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ABSTRACT

Analysis of chromatin-immunoprecipitation
followed by sequencing (ChlIP-seq) usually disre-
gards sequence reads that do not map within
binding positions (peaks). Using an unbiased
approach, we analysed all reads, both that
mapped and ones that were not included as part
of peaks. ChlP-seq experiments were performed in
human lung adenocarcinoma and fibrosarcoma
cells for the metastasis suppressor non-metastatic
2 (NME2). Surprisingly, we identified sequence
reads that uniquely represented human telomere
ends in both cases. In vivo presence of NME2 at
telomere ends was validated using independent
methods and as further evidence we found
intranuclear association of NME2 and the telomere
repeat binding factor 2. Most remarkably, re-
sults demonstrate that NME2 associates with
telomerase and reduces telomerase activity in vitro
and in vivo, and sustained NME2 expression
resulted in reduced telomere length in aggressive
human cancer cells. Anti-metastatic function of
NME2 has been demonstrated in human cancers,
however, mechanisms are poorly understood.
Together, findings reported here suggest a novel
role for NME2 as a telomere binding protein
that can alter telomerase function and telomere
length. This presents an opportunity to investigate
telomere-related interactions in  metastasis
suppression.

INTRODUCTION

Eukaryotic chromosome ends are protected by nucleopro-
tein assemblies called telomeres that are critical for main-
taining chromosome integrity. In humans, telomeres
comprise double-stranded DNA having short-tandem
repeats of 5-TTAGGG-3' that extend into single strand
G-rich overhang of ~130-210nt at the 3-end (1,2).
Though the exact mechanism of how telomeres stabilize
chromosome ends is not well established, it is increasingly
becoming evident that regulatory control of telomerase
activation (and/or recruitment to telomere ends) involves
participation and cross-talk between telomerase and
established telomeric protein complexes, including
telomere repeat binding factors 1 and 2 (TRFI1 and
TREF2), protection of telomere 1 (POTI1), TRF1/TRF2
interacting factor (TIN2), TPP1 and hRAPI (3,4).

In most human somatic cells ~50-100nt are lost from
the telomere end during each replication cycle, and short-
ening of telomeres below a critical length signals apoptosis
(5). In contrast, telomere length is restored in human
cancer and germ cells by telomerase, thereby maintaining
cell proliferation and tumorigenicity (6,7). Telomerase is a
ribonucleoprotein, composed of catalytic telomerase
reverse transcriptase (TERT) enzyme unit and telomerase
RNA (TER), which is used as a template during telomere
elongation (8,9). The contrasting nature of telomere main-
tenance in human tumours vis-a-vis somatic cells is due to
the presence of telomerase, which is otherwise suppressed
in somatic cells. Telomerase level has been correlated with
progression of several cancer types, including acute leu-
kaemia, breast, prostate, lung and melanoma (10).
Although the impact of telomerase in development of
cancer has been extensively studied, its role in invasiveness
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of tumour cells and metastasis are poorly understood
(11,12). Telomere eclongation was noted in metastatic
mouse tumour cells (13) in line with the observation that
though telomere dysfunction initiates carcinogenesis,
telomerase-mediated telomere maintenance is crucial for
sustaining metastasis (11). Indeed suppression of telomer-
ase activity in tumour-bearing mice was found to signifi-
cantly reduce metastatic progression (12,14).

In this context, the metastasis suppressor non-
metastatic 2 (NME2, also known as nm23-H2) is of
interest. Comparison of seven murine K-1735
melanoma-derived cell lines with differing metastatic po-
tential led to identification of the nm23 gene whose low
expression was associated with highly invasive cells (15).
This finding provided first evidence that a single gene
could modulate the invasive phenotype—‘coining’ the
idea of metastases suppressor factors. Human nm23 has
10 known isoforms, HI-H10, and of these HI (or NMEI)
and H2 are the best studied (16-19). Involvement of
NME2 in metastases has been demonstrated, where
overexpression resulted in reduced metastasis of human
oral squamous carcinoma, breast carcinoma and murine
melanoma cells (20-22). Moreover, NME2 expression was
found to negatively correlate with advanced/metastatic
stages across several tumour types (23). However, mech-
anisms underlying anti-metastatic function of NME2 are
still poorly understood.

Herein, following analysis of NME2 ChIP-seq peaks,
we identified in vivo binding of NME2 to human
telomere ends. Based on this, we focused on confirming
NME2 association with telomeres in vivo and its relevance
to function. The results demonstrate NME2 as a telomere
repeat binding factor (TRF), which associates with tel-
omerase both in vitro and in vivo and limits telomerase
activity and telomere length in cancer cells. These func-
tions of NME2 suggest its role as a modulator of telomere
length, which to our understanding has not been observed
earlier for any metastases suppressor. Together, these ob-
servations suggest novel biological functions of NME2,
which may play a key role in understanding metastatic
outcome in the context of telomerase activity.

