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Abstract: This article discusses the main uses of 1D and 2D nanomaterials in the development of
conductometric gas sensors based on metal oxides. It is shown that, along with the advantages of
these materials, which can improve the parameters of gas sensors, there are a number of disadvantages
that significantly limit their use in the development of devices designed for the sensor market.
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1. Introduction

In the literature, one can find a large number of works aimed at promoting the advantages of
nanomaterials for various applications [1–21]. As a rule, these articles promote the idea that the use of
nanomaterials such as 1D and 2D nanomaterials, as well as hierarchical structures will solve the main
problems of devices made on the basis of conventional materials. In this review, we will not follow this
tradition. We will try to give a realistic look at the problem of using nanomaterials and show that,
along with obvious advantages, 1D and 2D nanomaterials have disadvantages, which in some cases
can significantly limit their application.

As an object for consideration, we chose the metal oxide-based gas, vapor and humidity sensors
of conductometric type [15,22–28]. First, metal oxide conductometric sensors are simple, compact, and
durable devices that allow controlling the presence in the atmosphere of various toxic and explosive
gases and vapors [27–33]. These sensors are easy-to-manufacture and characterized by low production
costs. This means that metal oxide conductometric gas sensors can be mass-produced at a reasonable
cost. The principles of their functioning, based on adsorption-desorption processes and catalytic
reactions, taking place on the surface of metal oxides and accompanied by an electronic exchange
between adsorbed particles and the bulk of metal oxide, are well known. As a result of these reactions,
a decrease or increase in the resistance (conductivity) of the gas-sensitive layer occurs, which is
proportional to the concentration of the test gas [22–27,34]. The processes occurring on the surface of
metal oxides during interaction with gases and vapors are repeatedly and in detail described in reviews
and books [27,28,35–61]. Second, metal oxide conductometric gas sensors from the very beginning
of their development were based on the use of nanomaterials. Metal oxide crystallites forming a gas
sensitive layer always have a size of less than 100 nm [29,62]. Third, the crystallite size reduction is one
of the most common approaches used to improve gas sensor parameters [62–64].

As for the metal oxides themselves suitable for gas sensors design, the experiment showed that a
variety of materials such as binary oxides (SnO2, In2O3, WO3, TiO2, Cu2O, Fe2O3, V2O5, etc.), complex
metal oxides (CdIn2O4, NiTa2O6, CoTa2O6, CuTa2O6, BaSnO3, LnFeO3, etc.), and nanocomposites
(SnO2-Fe2O3, SnO2-WO3, In2O3-Fe2O3, etc.) can be used for these purposes [25,60,65–71]. At that
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point, it was established that we do not have an ideal gas-sensitive material [65,72,73]. All the materials
have their advantages and disadvantages. Some have low selectivity, others have increased sensitivity
to humidity, some are stable only at low temperatures, some require elevated temperatures for efficient
operation, etc. Therefore, when choosing a metal oxide-based gas sensing material, it is necessary to
take into account the type of sensor being developed, the nature of the gas tested, the technologies
used in the manufacture of the sensor, and operating conditions [65,74–76].

It should also be borne in mind that metal oxides suitable for the manufacture of gas sensors
can form a wide variety of metal oxide nanostructures, which also have their own pronounced
features. These are 0D, 1D, 2D, and 3D structures, which include nanodots, nanorods, nanowires,
nanotubes, nanobelts, nanosheets, nanofibers, and various hierarchical structures such as nanospheres,
nanowhiskers, nanorings, nanoflowers, core-shells, etc. [3,9,67,71,77–86]. SEM images of some
nanostructures are shown in Figure 1.
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It is seen that the indicated 0D, 1D, 2D, and 3D nanomaterials due to the structural features will
form gas-sensitive layers, which can radically differ from each other even when using the same metal
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oxide. This means that the choice of a nanomaterial with the necessary structure can become one of
the additional methods for optimizing parameters of gas sensors, which forces us to consider in more
detail the specifics of gas sensors based on these 0D, 1D, 2D, and 3D nanomaterials. In this review,
however, we will not consider 0D structures or nanodots, since almost all nanocrystallites used in
the development of conventional gas sensors fall under the definition of nanodots. The properties of
these materials and devices based on them are examined in detail and systematized in many reviews
and books [23,24,65–67,74,94]. In particular, it was shown that, in order to achieve optimal sensor
parameters, the sensitive material must have a certain set of properties [26–28,65,67,76,94–97]. First,
the sensitive material must have a certain combination of electrophysical, chemical, and catalytic
properties [38,65]. Second, for gas sensors to be commercially viable, the gas-sensitive material must be
stable during the operation regardless of the surrounding atmosphere and give a reproducible response
to the test gas for a prolonged period of time [29,65,67]. Third, to achieve high sensitivity the gas
sensitive material must be porous with high gas permeability and a large active surface area. Generally,
the surface area of nanomaterials increases as the nanoparticle size decreases. In addition, the crystallite
size should be comparable with the Debye length [34]. Therefore, crystallites forming a gas-sensitive
layer should have a size less than 20–30 nm and they should not be strongly agglomerated [74].
Otherwise, “dead” or closed zones inaccessible to the gas are formed [74,95]. Fourth, for a fast response
and small hysteresis, the pore diameter should be maximal.

The mentioned above testifies that for conventional gas sensors designed on the base of
polycrystalline metal oxides, there are quite specific requirements for parameters of gas-sensitive
materials. However, it must be borne in mind that the simultaneous fulfillment of all these requirements
is not necessary to achieve the desired result. For example, when developing humidity sensors,
special attention should be paid to the formation of a material with a certain distribution of pore
diameter [28,97]. Too small a pore diameter gives high sensitivity, but in this case the sensor response
is slow and it is characterized by large hysteresis, and a narrow range of measured humidity. If the
pores of a large diameter predominate in metal oxides, the response will be fast with a small hysteresis,
but the sensors can only work in the range of very high humidity, without the ability to detect low
humidity levels [98]. A sufficiently detailed description of other approaches that can be used to optimize
the parameters of conventional metal oxide-based gas sensors is given in [65,99–105].

Based on the above, in this review we will focus only on 1D, 2D, and 3D nanostructures. In this
review, we will also not analyze the approaches used for functionalizing these nanomaterials in order
to improve their gas-sensitive characteristics such as selectivity and sensitivity [106–112]. They are no
different from the approaches used in the manufacture of conventional metal oxide-based gas sensors
and based on (i) functionalization with noble-metal catalysts, (ii) tuning the operation temperature,
(iii) using heterojunctions, (iv) forming nanocomposites, (v) light activation, and (vi) using filters of
various types. A description of these approaches can be found in [99,101,113–123].

