97%), alanine (A, 5.56%), leucine (L,
5.31%), arginine (R, 5.07%), valine (V, 3.86%), serine (S,3.62%),
and methionine (M, 2.90%) (Figure 2). The rule of FAAP was
integrated into the MultiDS system as a unique strategy for
narrowing the range of potential antimicrobial peptides.
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FIGURE 6 | AO/PI double staining assay. The bacteria stained with AO (A1-1,A2-1,B1-1,B2-1,C1-1,C2-1) and PI (A1-2,A2-2,B1-2,B2-2,C1-2,C2-2) were
photographed under the excitation of 488 and 535 nm, respectively; the merge (A1-3,A2-3,B1-3,B2-3,C1-3,C2-3) was fusion-fluorescence imaging under the
excitation of 488 and 535 nm. The scale bar is 10 µm.
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FIGURE 7 | Absorbance curve at 420 nm of ONPG hydrolyzed by β-galactosidase. (A) E. coli (CMCC44103) was treated with S1, (B) E. coli (SYPB-3820) was
treated with S2.

FIGURE 8 | NPN uptake assay. (A) E. coli (CMCC44103) was treated with S1, (B) E. coli (SYPB-3820) treated with S2, (C) S. aureus (CMCC26003) treated with S3.

Mining of α-Helical Antimicrobial
Peptides From the Human Genome by
the Multiple Descriptor Multiple Strategy
System
The whole human genome (including the coding region and non-
coding region) was performed the six reading frames translation,
and then a total of approximately 70 billion peptides with 15–
25 amino acid residues were generated and screened following
the operation procedure in Figure 3 in approximately 7 weeks.
Subsequently, a series of peptides with the MD index that
met with all the screening criteria of the MultiDS system were
exported. The 337 peptides with MD scores greater than 65
were submitted to the CAMPR3 database for homology analysis.
Generally, the E-value less than 10−5 was considered a high
homology. As for the 337 peptides, the E-values were in the range
of 0.008–9.6, except for the peptide S105 with high homology to
the Human KS-27 sequence, indicating the 336 potential AMPs
had a low homology with the existing AMPs in the CAMPR3.
Similarly, S1–S337 were also put into the APD3 database for
similarity analysis, and the similarity percentage ranged from 36
to 52.17% except for S105. Likewise, there was no similar AMP

to S1–S337 except for S105 in the DBAASP database. The results
validated that the 337 peptides screened from the human genome
by the MultiDS system were novel sequences.

Antimicrobial Activity Assay of the
Potential Antimicrobial Peptides
Considering the cost of solid-phase synthesis, a library
composed of 60 peptides (S1–S60), with the top MD
index score (Supplementary Table 7), were synthesized
and assessed their antimicrobial activities against 10 kinds
of clinically relevant pathogens in vitro, including Gram-
positive bacteria S. aureus (CMCC26003), multiple-resistant
S. aureus (MRSA186), E. faecium (VRE204) (vancomycin-
resistant strain), and Gram-negative bacteria P. aeruginosa
(CMCC10104), E. coli (CMCC44103), E. coli (SYPB-3820)
(multiple-resistant strain), K. pneumoniae (CMCC46117),
A. baumannii (ACCC11038), S. dysenteriae (CMCC(B)51105),
and S. paratyphi B (CMCC50094). The results showed that 59
entities exhibited antimicrobial activities (MIC ≤ 64 µg/mL),
validating the MultiDS screening system had a 98.3% hit rate for
the prediction of encrypted AMPs. Fifty-four entities displayed
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FIGURE 9 | DNA binding assay. Line 1 (M) was the Trans2K Plus II DNA marker; Lines 2, 9, and 16 (C–, negative control) were the genome DNA untreated with
AMP; Lines 8, 15, and 22 (C+, positive control) were the genome DNA treated with Penetratin; Lines 3–7, 10–14, and 17–21 were the DNA of E. coli (CMCC44103),
E. coli (SYPB-3820), and S. aureus (CMCC26003) treated with S1, S2, and S3, respectively, under a concentration gradient of 1, 2, 4, 8, and 16 µg/ml.