MATERIALS AND METHODS
Cells and culture conditions

A549 cells were obtained from the national repository of
cell lines at National Centre for Cell Sciences (NCCS),
Pune, India, and maintained in Dulbecco’s Modified
Eagle medium (DMEM) supplemented with 10% foetal
bovine serum at 37°C in 5% CO,. HT-1080 cells were
obtained from the American type cell culture (ATCC,
USA) and maintained in Modified Eagle medium
(MEM) with Earles modification and supplemented with
10% foetal bovine serum at 37°C in 5% CO,.

Chromatin immunoprecipitation

ChIP assays were performed as per protocol provided by
Upstate Biotechnology with modifications as suggested in
Fast ChIP protocol (24). After 48h of transfection of
pcDNA-NME2 with MYC tag using Lipofectamine
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2000 (Invitrogen), antibody against the MYC epitope
(Sigma clone 9E10) was used to immunoprecipitate chro-
matin in A549 and HT-1080 cells. Mouse IgG was used
for mock immunoprecipitation in all the cell lines. Briefly,
cells were fixed with 1% formaldehyde for 10 min and
lysed. Chromatin was sheared to an average size of
~500bp using a Misonix 3000 sonicator. Twenty-five
per cent of lysate was used to isolate input chromatin
using phenol-chloroform and ethanol precipitation.
Lysate was precleared using protein-A sepharose beads,
and ChIP was performed using 5Spg of the respective
antibody incubated overnight at 4°C. Immune complexes
were collected using herring sperm DNA-saturated
protein-A Sepharose and washed extensively. Chelex-100
resin was used to extract DNA from immunoprecipitated
chromatin as described previously (24).

Ilumina library construction and sequencing

NME2-bound DNA from A549 and HT-1080 cells ex-
pressing MYC-tagged NME2 was quantified, and 10ng
from each sample was taken for end repair using
[llumina sample preparation kit. Samples were purified
using PCR purification kit (Qiagen, Germany).
Thereafter ‘A’ base was added to the samples 3’-end
using Illumina sample preparation kit. After the end of
the reaction, samples were again purified by PCR purifi-
cation kit (Qiagen). Then flow-cell primer specific adapters
were ligated to the ChIP DNA fragments and samples
were further purified by MinElute columns. Size selection
was done after adapter ligation using 2% agarose gel. Gel
extraction columns (Qiagen) were used to purify DNA
fragments ranging between 150 and 350 bases. These
eluted samples were then purified using MinElute
columns and these samples were then amplified for 18
cycles to enrich adapter-ligated DNA fragments. After
PCR purification and elution the DNA was quantified
using Picogreen method, and then 3.5 pico moles of
each sample was sequenced on GAII (Illumina, USA)
according to manufacturer’s protocol.

We extracted 36 base sequence reads from the resulting
image files using the open source Firecrest and Bustard
applications on 288-node HP Cluster Platform 3000
running Linux with XC System Software and Sun
Microsystems 24 core server. Reads were trimmed to
5-end 24 bases to minimize inclusion of sequencing
errors typically found within the last few bases towards
the 3-end of reads. All reads were mapped to the
unmasked human genome hgl8 wusing the MAQ
program (25) allowing two mismatches.

Peak generation

To find NME2 binding sites, the resulting mapped reads
were processed using CisGenome as described earlier (26).
Briefly, CisGenome uses a conditional binomial model to
identify regions in which the ChIP reads are significantly
enriched relative to the control reads. We assigned 10%
FDR cut-off (26) to generate NME2-ChIP binding sites.
In order to filter out low-quality sites we applied two
post-processing options boundary refinement and
single-strand filtering (26). For analysis of occurrence
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and enrichment of reads containing Tel,.,, we used the
36bp reads as obtained from sequencing, where Tel,,
units were searched in the first 30 bases to avoid anomalies
due to error-prone sequencing at the 3’-ends.

Generation of simulated reads: promoter and
ENCODE regions

We selected =+ 5kb region (with respect to TSS) of 20663
protein coding genes. Five regions of 100bp each were
randomly selected from each 10-kb region and used to
generate 50 fragments of 30-bp length (scheme given in
Supplementary Methods) such that the fold-coverage
was as similar to that found for overall binding positions
of NME2 ChIP-seq peaks (~14.8-fold). This resulted in a
total of ~5.16 million reads (at 15-fold coverage). TTAG
GG/CCCTAA sequence patterns with up to one mismatch
were searched within these reads. In a similar way, 30 Mb
of ENCODE region were selected representing 44 genomic
regions from the whole genome (27). Each genomic region
was further distributed into windows of 10 kb. From each
10-kb window, seven genomic regions of 500bp were
randomly selected and used to generate 250 fragments of
30-bp length. Total 5.25 million reads were obtained at
15-fold coverage and used to find the occurrence of
telomere repeat units GGGTTA/CCCTAA with up to
one mismatch.