Taking into account the wide variety of nanomaterials and the large amount of information
obtained during the development of gas sensors based on them, our review will be divided into two
parts. The first part, i.e., this article will be devoted to the consideration of 1D and 2D nanomaterials,
and the second part will be devoted to the consideration of mesaporous-macroporous materials,
hierarchical structures, and nanofibers.

2. 1D Structures

2.1. 1D Metal Oxide Nanomaterials and Their Synthesis

One-dimensional metal oxide nanostructures, such as nanowires, nanotubes, and nanobelts most
often attract the attention of gas sensor developers [81,86,124–127]. At present, the use of individual
1D nanostructures for gas sensor design is considered as one of the most promising approaches to
develop a new generation of gas sensors with an improved stability and reduced temporal drift of the
parameters in comparison with conventional devices [128,129].
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There are many different techniques that can be used to prepare 1D metal oxide nanostructures,
but essentially, they can be grouped into two broad classes (see Figure 2): “Top-down” and “bottom-up”
approaches [6,7,130]. The basic idea of the “top-down” approach is to use existing technology
developed in the semiconductor industry. This class of techniques uses deposition, etching, and ion
beam milling on planar substrates in order to reduce the dimensions of the structures to a nanometer
size. The electron beam, focused ion beam, X-ray lithography, nano-imprinting, and scanning probe
microscopy techniques are used for the selective removal processes. When using these techniques, it is
possible to obtain highly ordered nanostructures [131–133], but they are very expensive in terms of
both costs and preparation times.
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Figure 2. Schematic presentation of general steps involved in the fabrication of nanowires (NWs) using
(a) top-down and (b) bottom-up approaches. Reproduced with permission from Ramgir et al. [130].
Copyright 2013: Elsevier.

The second approach is the “bottom-up”, which consists of the assembly of molecular building
blocks. Among many strategies for the synthesis of oxide 1D structures, a bottom-up growth from the
vapor phase is traditionally considered the most cost-effective method of producing 1D structures in large
quantities [7,84,130,134,135]. In many cases, this method is called the Vapor-Liquid-Solid (VLS) method,
because the growth of 1D structures usually occurs by the vapor-liquid-solid mechanism [136,137].
The growth process is typically accomplished in a low pressure and high temperature furnace.
The temperature near the source is elevated sufficiently to melt the source material so it can evaporate.
A carrier gas flow brings the vapor to the substrate where nanowires grow with the assistance of
catalysts. The catalyst material can be pre-deposited to the substrate for growing or may spontaneously
form during the VLS growth process. Therefore, this process can be classified as a metal catalyst or
non-metal catalyst VLS. In the metal catalyst VLS method, metals such as Au, Fe, Co, and Ni are used
as catalysts. Metal catalysts can be mixed with the source material or spread on the substrate where
nanowires grow. Metal catalysts play a crucial role in the synthesis procedure, acting as nucleation
sites and promoting the growth of metal oxide nanowires. It is interesting, that during this process,
the catalyst particle tends to remain at the tip of the growing nanowire. During this process, the size
and density of nanowires on the substrate, used for their growing, can be controlled via changing the
dimension and the density of the metal catalyst seeds.

The Vapor-Solid (VS) growth mechanism is different from the VLS growth mechanism, since
no catalytic liquid metal is required to promote the growth of 1D metal oxide nanostructures. [138].
Only vapor and solid phases are involved in the growth of 1D nanostructures. Self-catalysis is one
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of the main factors of this growth. Since there are no catalytic liquid metals, the crystalline solids
gain material directly from the vapor without the intermediate liquid phase. As a consequence of
the VS growth mechanism, materials anisotropically grow along the preferential axis forming a 1D
morphology. One of the main disadvantages of this method is the poor growth control and insufficient
ability to integrate 1D nanostructures into fully functional devices. In addition, the high temperature,
required for growth, may be a limitation for process substrates or wafers with metals already on top.
The advantages of this method include the low cost of the experimental setup, the reduced diameter of
the 1D structures, and the high purity of the materials.

Various approaches can be used for the controlled formation of metal catalyst seeds on the substrate
surface. [130,135]. Two of them are shown in Figures 2b and 3. Both methods allow controlling the size
of metal seeds, and, therefore, controlling the diameter of the nanowires. In the first case (Figure 2),
this is achieved through a change in the diameter of polystyrene spheres, and in the second (Figure 3)
through a change in the pore diameter in the alumina template [135]. Vertically aligned arrays of
carbon nanoposts obtained from nanoporous alumina templates, are used as the nanoscales tamps for
printing catalyst nanoparticles.

In contrast to the vapor-gas-phase growth, another main stream of the 1D system synthesis is a
solution-phase growth. Growth in the solution phase is a simple and cost-effective way to produce
large quantities of 1D nanostructures. There are many different approaches to the production of 1D
materials in liquid chemicals, including the polyol method [139], the surfactant method [140], and the
hydrothermal/solvothermal technique [141]. Among these methods, the hydrothermal technique,
usually carried out in an autoclave, is one of the most versatile and conventional methods, realized in
industrial applications because of its high yield, low cost, and moderate-temperature processes.
This technology requires simply precursors, mixed with the solution and heated to the required
temperature in the autoclave. The desired 1D materials are then obtained as a result of chemical
reactions. The disadvantage of this hydrothermal approach is its long synthesis time, which usually
takes several hours.
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Figure 3. The schematic diagrams depict (A) the entire procedure, which includes (i) the fabrication
of the carbon nanopost (CNP) stamps, (ii) the contact-printing of the Au ink, (iii) the preparation of
the Au metallic catalysts, and (iv) the growth of the semiconductor NWs over the contact-printed Au
catalysts via the vapor-liquid-solid (VLS) process; and (B) the conceptual model of the size-controlled
fabrication of semiconductor NWs via the contact-printing process using the CNP stamps with
different tip diameters: (i) Different-sized CNP tips, (ii) Au ink that was loaded onto the CNP tips,
(iii) contact-printed Au catalysts from the CNP tips, and (iv) NWs grown over the size-controlled Au
catalysts. The variation of the CNP diameter, which was used as the stamps for contact-printing of the
Au catalysts, directly controls the diameter of the NWs that are grown over the printed Au particles.
Reproduced with permission from Lee et al. [135]. Copyright 2010: American Chemical Society.
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At present, a variety of 1D nanostructures, such as ZnO, In2O3, CuO, Ga2O3, MnO2, CeO2, TiO2,
and WO3, among others, have been explored [88,142–146]. However, the largest number of articles
is devoted to the consideration of SnO2, In2O3, and especially ZnO 1D structures. Interest in the 1D
ZnO structures is stimulated by the easy synthesis of high-quality and single crystalline 1D ZnO
nanostructures [147]. It has been reported that the synthesis of 1D nanostructures based on other gas
sensitive metal oxides, such as TiO2 and WO3, is difficult compared to the mentioned above oxides.