FIGURE 10 | Nucleic acid leakage assay. (A) E. coli (CMCC44103) treated with S1, (B) E. coli (SYPB-3820) treated with S2, (C) S. aureus (CMCC26003) treated
with S3.

the MIC value of no more than 8 µg/mL, showing a 90% hit
rate for moderate activity AMPs, and 24 entities possessed MIC
values as low as 2 µg/ml, indicating a 40% hit rate for high
antimicrobial activity AMPs (Table 1). The results validated
the MultiDS system was a more comprehensive and efficient
approach to screening AMPs with a high hit ratio and high
antimicrobial activity (MIC ≤ 2 µg/ml).

Therapeutic Efficacy of S1, S2, and S3 in
Mice Models of Skin Wound Infection
In order to evaluate the anti-infection therapeutic efficacy of
the AMPs obtained from the MultiDS system, a mouse skin
wound infection model infected with E. coli (CMCC44103),
E. coli (SYPB-3820) (drug-resistance bacteria), and S. aureus
(CMCC26003) was established. AMPs S1, S2, and S3 were
selected as the representative samples to heal the wounds,
and compared to the positive drug levofloxacin. As shown in
Figure 4A, the initial bacterial burden in the wound infected
with E. coli (CMCC44103) was (3.98 ± 2.15) × 109 CFU/g,
after treatment of S1 or levofloxacin, the number decreased to
(4.72 ± 3.94) × 103 CFU/g and (3.91 ± 2.87) × 103 CFU/g,
respectively, at day 10, which significantly decreased the bacterial

load by six orders of magnitude. A similar phenomenon
was observed in the other two bacteria. The initial bacterial
burden in the wound infected with E. coli (SYPB-3820) was
(7.33 ± 7) × 109 CFU/g, and the number decreased to
(1.75 ± 2.48) × 104 CFU/g and (2.29 ± 3.78) × 104 CFU/g after
treatment with S2 and levofloxacin, respectively, 10 days later
(Figure 4B), which reduced the bacterial counts by five orders
of magnitude. The initial bacterial burden in the wound infected
with S. aureus (CMCC26003) was (2.73 ± 1.96) × 1010 CFU/g,
and the number decreased to (1.61 ± 2.30) × 104 CFU/g
and (5.37 ± 2.89) × 103 CFU/g after treatment with S3
and levofloxacin, respectively, (Figure 4C), which significantly
reduced by six and seven orders of magnitude. Of note, the
wound bacterial remnants all decreased below 105 CFU/g after
10 days, significantly lower than the untreated group, which
indicated that S1, S2, and S3 could significantly kill the bacteria
and promote wound healing, and exhibited comparable potency
to levofloxacin in the skin wound infection therapy.

On the other hand, the effects of S1, S2, and S3 on promoting
skin wound healing against pathogen infection were shown in
Figure 5. On day 1 of treatment, the wounds were all severely
infected; on days 3–5, the redness and swelling of wounds in
the S1, S2, S3, and levofloxacin treated groups began to decrease
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FIGURE 11 | SEM observation of bacterial morphology. (A,C,E) Was untreated E. coli (CMCC44103), E. coli (SYPB-3820), and S. aureus (CMCC26003).
(A+,C+,E+) Were the partial enlarged details of (A,C,E), respectively. (B,D,F) Were E. coli (CMCC44103), E. coli (SYPB-3820), and S. aureus (CMCC26003) treated
with S1, S2, and S3, respectively. (B+,D+,F+) Were the partial enlarged details of (B,D,F), respectively.

significantly, while the model groups (untreated with any drugs)
had no visible improvement. On day 7, the redness and swelling
of the wounds subsided and began to form scabs in the treatment
groups, while the model groups recovered very slowly. On day
14, the wounds of the treated groups were basically completely
healed, obviously better than the model groups. The blank group

(wounds that were not infected by any bacteria and were not
treated by any drugs) were also healed completely. In conclusion,
S1, S2, and S3 can significantly decrease the bacterial burden
and promote skin wound healing, and the antibacterial effect was
comparable to levofloxacin, which indicated that S1, S2, and S3
have potential as new antibacterial agents.
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FIGURE 12 | TEM observation of bacterial morphology. (A) E. coli (CMCC44103), (B) E. coli (SYPB-3820), (C) S. aureus (CMCC26003), (D) E. coli (CMCC44103)
treated with S1, (E) E. coli (SYPB-3820) treated with S2, (F) S. aureus (CMCC26003) treated with S3.