Dot blot analysis

For dot blot analysis, ChIP DNA was denatured at 95°C
and dot blotted on hybond membrane (Amersham) in 2X
SSC buffer. Membranes were pre-hybridized in
Rapid-Hyb buffer (Amersham) for 15min. Following
this, hybridization with a 900-bp radio-labelled telomeric
probe (TTAGGG), or 418-bp radio-labelled ALU probe
(Supplementary Information) was performed for 3h at
65°C and membranes washed with 2X SSC and 0.1%
SDS three times before exposing overnight on
phosphoimager imaging plate. All data were scanned
using FUJI Phosphoimager FLA2000. Data was pro-
cessed and quantified using Multigauge image analysis
software.

Immunofluorescence microscopy

Cells were grown overnight on cover slips and transfected
with GFP-NME2. After 36h cells were fixed in 4%
paraformaldehyde for 20min at 37°C in a water bath.
Samples were blocked with blocking buffer (1X PBS,
1% BSA, 0.5% Triton X-100, 0.05% Tween 20) contain-
ing 10% goat serum for 30min at 37°C and then
incubated with anti-TRF2 (NB110-57130, Novus
Biologicals) or anti-hTERT Y182 (ab32020, Abcam,
USA) for 2h at 37°C. After washing by 1X PBS,
samples were incubated with secondary antibody
conjugated with alexa-594 (Molecular probes, USA).
Nuclei were counterstained with 4, 6-diamidino-2
phenylindole (DAPI) (Santacruz, USA). All images were
collected with Nikon eclipse-Ti wide-field fluorescence
microscope (Apochromat Pluar 60X oil objective lenses)
and corrected for background using Nikon NIS elements
AR software. Further analysis for image co-localization

and Pearsons’s correlation were obtained using Nikon
NIS elements AR software.

Preparation of nuclear extracts

A549 and HT-1080 cells grown in DMEM media supple-
mented with 10% FBS (Sigma, USA) were collected and
washed in cold 1X PBS and nuclear extract was isolated
using nuclear extract kit (Cell Extract from Sigma, USA)
as per manufacturer protocol.

Immunoprecipitation

For immunoprecipitation experiments, 1mg of nuclear
extract was incubated for 2h at 4°C with 6ug of
anti-NME2 antibody (MC-412 Kamiya Biomedical
Company, USA), anti-telomerase reverse transcriptase
antibody (Y182; ab32020 Abcam) or anti-TRF2
(NB110-57130 Novus Biologicals), and immunopre-
cipitation was performed using Catch and Release
co-immunoprecipitation kit (Millipore, USA) as per
manufacturer’s protocol. Antibody used for NME2 did
not cross react with NME1 (Supplementary Figure S2).
Where indicated RNase-A, ethidium bromide or DNase 1
was included during the incubation at 0.1 mg/ml. For
NMEI ChIP and western-blotting, anti-NMEI antibody
(MC-382, Kamiya Biomedical Company) was used.

Antibodies and western blotting

For western analysis, immunoprecipitated nuclear extract
were  separated by sodium dodecyl sulphate-
polyacrylamide gel electrophoresis (SDS-PAGE) and
transferred to polyvinylidene difluoride membranes
(Immobilon FL, Millipore); following primary and sec-
ondary antibodies were used for immuno-blotting.
Primary antibodies anti-TRF2 (Novus Biologicals) and
telomerase reverse transcriptase, hTERT (Y 182; Abcam)
and secondary antibodies, anti-mouse and anti-rabbit
alkaline phosphatase conjugated were from Sigma.

Recombinant NME2 and NME2¥'?* expression

Recombinant NME2 and mutant (K12A) were expressed
in Escherichia coli using the pPRSETA-NME2 clones (28)
and purified using Ni-NTA chromatography to obtain
His-tagged protein, which was used for all pull-down ex-
periments (Supplementary Figure S1). In an independent
preparation His-tag was removed, resin bound protein
was cleaved (0.6 pug of enterokinase per 25pg of fusion
protein in reaction buffer (S0mM Tris pH 8.0, 5SmM
CaCl,) and subsequently enterokinase was removed
using enterokinase removal kit (Sigma, USA). NME2
without His-tag gave comparable results as the
His-tagged product in all assays.