2.2. Sensors Based on Individual Metal Oxide 1D Structures and Their Advantages

It should be noted that sensors based on individual metal oxide 1D structures have a specific
configuration and manufacturing technology, which is radically different from the traditional technology
used for the manufacture of conventional gas sensors. A typical example of a sensor based on individual
1D structures is shown in Figure 4.
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with permission from Hernandez-Ramirez et al. [149]. Copyright 2009: Royal Society of Chemistry.

The interest in using individual 1D structures in gas sensors was due to the following:

(i) It was assumed that a well-defined geometry, single-crystallinity, small diameter of 1D structures,
and a large area-to-volume ratio will provide a high sensitivity of sensors [108,150]. As is known,
a decrease in crystallite size and an increase in surface area is one of the basic requirements for
achieving a high sensitivity of conductometric gas sensors [62,63,74,115,151]. Experiments and
simulations have shown that the surface and interfacial reactions play a critical role in gas
adsorption and related gas sensing processes. Therefore, the increase in an area-to-volume ratio
significantly increases the number of atoms that are on the surface of metal oxides and available for
reactions with gas molecules. Some of the achievements in the development of 1D structure-based
gas sensors are shown in Table 1. These results indicate that 1D structure-based gas sensors can
indeed be highly sensitive to various gases.

(ii) It was assumed that due to the lack of necks and grain boundaries (see Figure 5), such sensors
would solve the problem of instability and temporal drift of the parameters of polycrystalline-based
thin and thick-film sensors, caused by the interaction and mass transfer on these intergrain
interfaces during increased temperatures [129,149]. These processes may contribute to structural
changes in the sensors [96,100,102]. The high crystallinity of the nanowires and nanobelts structure
should also contribute to the improvement of thermal and therefore, temporal stability of the
device parameters.
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(iii) It was assumed that response dynamics should be faster compared to their polycrystalline
counterpart since there is no need for gas diffusion in the gas sensing matrix preliminary to the
surface reaction [149]. The absence of nooks and crannies in nanowire-based devices contributes
to the direct adsorption/desorption of gas molecules from the surface of 1D structures.

(iv) It was assumed that through the use of individual 1D structures and self-heating effects it would
be possible to significantly reduce the power consumed by the sensor, and thereby facilitate the
integration of the sensors in portable systems [108,149,168,169]. It was found that the suspended
nanowires (see Figure 6) are nearly ideal substances for this approach since their large length
and small cross-section dramatically reduce the thermal losses to the metal leads and support.
According to Meier et al. [167] and Hernandez-Ramirez et al. [158], such approach allows reducing
the required power consumption from the milliwatt, in the case of micromachining technology,
to the microwatt range in the case of self-heating of an individual 1D structure. It is necessary
to note that the idea of self-heating was also successfully tested for thin film-based gas sensing
devices (see as an example, [170]). However, the inevitable significant thermal losses to the
support of the thin film sensing element impeded the implementation of this method. The major
advantage of the metal oxide nanowires with respect to self-heated thin film sensors [170,171]
is their small thermal capacitance and drastic reduction of thermal losses to electrodes and gas
environment [168]. As seen in Figure 7, in such sensors, to achieve operating temperatures in the
range of 300–400 ◦C, currents of only 10−6 A are required. In addition, self-heating effects enable
an experimental methodology to improve the selectivity of metal oxide-based sensors. It was
found that the thermal response time of these devices, due to a small thermal inertia, is very
short—only a few milliseconds. [172]. This enables the use of higher modulation frequencies of
their temperature profile, making available the direct observation of the kinetics associated with
the chemical interactions between the metal oxide and the gases of interest [172]. This means that
in this case, one can use the analysis of the dynamics of the sensor response, which is specific for
each gas and can be considered as a marker of this gas [173].

(v) It was assumed that the control of the shape of 1D structures (metal oxide 1D structures have a
clearly defined cut depending on the synthesis conditions) would also improve the sensitivity and
selectivity of the sensors. It is known that every crystallographic plane has a unique combination
of structural, electronic, catalytic, and adsorption/desorption process parameters [174,175]. It is
these parameters that control the operating characteristics of all types of metal oxide-based
gas sensors [46,50,74,115,151,176–182]. Thus, the determination of crystallographic planes with
optimal combinations of adsorption/desorption and catalytic parameters, and the development
of methods for crystallites deposition with indicated faces can be considered as an important task
for any technology used for the synthesis or deposition of metal oxides applied to a metal oxide
gas sensor. Gao and Zhang [183] have summarized the recent progress in engineering crystal
structures and confirmed this statement. They concluded that for the same type of metal oxides,
neither surface morphology nor a specific surface area value can totally determine their sensing
ability to a particular gas. Only the crystal planes exposed on the surface are a fundamental
factor in determining the response of a sensor. Moreover, Gao and Zhang [183] concluded that
the crystal surface with more unsaturated metal cations is the most promising approach to
realize a superior gas sensing performance. According to Gao and Zhang [183], such preferred
crystallographic planes are the (0001) facet for wurzite-type ZnO, (332) facet for rutile-type
SnO2, (001) facet for anatase-type TiO2, (113) facet for hematite (α-Fe2O3), (111) facet for NiO,
and (110) facet for Cu2O. Understandably, the preparation of polycrystalline metal oxides with the
necessary grain faceting is difficult to control, but it is achievable for one-dimensional structures.
One-dimensional structures are crystallographically perfect and have clear faceting with a fixed
set of planes, which can be modified by controlling the synthesis parameters [154,184–186].