Mechanism Study
To investigate the bactericidal mechanism of the AMPs obtained
by MultiDS screening, S1, S2, and S3 were selected as the
representatives to act against E. coli (CMCC44103), E. coli (SYPB-
3820), and S. aureus (CMCC26003), respectively.

Acridine Orange/Propidium Iodide Double Staining
Assay
Acridine Orange/Propidium Iodide double staining was observed
under fluorescence microscopy. As shown in Figures 6A1-1,A2-
1,B1-1,B2-1,C1-1,C2-1, all the bacteria (treated or untreated
with AMPs) showed green fluorescence under the excitation of
488 nm, indicating that AO can penetrate all cell membranes.
Compared to the control groups (Figures 6A1-2,B1-2,C1-2) did
not show orange fluorescence, the treated groups (Figures 6A2-
2,B2-2,C2-2) manifested a bright orange fluorescence under the
excitation of 535 nm, indicating that PI had entered bacteria and
combined with DNA. The merged microscopic images (Figures
6A1-3,A2-3,B1-3,B2-3,C1-3,C2-3) showed that the untreated
control strain cells appeared green and the AMP treated cells
appeared yellow, indicating the cell membrane of control strain
were intact and that of AMP treated strain were damaged.
Since PI cannot enter the intact cell membranes but only pass
through the damaged membranes, it is speculated that S1, S2,
and S3 destroyed the bacterial cell membranes and enhanced the
cell permeability.

Inner Membrane Permeability Assay
To investigate the destructive effect of peptides on the cell
cytoplasmic membrane, an inner membrane (IM) permeability
assay was performed. If a peptide destroyed the cytoplasmic

membrane and induced cellular permeabilization, the
extracellular substrate ONPG would enter the cell and be
degraded into o-nitrophenol by the β-galactosidase from the
inner membrane, then the product o-nitrophenol could be
detected at 420 nm. As shown in Figures 7A,B, the absorbance
at 420 nm increased in groups S1 and S2 at the concentration
of 1 × MIC and 4 × MIC faster than that of the negative
control (0.5% NaCl), indicating that S1 and S2 could improve
the membrane permeability of E. coli (CMCC44103) and E. coli
(SYPB-3820), respectively. The absorbance of 4 × MIC was
higher than that of 1 × MIC, indicating the destructive effect
of S1 and S2 was concentration-dependent. The absorbance of
the positive control (1% Triton X-100) increased rapidly in the
first hour, while that of the negative control (0.5% NaCl) raised
slowly. The reason may be attributed to ONPG entering intact
E. coli cells slowly, but penetrating into the damaged cell quickly.
As for S. aureus (CMCC26003), no change in absorbance was
detected at 420 nm whatever treated with S3, 1% Triton X-100
or 0.5% NaCl, this may be related to the low or no expression of
β-galactosidase in S. aureus.

Outer Membrane Permeability Assay
To assess the OM permeabilization by AMPs, the NPN assay
was carried out. The hydrophobic probe NPN can bind to
the hydrophobic part of the bacterial outer membrane and
produces a strong fluorescence at 420 nm in hydrophobic
environments. As observed in Figure 8, the fluorescence of
group S1 (Figure 8A), S2 (Figure 8B), S3 (Figure 8C), and
positive control (1% Triton X-100) increased rapidly within the
first minute and slowly thereafter, but all were higher than the
negative control (0.5% NaCl). Meanwhile, the excitation levels
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showed concentration dependence. The results indicated that S1,
S2, and S3 disrupted the outer membrane of the bacteria and
promoted permeability.