In vitro pull down assays

Bacterially expressed 6X His-tagged full-length NME2
was purified using Ni-NTA agarose beads (Qiagen) as
described earlier (28); 1pg of His-tagged protein on
beads was used for each binding reaction. For pull-down
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assays 1mg of nuclear lysate was incubated with
His-tagged protein for 1h after preclearing with
Ni-NTA beads. The mixtures were washed three times
with NETN (20mM Tris, pH 8.0, 100mM NacCl, 0.5%
Nonidet P-40 and 1 mM EDTA), eluted with 2X SDS
buffer, resolved by SDS-PAGE, and transferred to
polyvinylidene difluoride membranes (Immobilon FlI,
Millipore) followed by analysis using respective primary
and secondary antibodies.

Analysis of telomerase activity

Cells were lysed in a lysis buffer and telomerase-
containing fraction was prepared for real-time telomerase
activity assay using quantitative telomerase detection kit
(US-Biomax, USA) according to the manufacturer’s
protocol. To examine the effect on telomerase activity,
various concentrations of His-tagged NME2 or NME
(K12A) were incubated for 10 min at 30°C before subject-
ing to telomerase extension. Total protein extract (1 pg)
was used in each reaction. For stable cells with sustained
NME?2 or empty vector expression (control cells), an equal
amount of lysate was taken and further used for the assay
as mentioned above. All assays were performed in tripli-
cate and relative fold-change in expression was calculated
from the observed Ct values.

Flow cytometry for telomere length quantification

Analysis was performed using Telomere PNA Kit/FITC
(DAKO) in a FACS Calibur flow cytometer (Becton
Dickinson Immunocytometry Systems, San Jose, CA)
using the FL1 channel for detection of fluorescein signal
and the FL3 channel for propidium iodide. No compen-
sation was set on the instrument. List mode data from 10*
cells in each experiment was collected and analysed using
CELL-Quest software (Becton Dickinson). The telomere
fluorescence signal was defined as the mean fluorescence
signal in Gy/G; cells after subtraction of the background
fluorescence signal (i.e. FISH procedure without probe).
Sample preparation and normalization was done as per
manufacturer protocol. Experiments were performed
using three independent preparations of either HA-
NME2-expressing or control HA-vector-transformed
cells maintained for up to 200 population doublings in
each case.

RT-PCR for hTERT and NME2

RNA was extracted using TRIzol reagent (Sigma, USA)
as per the manufacturer’s protocol. Complementary DNA
was synthesized using cDNA synthesis kit (Applied
Biosystems, GMBH) following the manufacturer’s in-
structions. Transcript levels were determined using the fol-
lowing primer set. NME2: fwd-CTGTCTTCACCACGTT
CAGC, rev-GGCCTCTGAAGAACACCTGA. hTERT:
fwd-GCCGATTGTGAACATGGACTACG, rev-GCTC
GTAGTTGAGCACGCTGAA. B-Actin: fwd-TGCGTG
ACATTAAGGAGAAG, r1rev-CTGCATCCTGTCGGC
AATG.
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RESULTS

ChIP-seq for NME2 shows abundance of the telomere
DNA motif

ChIP, followed by massive parallel sequencing, was per-
formed in A549 lung adenocarcinoma cells for genomic
binding positions of NME2. Because NME2 has several
human homologs, MYC-tagged NME2 was expressed and
immunoprecipitation was performed using antibody
specific for MYC-tagged NME2, as reported earlier (28).
NME2-immunoprecipitated samples were sequenced in
duplicate at two ChIP-DNA concentrations in addition
to mock sample for background correction; numbers of
sequenced and mapped reads are given in Supplementary
Table S1A. Using human reference genome sequence
(hgl8) >80% alignment of reads was achieved in the
case of NME2-ChIP sample; overlapping reads were
used for constructing NME2-binding positions (peaks)
following background subtraction using published pro-
cedures (29). As a positive control, the only demonstrated
binding site of NME2 (28,30-33) within the c-myc
promoter was searched for and found in the constructed
peaks. Surprisingly, close survey revealed several peaks
with telomeric repeat (Telyp) units, TTAGGG or CCCT
AA, and herein we have focused on this finding. We found
35 NME2-ChIP peaks of average length 250.6 bp with
more than 70% identity with TTAGGG/CCCTAA
stretch of same length (average identity = 88.2%,
Supplementary Table S2A), wherein the observed
average coverage of 200.8-fold was remarkably high
relative to the 14.8-fold coverage observed overall for all
NME2-peaks (Supplementary Table S1A). Figure 1A
shows representative examples of peaks where all reads
with perfect TTAGGG/CCCTTA (in red) are shown
along with all other reads (blue).