(vi) It was assumed that the measurement of individual 1D structures with well-known properties
can allow us to understand better the fundamentals of the gas-sensing effect [74,106,187,188].
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Semiconducting one-dimensional structures of metal oxides with a well-defined geometry and
ideal crystallinity can be a perfect family of model materials for systematic experimental studies
and theoretical simulation of gas-sensing effects in metal oxides. The random aggregation
of nanoparticles in poly(nano)crystalline MOXs, as well as the scatter in their size, make it
difficult to accurately study the phenomena of gas transduction at the nanoscale. At the same
time, many parameters such as film thickness, texturing, porosity, grain size, grain network,
grain boundary, agglomeration, and crystallite faceting, used to characterize polycrystalline
materials, lose their value for one-dimensional structures. The main structural and morphologic
parameters that characterize one-dimensional structures are geometric size, characterizing the
profile of one-dimensional structures, and crystallographic planes, framing these one-dimensional
structures. This feature of the structure primarily refers to nanobelts. Nanobelts are thin and
plain belt-type structures with a rectangular cross-section (Figure 8). At present, nanobelts are
available for practically all basic oxides used in chemical sensors. There is information about
the synthesis of nanobelts based on SnO2, In2O3, ZnO, Ga2O3, TiO2, etc. [78–80,124,189–194].
The synthesis of nanobelts can be performed using various methods [77,195–197], which creates
good conditions for the expanding research on such nano-size materials. The minimal distance
between faceting planes in nanobelts plays the same role in gas-sensing effects as the grain size in
a polycrystalline material. Undoubtedly, the decreased number of parameters that control the
sensor response of one-dimensional structures should contribute to a better understanding of
the nature of the observed effects, since the use of 1D structures facilitates the interpretation of
experimental data. Theoretical simulation of gas-sensing effects in this case can also become much
simpler. [198–200]. As noted above, usually only one or two planes participate in gas-sensing
effects in one-dimensional structures. This means that in simulations one-dimensional structures
should be considered as single crystals with limited sizes. It is also important to note that currently
there is already extensive experience in the synthesis of nanobelts with the growth of metal
oxides in the desired crystallographic direction. For example, in Refs. [154,184,185,193] it was
reported that, depending on the synthesis route, it was possible to synthesize In2O3 nanobelts
with {100}, {120}, {111}, {110}, and {001} growth directions. At that point, In2O3 nanobelts grown
in the {100} and {120} direction had the top and bottom surfaces being (001), while the {100}
nanobelts had a side surface of (010) and a rectangular cross-section [186]. The {120} nanobelts
had a parallelogram cross-section. In2O3 nano-belts grown in the {111} and {110} directions
had the other set of planes; the side and top surfaces were (100) planes [127,184]. In the case
of a {001} growth direction, In2O3 nanobelts were enclosed by the (100) and (010) planes [201].
The crystallographic geometry of other metal oxide one-dimensional nanostructures is presented
in Table 2. Thus, the presented results indicate that when using nanobelts, we really have the
ability to control the faceting planes of 1D structures of metal oxides, which is necessary both to
improve the parameters of the sensors, and to better simulate gas-sensitive effects. In addition,
nanobelts do not have the mechanical strength of nanotubes. Their crystallographic perfection is
a very good advantage of this material. Since there are no defects in their structure, there is no
problem, as is the case with nanotubes, when defects can destroy the quantum-level properties.
A suitable nanobelts geometry is also an important advantage for mass production. They have
a high structural homogeneity and long length. Typical nanobelts have a width of 30–300 nm,
a thickness of 10–15 nm, and a length from a few micrometers to hundreds or even several
thousand micrometers. [190,201]. Moreover, nanobelts are flexible and therefore can be bent 180◦

without damage. This fact provides additional benefits to these materials for the design of devices.
The use of nanobelts, due to the specifics of their geometry, also facilitates the task of forming
low-resistance contacts (see Figure 9). However, it should be noted that despite the undeniable
advantages of nanobelts, nanowires are mainly used in the development of gas sensors.
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(vii) It was assumed that the use of 1D structures will allow realizing the new functionality of metal
oxide conductometric sensors [108]. These expectations were partially met. In particular, it was
shown that:
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Table 1. Several examples of a highly sensitive gas sensor based on one-dimensional (1D) nanostructures.

Gas Material D, nm Sensor Type Toper,
◦C DL, ppm Response τres,

s Ref.

NO2

SnO2 (NWs) 35–45 R
25 (UV)

<0.1
2 @ 5 ppm

~60 [152]
175 ~2 @ 10 ppm

SnO2 (NWs) 30–100 R 240 <0.01 500 @ 1 ppm ~60 [153]

In2O3 (NWs) ~10 FET 25 0.5 106 @ 100 ppm 5–600 [154]

In2O3 (NWs) ~10 FET 25 0.005 ~1.6 @ 200 ppb 50–1000 [155]

H2 SnO2 (NWs) 50–200 R 300 <5.0 25 @ 50 ppm <120 [156]

CO
SnO2 (NBs) 60 R 400 ~5.0 70 @ 250 ppm 30 [157]

SnO2 (SNW) 25–70 R 300 <1.0 2.1 @ 200 ppm N/A [158,
159]

ZnO:Pd (NWs) 60–70 R 20 <0.1 1.2 @ 0.1 ppm >240 [160]

H2S

SnO2:Cu (NWs) 10–100 R 150 <1.0 ~107 @ 80 ppm N/A [161]

In2O3 (NWs) 30–100 FET 120 <1.0 ~12 @ 20 ppm >300 [162]

CuO (NWs) 20–40 R 325 ~0.01 4 @ 500 ppb ~600 [163]

ZnO (NWs) ~20 R 300 0.005 ~2 @ 200 ppb ~270 [164]

C2H5OH ZnO:Mg (NWs) ~120 R 350 ~0.01 343 @ 5 ppm ~20 s [165]

SnO2 (NWs) 30–100 R 300 <1.0 100 @ 20 ppm <20 s [153]

NH3
WO3 (NWs) ~5 R 25 ~0.1 1.1 @ 5 ppm ~ 50 s [166]

SnO2 (SNW) ~100 R 300 ~0.1 ~2 @ 100 ppm ~ 25 s [167]

D—diameter; DL—detection limit; FET—field effect transistor; NWs—nanowires; R—resistive; SNW—single NW;
Toper—operation temperature; Response – Rair/Rgas.
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Table 2. Crystallographic geometry of one-dimensional oxide nanostructures.

Nanostructures Crystal Structure Growth Direction Top Surface Side Surface

ZnO-belt Wurtzite (0001)or (0110) ±(2110) ±(0110) or ±(0001)
Ga2O3-belt Monoclinic (001) or (010) ±(100) ±(010) or ±(101)

Ga2O3-sheet Monoclinic (101) (normal) ±(100) ±(010)
±(101) and ±(212)

t-SnO2-belt Rutile (101) ±(101) ±(010) and ±(101)
SnO2-belt Rutile (100) ±(001)

t-SnO2-wire Rutile (101) ±(101) ±(010)
SnO2-belt

(zigzag-initial)
(zigzag-final)

Rutile
Rutile

(101)
(101)

±(010)
±(010)

±(101) and ±(100)
±(100)

α-SnO2-wire Orthorhombic (010) ±(100) ±(001)
SnO2-diskette Tetragonel ±(100) and ±(110) ±(001) ±(100) and ±(110)
SnO2-ribbon Rutile (101) (101)/(101) (010)/(010)
SnO2-ribbon
(sandwich) Rutile/orhorom (110)o/(653)t ±(100)o/±(231)t ±(001)o/±(101)t

Source: Data from [74,185,201–203].