Peptide and DNA Binding Assay
Peptide and DNA binding assay was tested to assess peptide-
induced inhibition of genomic DNA migration. As shown in
Figure 9, after incubation of S1 with the DNA of E. coli
(CMCC44103) (lanes 3–7), S2 with E. coli (SYPB-3820) (lanes
10–14), S3 with S. aureus (CMCC26003) (lanes 17–21) and
negative control (without peptide incubation, lanes 2, 9, 16), all
the DNA migrations were obvious without blocking or trailing
phenomenon, and no DNA remained in the sample ports, which
meant S1, S2, and S3 did not bind to bacterial genomic DNA. On
the contrary, the positive group (lanes 8, 15, 22) showed DNA
aggregated in the loading holes without migration, indicating
that the positive control, Penetratin, bound with the bacterial
genomic DNA and blocked the migration as the precious report
(de Mello et al., 2019). The experiment proved that S1, S2,
and S3 did not exert antibacterial effects through interference
with genomic DNA.

Nucleic Acid Leakage Assay
The nucleic acid leakage assay was conducted to investigate
the effect of peptides on bacterial cell membranes integrity by
detecting the UV absorption of intracellular nucleic acid leakage
at 260 nm. As shown in Figure 10, the absorbance of all the
negative control was close to 0, indicating the bacterial cell
membrane was intact. After being treated with S1, S2, and S3,
the absorbance at 260 nm was obviously changed with the time
course. The absorbance of 4 × MIC groups rose rapidly in the
first 3 h, then slowed down and approached a plateau after 4 h.
It meant the high concentration of S1, S2, and S3 could cause
rapid cell membrane disintegration and produce cellular content
leakage. Correspondingly, although the absorbance of 1 × MIC
groups was lower than that of 4×MIC groups, it was still higher
than that of the negative groups, indicating S1, S2, and S3 could
still damage the cell membrane at the concentration of 1×MIC.

Scanning Electron Microscope Observation
The scanning electron microscope (SEM) was used to
observe the damage to the cell membrane. As shown in
Figures 11A,C,E,A+,C+,E+ (the partial enlarged detail),
E. coli (CMCC44103), E. coli (SYPB-3820) and S. aureus
(CMCC26003) untreated with peptides showed bright and
smooth surface. After being treated with peptides at 2 × MIC
for 2 h, the morphology was irregular and dented, and the vast
majority of the bacterial surface became rough, wrinkled, and
was seriously damaged. The cellular membrane breakage and
disintegration further induced content leakage and bacteria
adhesion (Figures 11B,D,F,B+,D+,F+).

Transmission Electron Microscopy Observation
The morphological and intracellular alterations of bacteria
treated with AMPs were observed by using transmission electron
microscopy (TEM). As shown in Figures 12A–C, the cellular
surface of control bacteria without peptide treatment was intact
and smooth. On the contrary, the surface morphology of E. coli
(CMCC44103) treated with S1, E. coli (SYPB-3820) with S2, and

S. aureus (CMCC26003) with S3 had dramatic changes. The
cell boundary became irregular and blurred, and the collapse of
the cell membrane resulted in the leakage of cell contents and
dispersion of cell debris (Figures 12D–F).

DISCUSSION

With the rapid development of computer technology and
bioinformatics, the discovery of novel AMPs by computer-
assisted screening has been widely used, and more than 30
prediction methods based on diverse data quality, various core
algorithms, and evaluation strategies have been put forward
(Xu et al., 2021). However, most of the current studies mainly
focus on the mining of AMPs from proteome or open reading
frames of genomic sequence. Few studies have explored the
whole genome, including introns and exons as screening targets.
In order to accelerate the discovery of novel and effective
AMPs, this work firstly constructed a high-through versatile
AMP screening system from three aspects of parameters,
strategies, and algorithms, and then comprehensively screened
and systematically evaluated the huge peptide library derived
from the six-frame translation of the global human genome to
predict α-helical AMPs in silico.