Telomeric-repeat containing reads are unlikely to result
from interstitial chromosome regions

Taking clue from this, for further analysis we considered
all 36 bp reads that could be mapped within peaks and
asked what fraction of the reads contained Tel,, units.
Either 4 or 3 6-mer units of TTAGGG/CCCTAA (after
allowing 0/1 mismatch within each unit; in the following
text we designate these units as Tel.ep.g/1) Was searched
within the first 30 bp. We reasoned that Tel,., units are
unlikely to result from promoter or other interstitial
regions of the genome, where ChIP-seq binding analysis
typically focuses on. Therefore, two control sets were
made: (a) 10-kb region around transcription start sites of
20663 unique human genes (~206.6 Mb) and (b) all
ENCODE regions (30 Mb); 30-mer reads were randomly
generated computationally [with coverage identical to that
noted within NME2-ChIP peaks (methods)] and analysed
for number of Tel,., units. For every million ChIP-seq
reads we found >9000 and >6000 reads, respectively, for
replicate one and two, with four or three Telepo,1 units
(Figure 1B and C). In contrast, on searching 5.17 million
reads generated randomly from promoter regions, we
found very few reads having Tel,., units (2 and 65 reads
with 4 Tel,p, units having 0 or 1 mismatch, respectively; 14
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A
ChrNo chri chri8 chrit chri5 chrs chrY
Length (bp) 543 651 367 1647 467
Fold-coverage 64 349 98 153 241
Pvalue 8.96E-10 2.35E-06 281E-02 2.10E-03 6.16E-57 8.43E-18
chr1:1-543 chr18:1-651 chr5:62911-64557 chrY:57772357-57772823
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Figure 1. NME2-ChIP-seq peaks with telomere repeats. (A) Representative peaks that are made of almost entirely Tel,, units—TTAGGG/
CCCTAA. Lower panel shows reads (with or without Tel,.,) mapped to peaks; full sequence for one peak is shown below (non-Tel,, reads in
blue). Percentage identity is with respect to a stretch of TTAGGG/CCCTAA of similar length; fold-coverage is the ratio of total bp count of reads
with Tel,., that map within a peak over length of the peak. Supplementary Table S2A shows all peaks with Tel,, units. Fraction of reads with either
four Tel,, (B) or three Tel,, units (C) that mapped within NME2-ChIP peaks are shown in comparison to reads generated computationally from

human promoter or ENCODE regions.

and 190 reads with 3 Tel.p, units with 0/1 mismatch, re-
spectively). This was also true for 5.25 million reads made
from ENCODE regions (4 and 26 reads with 4 Tel, units
having 0/1 mismatch, respectively; 16 and 161 reads with 3
Tel,.p, units with 0/1 mismatch, respectively). This clearly
showed that a substantial number of tags harboured telo-
meric repeats and also that these tags are unlikely to result
from promoters or interstitial genomic regions.

In order to validate the above results in a second cell
line, ChIP-seq was performed using MYC-tagged NME2
in human fibrosarcoma HT1080 cells and analysed in the
manner described above. Results were analogous to the
ones obtained from A549 cells and are presented in
Supplementary Tables S1B and S2B.

ChIP-seq algorithms typically focus on mappable
regions (where reads can be placed at unique positions
on the reference genome) of the genome and furthermore
disregard regions that are not found to be enriched with
reads vis-a-vis control samples for peak construction (29).
We noted that telomeric repeats would be intrinsically
limited in these aspects due to the repeating nature of
the sequence, and found that roughly a third (~38%) of
the Tel,, reads did not map within designated
NME2-ChIP positions. As above, we noted clear enrich-
ment of reads with Tel,po, in both replicates of
NME2-ChIP relative to promoter or ENCODE regions
(Supplementary Table S3A and S3B). Analysis of reads
that do not constitute peaks, however, is with the caveat
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that background signal from the mock sample is disre-
garded, since background correction is typically made
during the peak generation process. On the other hand,
multiple analytical protocols in the past have described
surprisingly uneven representation of reads in control
samples and prescribed this to various reasons, including
chromatin accessibility, mappability of the genome and
sample preparation for background correction (34,35).
We noted that though relatively less (~30-35% lower
compared to NME2 ChIP) there were many telomere
repeats found in the IgG immunoprecipitated mock
samples. It is possible that G/C-rich sequence and/or
more accessibility at the chromosome ends makes
telomeric-repeats relatively more amenable to chromatin
pull-down. We reasoned that if one could use this infor-
mation as lead and confirm using independent experi-
ments, ChIP-seq would be useful to analyse binding to
additional regions of the genome. Keeping this in mind,
we devised experiments to test NME2 binding to telomere
ends and its functional relevance.