1. 1D-based sensors are able to operate at room temperature [204,205]. The development of
room-temperature gas sensors can have very important advantages such as a low power
consumption, simple system configuration, reduced explosion hazards, and longer device lifetime;

2. the specificity of the mechanical properties of nanowires and especially nanobelts allows the
implementation of flexible sensors on their basis [206,207]. Courbat et al. [208] and Oprea et al. [209]
have studied the continuous operation of a metal oxide polycrystalline gas sensor on polyimide
hotplates for several months and found out that comparable or even better results may be expected
from nanowire-based devices. Single-crystalline nanowires and especially nanobelts are much
more resistant to the bending stress because of their flexibility;

3. the coupling of an individual nanowire (or a mat) chemiresistor with a micro-fabricated micro-hot
plate reduces the inertia of the micro-hot plate and thereby simplifies gas detection by testing the
dynamics of the sensor response [210];

4. on the base of individual nanowires, an ultra-miniature e-nose system was realized [211,212].
In its usual configuration an ultra-miniature e-nose is based on a microarray of electrodes
which probe the mono-type semiconductor film, where a temperature gradient has been
established. The temperature gradient induces the deviations between the responses of individual
electrode pairs; and an entire array of 20 pairs of electrodes provides the required degree of
orthogonality [212]. Sysoev et al. [213] showed that in such an e-nose instead of a thin film, metal
oxide nanowire mats can be used. This version of the Karlsruhe Electronic Micronose (KAMINA)
system is represented in Figure 10. It was established that such an e-nose had the ability to detect
gases in the ppb level with an excellent stability, reproducibility, and discriminating power to
effectively distinguish different target gases.

That is why since 2000, the development of gas sensors based on 1D structures has become one of
the most popular areas of research in the field of gas sensors [5,86,106,144,145,149,214–216]. If there
is an interest only in the performances of 1D-based gas sensors, then I recommend referring to the
reviews [144,204,217–225], where such information is presented. As with conventional gas sensors,
based on nanostructured crystallites, the sensing properties of individual NWs are affected by the NW
diameter, the NW synthesis procedure, the feature of surface functionalization, and the reactions that
occur on the NW surfaces.



Nanomaterials 2020, 10, 1392 12 of 62
Nanomaterials 2020, 10, x FOR PEER REVIEW 12 of 60 

 

 
Figure 10. A demonstration of the KAMINA e-nose system performance with SnO2 nanowires as a 
sensing media. Reproduced with permission from Sysoev et al. [213]. Copyright 2007: American 
Chemical Society. 

2.3. Features of the Fabrication of Gas Sensors Based on Individual 1D Structures 

As follows from previous discussions, most processes used to synthesize a one-dimensional 
structure are incompatible with the electrical characterization of individual nanostructures. For this 
purpose, an additional processing is required to remove the nanowires, nanobelts, or nanotubes from 
their growth substrate and then place them onto a platform that allows studying single wires and 
using them as a sensing element. Thus, one of the most important problems in the manufacturing of 
1D structure-based sensors is their integration with electrodes [7]. An electrical contact to the sensors 
based on single 1D structures is often realized using a “pick and place” approach. 1D structures are 
first dispersed into solvents such as methanol, ethanol, isopropanol, or water in very low 
concentrations (Figure 11). Then, a drop of dilute suspension of 1D structures is placed on a substrate 
and dried [226,227]. The substrate with 1D structures are then located under an optical microscope 
or SEM, and the contacts are made using various methods. For example, markers are made on the 
substrate before applying the suspension of 1D structures, so that the position and angle of the 
nanowires regarding electrodes can be controlled by SEM observation. Then, a lift-off process or 
deposition through the mask is applied to pattern metallic contacts to the nanowires. Thereafter, 1D 
structures are subjected to annealing for better adherence to the electrode material. The stages of 
manufacturing these sensors are shown in Figure 12. This method is suitable for studying 
fundamental properties of the nanowires. However, it is a complicated and costly method and, 
therefore, not suitable for mass production of gas sensors. In some other cases, as shown in Figure 
11, the metal electrodes are made before applying the nanowire to the substrate [228,229]. However, 
the successful placement of nanowires between the pre-fabricated electrodes requires good luck. In 
addition, the contact barriers between the electrodes and the nanowires are usually very high, which 
makes the method irreproducible and unsuitable for many device applications where low resistive 
contacts are required. 
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2.3. Features of the Fabrication of Gas Sensors Based on Individual 1D Structures

As follows from previous discussions, most processes used to synthesize a one-dimensional
structure are incompatible with the electrical characterization of individual nanostructures. For this
purpose, an additional processing is required to remove the nanowires, nanobelts, or nanotubes from
their growth substrate and then place them onto a platform that allows studying single wires and
using them as a sensing element. Thus, one of the most important problems in the manufacturing of
1D structure-based sensors is their integration with electrodes [7]. An electrical contact to the sensors
based on single 1D structures is often realized using a “pick and place” approach. 1D structures are first
dispersed into solvents such as methanol, ethanol, isopropanol, or water in very low concentrations
(Figure 11). Then, a drop of dilute suspension of 1D structures is placed on a substrate and dried [226,227].
The substrate with 1D structures are then located under an optical microscope or SEM, and the contacts
are made using various methods. For example, markers are made on the substrate before applying the
suspension of 1D structures, so that the position and angle of the nanowires regarding electrodes can
be controlled by SEM observation. Then, a lift-off process or deposition through the mask is applied
to pattern metallic contacts to the nanowires. Thereafter, 1D structures are subjected to annealing for
better adherence to the electrode material. The stages of manufacturing these sensors are shown in
Figure 12. This method is suitable for studying fundamental properties of the nanowires. However,
it is a complicated and costly method and, therefore, not suitable for mass production of gas sensors.
In some other cases, as shown in Figure 11, the metal electrodes are made before applying the
nanowire to the substrate [228,229]. However, the successful placement of nanowires between the
pre-fabricated electrodes requires good luck. In addition, the contact barriers between the electrodes
and the nanowires are usually very high, which makes the method irreproducible and unsuitable for
many device applications where low resistive contacts are required.
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Nanowires are removed into a suspension of the solvent. A drop of the nanowire solution is dispersed
on a template substrate and evaporated under a vacuum. Finally, nanowires with manipulator tips can
be moved from a template substrate to the right place.