Among the 59 parameters, 28 parameters were derived from
literature, 23 parameters were obtained after normalization
or unnormalization, and eight parameters were created for
the first time in this work. When using multiple parameters,
the combination of reasonable strategies can improve the
screening efficiency and hit ratio, otherwise, it will produce huge
calculations and increase the difficulty of screening. The decision-
tree-like screening model is the key to improving the efficiency
of screening AMPs from huge DNA or amino acid sequences.
It is suitable to realize step-by-step screening through binary
classification and to improve the hit rate by multiple parameters
filtering. On the other hand, the multiple parameters filtering
system is beneficial for the evaluation of peptides from multiple
facets. The MD index, as the core part of the MultiDS system,
is proposed based on the WP method, which contributed to
the synthetic assessment of AMPs by various parameters from a
holistic perspective. Through the evaluation of the MD index, the
peptides are assessed in terms of getting a comprehensive score
based on the performance of their parameter values and weights,
thereby avoiding some parameters from being too influential to
conceal other weak parameters. The frequency of the amino acid
that appeared in the first place (N-terminal) showed obvious
preference. Some kinds of amino acids appeared more frequently,
just like “hot-spots,” showing this type of amino acid may be
associated with the activity of peptide. Hence, the FAAP was
used in this work to shrink the AMPs pool in the last step to
improve the hit ratio.

In the screening process, the boundary value of each
parameter is not fixed and can be adjusted according to the
amount of data to be screened. If the object is large samples,
tighter boundary values can improve the screening efficiency; if
the object is small samples such as microbial genome, moderately
broad boundary values may be helpful to improve the coverage
of screening targets. Therefore, the MultiDS system was an open
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screening and evaluation system, and the parameter value range
can be adjusted according to the capacity of the screening sample.

Although several computational methods have been taken
to screen AMPs from various samples (Li et al., 2018; Porto
et al., 2018; Tan et al., 2019; Sharma et al., 2021), the systematic
screening of encrypted AMP from the global human genome
has not been performed. In this study, 337 peptides with 15–
25 amino acid residues were screened out from the entire
human genome including intron and exon with a high MD
score (≥65) by the MultiDS system, and 60 entities were
synthesized to test the antimicrobial activities. As the results in
Table 1 states, 98.3% of entities showed activity against pathogen
(MIC≤ 64 µg/mL), 90% of entities have moderate activity with a
MIC of 8 µg/mL, and 40% of entities have strong activity with
a MIC of 2 µg/mL, which is superior to the recently reported
computational methods. Liu et al. (2018) established an activity
prediction method based on the predicted 3D descriptors of AMP,
in which, the antibacterial effect of the novel AMPs designed by
this method was from 32 to 512 µg/ml. Kavousi et al. (2020)
utilized the 13C-NMR spectral of amino acid combined with the
physicochemical properties of AMPs, such as amino acid acidity
and basicity, size, charged percentages, and so on, to establish a
computational approach to predict AMPs, and the result showed
a 95% accuracy but no detailed antimicrobial activity released.
The artificial intelligence method reported by Torres et al. (2021)
to predict AMP from human proteome showed a 63.6% hit rate,
and 55 synthesized representative peptides showed MIC values
from 0.39 to 128 µg/mL against pathogens. By contrast, the
MultiDS system allows for the high-through mining of novel
AMPs from global genome sequences with a 98.3% hit ratio. As
expected, the mechanism study verified the AMPs destroyed the
integrity of the cell membrane and resulted in the leakage of
bacterial contents. Furthermore, the mouse model of skin wound
infection revealed that S1, S2, and S3 had a significant effect
on promoting skin wound healing caused by Gram-negative
bacteria (E. coli and resistant E. coli) and Gram-positive bacteria
(S. aureus), and their effects were comparable to that of the
positive control drug levofloxacin.

The MultiDS system opens up a new route for the rapid
discovery of candidate antibiotics from the global genome
sequence, and also provides a new strategy for improving the
hit rate with better predictive performance. The identification of
correlation between parameters and MIC values quantitatively
provides the effects of different parameters on the antimicrobial
activity, which brings a new perspective for optimizing the
existing AMPs to improve their antibacterial activity through
comprehensive system analyses. Of course, there is considerable

room for improvement in optimizing the screening system
because the MultiDS system is a primary and open system at this
stage. With the continuous development in the AMPs prediction
field and accumulation of experimental data, the MultiDS system
will be further refined and provide valuable screening methods to
accelerate the discovery of AMPs.
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