NME2 binds to telomere ends in vivo

To confirm NME?2 localization at telomere ends, we tested
the intracellular association of NME2 with telomeric
repeat DNA by chromatin immunoprecipitation (ChIP)
using anti-NME2 antibody to immunoprecipitate
protein-associated DNA fragments followed by dot blot
analysis. Telomere-specific probes were hybridized to
immunoprecipitated DNA in each case to detect associ-
ation to telomeres. ChIP using anti-NME2 antibody was
enriched for telomeric DNA relative to IgG (Figure 2A
and B). Because NME1 and NME2 have 80% similarity at
amino acid sequence level, in order to confirm NME2-
specific localization we used MYC-tagged NME2, which
was immunoprecipitated using an antibody-recognizing
MYC epitope and gave clear enrichment in ChIP signal
relative to IgG in the dot blot (Figure 2A and B). In
contrast, ChIP against MYC-tagged NMEI using
anti-MYC-tag antibody was not significantly enriched
over its isotype control. We further used ChIP for TRF2
as a positive control in these experiments where a detect-
able signal was clearly visible. As a control for binding
specificity, dot blots were hybridized with Alu sequences
(Figure 2A, right panel). Further quantitation of the
hybridized signals revealed that anti-MYC-tagged
NME2 ChIP yielded about 42% (+3; n = 3) of the total
telomeric DNA in HT-1080 cells (Figure 2B) while TRF2
ChIP yielded about 58% (£3; n = 3).

We additionally checked telomere-specific binding of
NME?2 using a PCR-based method demonstrated earlier.
This method has been used earlier for telomeric DNA
detection in several reports (36,37); typically, on PCR
amplification, bands ranging from 50 to ~500bp are
observed signifying enrichment of telomeric fragments.
DNA immunoprecipitated by anti-MYC tagged NME2,
anti-TRF2 or anti-MYC tagged NMEI1 antibodies was
PCR amplified using telomere-specific primers. We
observed, as expected a clear enrichment of PCR signal
in the anti-NME2 and TRF2 ChIP sample between 50 bp
and ~500 bp relative to the control sample where a specific
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isotype antibody was used (IgG) (Figure 2C). This
signified in vivo association of NME2 with telomeric
DNA. No PCR amplification was found in the case of
anti-NMEI1 ChIP.

NME2 physically interacts with TRF2

As a further test of in vivo association with telomere ends,
we asked if NME2 co-precipitates with any established
telomere-end binding protein. Co-immunoprecipitation
using anti-NME2 antibody from the nuclear extract of
HT-1080 and A549 cells followed by western blot
analysis indicated that NME2 physically associates with
established TRF2 (Figure 3A-C and Supplementary
Figure S2A). To validate the interaction we used
anti-TRF2 antibody for immunoprecipitation from the
nuclear extract of HT-1080 cells, where NME2 was
detected in the immunoprecipitated fraction using
anti-NME2  antibody  (Figure 3B), confirming
NME2-TRF2 interaction in the nucleus. NME2 inter-
action with TRF2 was further verified by in vitro
pull-down from the nuclear lysate using His-tagged re-
combinant NME2 as bait, and the pull-down fraction
was probed using anti-TRF2 antibody (Figure 3C).
Enrichment of TRF2 was observed in fractions obtained
from pull-down using His-tagged NME2 relative to
Ni-NTA beads only (Figure 3C).

To test the possibility that NME2 interaction
with TRF2 is DNA-dependent and/or NME2/TRF2
co-purify with telomeric DNA, we repeated the
co-immunoprecipitation experiments in the presence of
DNAse I or ethidium bromide (for intercalation of
double-strand DNA) using anti-NME2 antibody and
probed with anti-TRF2 antibody. NME2-TRF2 inter-
action was observed in both cases after treatment with
DNAse I or ethidium bromide, indicating that DNA
binding of NME2 was not essential for NME2-TRF2
association (Figure 3D and Supplementary Figure S2B).
Recently, it was reported that telomeric repeat DNA is
transcribed, which is known as telomeric repeat-
containing RNA (TERRA) (38). Therefore, we further
tested whether RNA was necessary for NME2 interaction
with TRF2. Co-immunoprecipitation in the presence of
RNAse-A did not affect NME2-TRF2 interactions.
Therefore, it is unlikely that DNA/RNA binding (or
any co-purifying nucleic acids) promotes association
between NME2 and TRF2. Together, though these
results support NME2-TRF2 association, they do not
preclude involvement of another protein in assisting the
interaction.