Undoubtedly, 1D structures can be moved to the right place using special manipulators [230]
(Figure 11). For example, Li et al. [231] suggested using electrostatic forces for this. Jimenez-Diaz et al. [232]
for these purposes used the AC dielectrophoretic manipulation of nanowires [228,229]. A solution,
containing nanowires, is dropped on the top of the electrode array. The nanowires are aligned along the
direction of an electric field. Different species such as a nanowire or contaminant species will respond to
different frequencies of an AC bias. Therefore, applying an AC bias with a corrective frequency offers
the advantage of selectively choosing nanowires from other contaminant species in the solution [233].
Such an approach to the formation of contacts to one-dimensional structures has several advantages,
since its implementation both allows one-dimensional structures to be correctly positioned in a given
place of the substrates, and can significantly reduce the manufacturing time of the sensor [232]. However,
the mentioned above approaches are very laborious and require special equipment. In addition, in many
cases, the transfer is possible for either too small or too large nanowires. This means that sensors based
on such large nanowires will have low sensitivity. Therefore, as a rule, in order to simplify the technology
of manufacturing sensors, nanowires, after application to the substrate, are preferred not to be exposed
to any additional displacements.
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Figure 12. Protocol for a resist-free fabrication of 1D metal oxide nanowire-based chemiresistors and
chemFETS: (a) Pristine Si/SiO2 wafer; (b) nanostructures placed on wafer mechanically; (c) shadow
masking to determine metal contacts; (d) microprobes can be used to explore transport and sensing
properties of the individual nanoresistors. Idea from [234].
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Currently, metal strips with clearly defined shapes in the nanometer range and a high electrical
quality, shown in Figure 13, are easily manufactured using various techniques such as focused
ion beam (FIB) [158,159,230,235] (Figure 12), focused electron beam (FEB) [230,235], ultraviolet and
shadow-mask lithography [236], and shadow mask sputtering [210,213]. Shadow mask sputtering
(see Figure 12c) enables fast engineering of advanced proof-of-concept devices. However, metallic
contacts directly deposited over the nanowire bundles are unstable and do not guarantee the formation of
a continuous metallic layer, thus inhibiting the direct bonding of nanowires and a good electron transport.
Electrical contacts, fabricated using, for example, focused ion or electron beams, are much better.
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Figure 13. Schematic representation of local deposition, assisted by the focused ion beam (FIB). The gas
precursor introduced by the capillary is decomposed by the secondary electrons generated by the
interaction of the primary ion beam with the target. Reproduced with permission from Gierak [237].
Copyright 2009: Institute of Physics.

The Focused Ion Beam (FIB) is a powerful technology developed in the late 1970s and early
1980s to create a pattern, and then, to deposit materials with a resolution in the range of tens of nm.
This technique is widely used in circuit editing, mask repairing, microsystem technology processes,
and material characterization [237–239]. The basic principle of this technique is a focused ion beam
of high-energy particles that scans the sample’s surface and sputters the material on the exposed
area [240]. The scanning can be performed, similarly to a SEM, using electrostatic lenses and, thus, the
milling occurs without the need of masks. Currently, gallium (Ga+) ions accelerated to 30 kV are the
most used particles in the FIB technique. Gallium is a metallic element with a low melting temperature.
This feature of Ga makes it possible to fabricate a durable, high-brightness, and reliable source of metal
ions (LMIS) required in the FIB technique. In addition, the element gallium is located in the center of
the periodic table; therefore, its momentum transfer ability is optimal for a wide range of materials.
In contrast, lighter elements would be less efficient in milling heavier elements.

On the other hand, if a metalorganic compound is introduced in the beam path using the so-called
microneedle-based gas delivery system, the decomposition of this compound occurs due to the
interaction of the compound with both secondary electrons and ions that originated during the Ga+ ion
bombardment (Figure 13). Part of the compound after decomposition can be deposited on the sample’s
surface (ion-assisted deposition) or can reactively assist the milling process (gas assisted etching),
while the other part is removed by a vacuum system. Thus, conductive and isolating materials can be
easily deposited using the FIB with a nanometer accuracy [237,241].

Many types of precursor gases can be used in the FIB for the manufacture of various metal and
ceramic structures. For example, the precursor gases WF6 (or W(CO)6), C7H7F6O2Au (or AuClPF3),
(CH3)3NAlH3, C9H16Pt, Cr(C6H6)2, and TMOS+O2 (TMOS = tetramethyloxysilane) were used to
produce W, Au, Al, Pt, Cr, and SiO2 layers, respectively [242]. Although the purity of the deposition is
usually lower compared with conventional methods of deposition (usually the layer deposited using
the metalorganic decomposition is contaminated with other elements such as oxygen or carbon from
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the background gas in the vacuum chamber, and elements that form the ion beam), the main advantage
of this technique is its flexibility due to direct recording capabilities without using any masks [237,240].

However, it is important to note that the ion bombardment necessary to decompose the
metalorganic precursor for fabricating nanocontacts can produce the damage in the nanowires [243,244].
Therefore, Hernandez-Ramirez et al. [230] believed that the development of the so-called dual or
cross-beam systems (conventional FIB with a scanning electron microscope (SEM)) is very promising.
This approach, enabling the in situ capture of electron images and simultaneous dissociation of
metalorganic compounds with secondary electrons (SE), generated by the incident electron beam,
can significantly facilitate the use of FIB nanolithography during gas sensor fabrication [188,245–247].
Taking into account the fact that the interaction between electrons and the sample is less destructive
than using ions, the electron-assisted deposition of metals can avoid both undesired surface damage
and structure modification of the nanomaterial that occur during the formation of electrical contacts on
the nanostructure. Despite its advantages, the electron and ion-beam combination during deposition is
sparsely used, and therefore, detailed studies of the quality of electrical contacts, formed by this method,
with a purpose to avoid false interpretations of the electrical properties of nanowires, caused by the
influence of contact resistance, are required [248].

It is seen that the discussed above techniques are not scalable and do not meet the requirements
necessary for the transition to commercialization. A typical view of the device based on the individual
nanowire is shown in Figure 14. It is seen that sensors with this configuration are really difficult
to implement using methods developed for mass production. The mentioned above approaches to
sensor fabrication are suitable only for research and development of prototype devices. However,
device prototypes are not intended for the market. For this reason, the problem of the scalability of
1D structure-based sensors and 1D structure-based electronic circuits is one of the main ones when
considering the prospects for the emergence of these devices on the market. Several approaches
were developed for resolving this problem. They include self-assembly of 1D structures [249,250],
roll-transfer printing [251], and microcontact/ink-jet printing [252,253]. In the self-assembly approach,
metal oxide 1D structures are deposited directly by a high-voltage-driven injection nozzle onto the
electrodes. During printing, the metal electrodes are precisely placed on top of the 1D structures.
However, all these fabrication techniques are still in a preliminary stage of development, despite some
promising results that have recently been reported [254–261].
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Figure 14. General view of the final device based on the SnO2 individual nanowire (dimensions:
L = 11 µm (length) and D = 55 ± 5 nm (diameter)) with Au/Ti/Ni microelectrodes. The position of the
contacted NW is indicated by the arrow. Reproduced with permission from Hernandez-Ramirez et al. [159].
Copyright 2007: Elsevier.
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2.4. Limitations of Technology Based on Individual 1D Nanostructures

2.4.1. Nanowires Alignment

As mentioned earlier, at the first stage of the study of 1D nanostructures, most designers believed
that the use of single crystalline individual nanowires (NWs) as a gas sensing material would
significantly improve the parameters of gas and vapor sensors [129,149,150]. However, it turned
out that the controlled separation, manipulation, and characterization of 1D nanostructures are not
straightforward processes due to the intrinsic problems of working at the nanoscale. These procedures
are complex and require well-established methodologies, which are not yet fully developed. In this
regard, many attempts have been made to simplify this process. In particular, several techniques
have been developed to allow the alignment or orientate 1D structure assemblies. It turned out that
for these purposes one can use micro fluidics, electrostatic or magnetic fields, surface pre-pattering,
self-assembly, and templating. These approaches, which allowed the design of gas sensor prototypes,
were comprehensively considered in [219,249,262–269]. The advantages and disadvantages of the
mentioned above methods of nanowires alignment are briefly summarized in Table 3.

As an example, in Figure 15 a diagram is shown, illustrating a method based on micro fluidics [270].
By flowing a stream of fluid across a substrate surface, nanowires can be reoriented towards the flow
direction and become quasi-aligned. Parallel nanowire arrays are achieved by flowing a nanowire
suspension inside the microchannel with a controlled flow rate for a set duration. The degree of the
alignment can be controlled by the flow rate: The angular distribution of the nanowires narrows
substantially with the increasing flow rates. The nanowire density increases systematically with the flow
duration. The crossed nanowire arrays can be obtained by alternating the flow in orthogonal directions
in a two-step flow assembly process. The important feature of this layer-by-layer assembly scheme is
that each layer is independent of the others and, therefore, a variety of homo- and hetero-junctions,
including p-n junctions, can be obtained at the crossed points. The weakness of this technique is that
the area for nanowires alignment is limited by the size of the fluidic microchannels. It will be more
difficult to establish a uniform shear force in a large channel.
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Figure 15. Schematic of fluidic channel structures for flow assembly: (A) A channel formed when the
polydimethylsiloxane (PDMS) mold was brought in contact with a flat substrate. The NW assembly
was carried out by flowing a NW suspension inside the channel with the controlled flow rate for a set
duration. Parallel arrays of NWs are observed in the flow direction on the substrate when the PDMS
mold is removed. (B) The multiple crossed NW array can be obtained by changing the flow direction
sequentially in a layer-by-layer assembly process. (C) SEM image of the parallel assembly of NW
arrays formed using the micro fluidics method. Reproduced with permission from Huang et al. [270].
Copyright 2001: AAAS.
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Table 3. Summary of the NW assembly technologies.

NW Assembly
Technologies Advantages Disadvantages

Flow-assisted alignment in
microchannels

(1) parallel and crossed NW arrays
can be assembled;

(2) compatible with both rigid and
flexible substrates.

(1) area for NW assembly is
limited by the size of fluidic
microchannels;
(2) difficult to achieve a very high
density of NW arrays;
(3) NW suspension needs to be
prepared first.

Bubble-blown technique (1) area for NW assembly is large;
(2) compatible with both rigid and
flexible substrates.

(1) it is difficult to achieve
high-density NW arrays;
(2) NW suspension needs to be
prepared first.

Contact printing (1) area for NW assembly is large;
(2) high-density NW arrays can be
achieved;
(3) parallel and crossed NW arrays
can be assembled;
(4) direct transfer of NW from the
growth substrate to the receiver
substrate;
(5) compatible with both rigid and
flexible substrates;
(6) NW assembly process is fast.

(1) the growth substrate needs to
be planar;
(2) the process works best for long
NWs.

Differential roll printing (1) area for NW assembly is large;
(2) high-density NW arrays can be
achieved;
(3) direct transfer of the NW from
the growth substrate to the
receiver substrate;
(4) compatible with both rigid and
flexible substrates;
(5) NW assembly process is fast.

(1) the growth substrate needs to
be cylindrical;
(2) the process works best for long
NWs.

Langmuir-Blodgett
technique

(1) area for NW assembly is large;
(2) high-density NW arrays can be
achieved;
(3) parallel and crossed NW arrays
can be assembled;
(4) compatible with both rigid and
flexible substrates.

(1) NWs typically need to be
functionalized with the surfactant;
(2) the assembly process is slow
and has to be carefully controlled;
(3) NW suspension needs to be
prepared first.

Electric field-assisted
orientation

(1) NWs can be placed at a specific
location;
(2) compatible with both rigid and
flexible substrates;
(3) NW assembly process is fast.

(1) patterned electrode arrays are
needed;
(2) area for NW assembly is
limited by the electrode patterning;
(3) NW density is limited;
(4) it works the best for conductive
NWs;
(5) NW suspension needs to be
prepared first.

Source: Reproduced with permission from Liu et al. [267]. Copyright 2012: American Chemical Society.

The Langmuir-Blodgett technique is another NW assembly technology (see Figure 16).
According to this technique, when a solid surface is vertically dipped into a liquid containing a
Langmuir monolayer and then pulled out properly, the monolayer (Langmuir-Blodgett (LB) film) will
deposit homogeneously onto the surface. Usually this technique is used for preparing thin organic
monolayers. However, the LB layer of metal oxide nanowires can also be formed. To implement
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this method, metal oxides must meet the following requirements: (i) They must be soluble in
water-immiscible solvents, and (ii) they must be able to form stable floating monolayers at the surface
of the sub-phase with an internally oriented, cohesive, and compact structure that are sheer resistant.
To meet these requirements, the nanowires used to form LB films are usually functionalized by the
surfactants. Without functionalization, the nanowires do not form stable suspensions in the organic
solvents and sink into water. A nanowire-surfactant monolayer is initially formed on a liquid (usually
water) surface in an LB trough. The formed nanowire monolayers resemble a microscopic version of
“logs-on-a-river”. The monolayer of the aligned nanowires is then transferred onto a substrate through
vertical-dipping (i.e., LB) or horizontal-lifting (i.e., Langmuir-Schaefer (LS)) techniques. The spacing
between the parallel nanowires can be adjusted by the lifting speed and by the pressure of the
monolayer compression.
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Figure 16. Schematic diagram of the Langmuir-Blodgett technique for NWs alignment. (a) Random
nanowires suspended in the Langmuir-Blodgett trough; (b) monolayer compression; (c) wafer being
pulled vertically from the suspension in parallel with the lateral motion of the barrier; (d) resulting
parallel nanowire array on the substrate.

The features of the roll printing technique and contact printing technology are shown in
Figures 17 and 18, respectively.
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Figure 17. Schematic diagram illustrating the roll printing technique for NWs alignment: (A) SEM
image of NWs grown perpendicularly to the surface of the cylindrical substrate; (B) installation for
NWs alignment; (C) the mechanism of a nanowire transfer. The NWs are oriented and transferred to
the receiving substrate by applying a directional shear force, resulting in the printing of sub-monolayer
parallel NW arrays on the receiving substrate. Reproduced with permission from Hu et al. [269].
Copyright 2020: Royal Society of Chemistry.