We also checked for intracellular co-localization of
NME2 with TRF2 and found that NME2 localizes with
TRF2 within the nucleus in HT-1080 (Supplementary
Figure S3). However, though TRF2 immunofluorescence
was distinct, we noted that NME2 staining inside cells was
diffuse in nature, as was found in reports by several
groups earlier (39-43). This appears to be an inherent
characteristic of NME2, which limits the use of the im-
munofluorescence co-localization method in the case of
NME2.
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NME?2 is shown for either His-tag NME2 (A) or His-tag NME2 (K12A) (B) after incubating with telomerase extracts from HT-1080 cells for 10 min
at 30°C. All experiments were performed in triplicate. **P <0.01, *P <0.05.

NME2 inhibits telomerase activity in vitro

To question the relevance of NME2 association with
telomere ends, we focused on testing whether NME2
had any influence on telomerase activity. Quantification
of telomerase activity (real-time monitoring of the TRAP
assay product) in the presence of NME2 gave a
dose-dependent decrease in telomerase catalytic activity
in cell lysates prepared from HT-1080 (Figure 4A).
Increasing amount of purified recombinant His-tagged
NME?2 was used. These results showed that NME2 nega-
tively affects the typical 6-nt ladder of primer extension
products characteristic of human telomerase. Nuclease
activity of NME2 has been reported (44), and therefore
inhibition of telomerase extension could result from
cleavage of template DNA required for telomerase exten-
sion. This was checked using recombinant His-tagged
mutant NME2%'?A which is devoid of cleavage activity
(28). Telomerase inhibition by NME2X?A was very
similar to that obtained for wild-type NME2
(Figure 4B), indicating that telomerase inhibition was
unlikely to result from DNA cleavage. In order to
ensure the specificity of telomerase inactivation by
NME2/NME2 (K12A), we used similar concentrations
of bovine serum albumin (BSA) as a non-specific control
and found there was no inhibition of telomerase activity
(Supplementary Figure S5).

NME2 associates with telomerase

Next we sought to ask whether NME2 associates with
telomerase. In co-immunoprecipitation experiments per-
formed with nuclear extract of HT-1080 and A549 cells,
hTERT was readily detected by western blot in the
immunoprecipitated anti-NME2 fraction, but not in the
isotype control (IgG) (Figure 5A and Supplementary
Figure S6A). Conversely, on using anti-hTERT antibody
for immunoprecipitation from nuclear extract of HT-1080
cells, NME2 was detected in the immunoprecipitated
fraction using anti-NME2 antibody (Figure 5B). In
order to test the interaction more specifically, we used
HA-tagged hTERT, and NME2 was readily detected by
western blot in the fraction immunoprecipitated with

anti-HA antibody, but not in the isotype control
(Figure 5C). Further confirmation of this interaction was
gained from in vitro pull-down assay. Using His-tagged
NME?2 as the bait protein, we were able to extract
hTERT from the nuclear extract (Figure 5D). In
addition to this, we performed immunofluorescence mi-
croscopy to test NME2 localization with hTERT within
the nucleus (Supplementary Figure S3). However, as men-
tioned above we found that NME2 distribution in the
nucleus was diffuse while hTERT occupancy was distinct.

Keeping in mind that NME2 associates with telomeric
DNA, it is possible that NME2 interaction with telomer-
ase is DNA-dependent and/or NME2/telomerase
co-purify with telomeric DNA. To check this possibility
we repeated the co-immunoprecipitation reactions in the
presence of DNAse I or ethidium bromide using
anti-hTERT antibody and probed with anti-NME2
antibody. NME2-hTERT association was found to
remain largely unaltered after treatment with DNAse I
or ethidium bromide, though we noted some decrease in
the case of DNase-I, and this was not significant
(Figure 5D and Supplementary Figure S6B); also,
pull-down efficiency was similar in all cases (lower
panel). We further tested whether involvement of the
RNA component of telomerase (hnTERC) was essential.
Co-immunoprecipitation in the presence of RNAse-A
again did not affect NME2-hTERT association signifi-
cantly, suggesting that the RNA component of telomerase
may not be essential for NME2-hTERT association.
However, this does not exclude the role of
telomerase-bound hTERC that may not be amenable to
RNase-A digestion. Together, though these results
support the possibility that DNA/RNA binding is not ne-
cessary, it does not rule out the role of other proteins in
NME2-hTERT association.

Sustained NME2 expression results in reduced telomerase
activity and telomere length in vivo

Based on the finding that NME2 inhibits telomerase
activity in vitro, we next sought to check whether NME2
influenced telomere length and/or telomerase activity
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in vivo. In order to check this, HT 1080 cells with stable
expression of HA-tagged NME2 (Figure 6A and B) were
generated and the fluorescence-based FLOW-FISH
method (45, 46) was used to quantify telomere length
relative to cells that were transformed in a similar
manner with the HA-tag vector backbone lacking
NME2. Reduced telomere length relative to vector-
transformed cells was observed across increasing popula-
tion doubling times (Figure 6C). Consistent with this, we
found a marked reduction of telomerase activity (real-time
TRAP assay) in cells expressing NME2 compared to
vector-transformed cells (Figure 6D), in line with the
in vitro results showing inhibition of telomerase activity
in the presence of NME2. It is possible that reduced
telomerase activity was due to lower levels of hTERT ex-
pression. Therefore, we checked telomerase levels. NME2-
expressing stable cells showed no significant change in

hTERT transcript and protein levels relative to the
vector-transformed cells (Figure 6E and F).

DISCUSSION

Several aspects of the findings presented here demonstrate
novel biological functions of NME2 related to telomere/
telomerase interactions. First, using a novel method of
analyzing ChIP-sequencing short-read data we found
that NME2 localizes at telomere ends in vivo; as further
support of its presence at telomere ends, NME2 was found
to physically associate with the telomeric double-strand
binding factor TRF2. Second, our findings reveal NME2
interaction with telomerase and demonstrate that NME2
negatively regulates telomerase activity in vitro and in vivo.
Finally, we observed that telomere length was reduced in
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cells with sustained expression of NME2 relative to
vector-control cells. To the best of our knowledge,
in vivo association of NME2 with telomeres, TRF2 or
telomerase, including NME2-mediated reduction in tel-
omerase activity and telomere length in cancer cells have
not been reported before.

One carlier study reported that recombinant NME2
binds to short telomeric oligonucleotides and influences
telomerase activity in vitro (however, we noted that an
unusually high amount of NME2 was used) (47). Our
findings, on the other hand, are based on the initial
finding that NME2 associates with telomere ends in vivo
(ChIP-seq and other experiments). Furthermore, telomer-
ase activity and telomere length measurements performed
in vivo using cells modified for sustained NME2 expression
complement the initial findings and demonstrate a novel
function of NME2.

It has been reported earlier that NME2 occupies the
nuclei specifically in S-phase and not in the M-phase
(48). This is consistent with the likely role of NME2 in
this context, as telomere synthesis and related regulatory
activities occur primarily during the S-phase. A recent

paper that identified all proteins associated with telomeres
using a high-throughput method did not find NME2 (49).
Though reasons for this are not clear to us, considering
the S-phase-specific localization of NME?2 it is possible
that NME2-telomere association is transient in nature,
limiting identification by high-throughput methods.
Apart from the reported NME2 ChIP-seq peaks har-
bouring telomeric repeat units we found many instances
of binding positions with two to four contiguous repeating
units. We believe this results from sub-telomeric regions
where interspersed TTAGGG repeats have been noted
earlier (50). In line with this we also noted several peaks
that resulted from regions distant from telomere ends
(Supplementary Table S2A and S2B). Together, this
suggests that NME2 recognizes telomeric repeat sequences
irrespective of their position within the genome.
Correlation between telomerase levels and progression
of metastasis have been reported (12, 14). Ribozyme-
mediated suppression of mouse telomerase RNA gave
decreased telomerase expression and telomerase activity
in B16-F10 murine melanoma resulting in reduced
tumour invasion and metastatic potential (14). On the
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other hand, reduced telomeric DNA content was found to
adversely affect breast cancer-free survival (51), indicating
the complexity of telomeres/telomerase in relation to
cancer progression (52). Interestingly, a recent study
demonstrated that the contrasting observations regarding
tumour-suppressive and -promoting potential of telomere-
shortening could be due to the status of the tumour sup-
pressor p53 (53). In this context, it is interesting to
consider that telomere length/telomerase activity may
play a key role in metastatic progression. Findings
reported here showing NME2, a metastases suppressor,
as a potential regulator of telomerase activity suggest the
possibility that NME2 negatively influences metastatic
invasion by controlling telomerase activity.

Although our data demonstrate NME2 as a telomere
binding factor that associates with and modulates telomer-
ase activity in vivo, further work is required to understand
the implications of NME2-mediated telomere transactions
with reference to metastases suppression. For example, it
will be interesting to study the mechanisms of how NME2
may function as a connection between telomere length
alteration and metastatic progression of cancer cells. To
our knowledge this is the first evidence directly connecting
any metastases suppressor to the telomere machinery in a
cellular context.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online:
Suplementary Method, Supplementary Tables 1-3 and
Supplementary Figures 1-6.
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