Nanomaterials 2020, 10, 1392 19 of 62
Nanomaterials 2020, 10, x FOR PEER REVIEW 19 of 60 

 

 

Figure 18. Contact printing of NWs from a growth substrate on a prepatterned substrate. In general, 
NWs are grown perpendicularly to substrate with a random orientation, but they can be well-aligned 
by shear forces during the printing process. Reproduced with permission from Javey et al. [271]. 
Copyright 2007: Royal Society of Chemistry. 

In regards to the orientation of nanowires in an external electric field, this effect is caused by the 
fact that all metal and semiconductor nanostructures have a dielectric constant that differs from that 
of the surrounding medium (air or liquid). The resulting image forces produce a rotational moment, 
causing the nanostructure to align in the direction of the electric field. Ruda and Shik [272] showed 
that the alignment depends dramatically on the relationship between the nanowire length L, 
separation between electrodes a, and electrode width b, as well as on the nanowire dielectric constant 
ε compared to that of environment ε0. 

However, it must be recognized that all fabrication routes, developed for nanowires alignment, 
are not perfect processes and do not apply to fully completed technologies. Moreover, the listed 
techniques work with an array of 1D nanostructures, and they do not guarantee the fixation of 
individual 1D structures in the required place. Thus, the use of 1D nanostructures in real devices is 
still at a preliminary stage and needs a breakthrough in order to integrate them with low-cost 
industrial processes [149,267,269,273]. 

2.4.2. Sensor Performances 

The low sensitivity of most individual 1D-based sensors in comparison with conventional 
nanocrystallite-based sensors can also be attributed to the shortcomings of these devices. As in 
polycrystalline sensors, the sensitivity of 1D-based sensors depends on the diameter of nanowires or 
nanobelts (see Figure 16); the smaller the diameter, the higher the sensitivity [128,158,159,274]. The 
experiment and simulation have shown that in order to achieve a maximum response, the NW radius 
must be compared with the Debye length (LD). For example, Hernandez-Ramirez et al. [158,159] 
found that in real 1D SnO2 structures the Debye length is ~10–15 nm and, therefore, the performance 
of nanowire sensors can be significantly improved only if the diameter of the nanowires is less than 
25 nm. However, as a rule, nanowires used for gas sensor fabrication have a diameter in the range of 
50–900 nm, while the grain size in polycrystalline-based sensors does not exceed 10–30 nm. Research 
carried out by Li et al. [126,154] and Zhang et al. [155] confirmed this conclusion. They established 
that an extremely low detection limit was achieved for In2O3 and ZnO nanowires with a diameter of 
only 10 nm. Unfortunately, currently nobody wants to work with individual nanowires with a size 
less than 30–50 nm [128,158,159,275,276]. Firstly, the controlled growth of very thin nanowires and 
the fabrication of devices based on such nanostructures is still an experimental problem [108,277]. 
Secondly, separation and manipulation of such small objects is too difficult [158,159]. In addition, 
there are technological difficulties with the growth of such thin nanowires (d < 10 nm) with a longer 
length. However, if the nanowire is short, the length of nanowires can be insufficient to create a 
bridge between two bonding pads on the measuring platform [276]. 

Kolmakov et al. [278] have found that one of the most promising solutions to this problem is the 
fabrication of a single-crystal quasi-1D chemiresistor with one (or a few) very thin segments, which 
adheres to the r ~ LD condition, where r is the radius of the nanowire in this place. Since the narrow 

Figure 18. Contact printing of NWs from a growth substrate on a prepatterned substrate. In general,
NWs are grown perpendicularly to substrate with a random orientation, but they can be well-aligned
by shear forces during the printing process. Reproduced with permission from Javey et al. [271].
Copyright 2007: Royal Society of Chemistry.

In regards to the orientation of nanowires in an external electric field, this effect is caused by
the fact that all metal and semiconductor nanostructures have a dielectric constant that differs from
that of the surrounding medium (air or liquid). The resulting image forces produce a rotational
moment, causing the nanostructure to align in the direction of the electric field. Ruda and Shik [272]
showed that the alignment depends dramatically on the relationship between the nanowire length L,
separation between electrodes a, and electrode width b, as well as on the nanowire dielectric constant ε
compared to that of environment ε0.

However, it must be recognized that all fabrication routes, developed for nanowires alignment,
are not perfect processes and do not apply to fully completed technologies. Moreover, the listed
techniques work with an array of 1D nanostructures, and they do not guarantee the fixation of
individual 1D structures in the required place. Thus, the use of 1D nanostructures in real devices is still
at a preliminary stage and needs a breakthrough in order to integrate them with low-cost industrial
processes [149,267,269,273].

2.4.2. Sensor Performances

The low sensitivity of most individual 1D-based sensors in comparison with conventional
nanocrystallite-based sensors can also be attributed to the shortcomings of these devices. As in
polycrystalline sensors, the sensitivity of 1D-based sensors depends on the diameter of nanowires
or nanobelts (see Figure 16); the smaller the diameter, the higher the sensitivity [128,158,159,274].
The experiment and simulation have shown that in order to achieve a maximum response, the NW
radius must be compared with the Debye length (LD). For example, Hernandez-Ramirez et al. [158,159]
found that in real 1D SnO2 structures the Debye length is ~10–15 nm and, therefore, the performance of
nanowire sensors can be significantly improved only if the diameter of the nanowires is less than 25 nm.
However, as a rule, nanowires used for gas sensor fabrication have a diameter in the range of 50–900 nm,
while the grain size in polycrystalline-based sensors does not exceed 10–30 nm. Research carried
out by Li et al. [126,154] and Zhang et al. [155] confirmed this conclusion. They established that an
extremely low detection limit was achieved for In2O3 and ZnO nanowires with a diameter of only
10 nm. Unfortunately, currently nobody wants to work with individual nanowires with a size less
than 30–50 nm [128,158,159,275,276]. Firstly, the controlled growth of very thin nanowires and the
fabrication of devices based on such nanostructures is still an experimental problem [108,277]. Secondly,
separation and manipulation of such small objects is too difficult [158,159]. In addition, there are
technological difficulties with the growth of such thin nanowires (d < 10 nm) with a longer length.
However, if the nanowire is short, the length of nanowires can be insufficient to create a bridge between
two bonding pads on the measuring platform [276].

Kolmakov et al. [278] have found that one of the most promising solutions to this problem is
the fabrication of a single-crystal quasi-1D chemiresistor with one (or a few) very thin segments,
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which adheres to the r ~ LD condition, where r is the radius of the nanowire in this place. Since the
narrow segment(s) will control the electron transport and sensing performance, such a device would
have all the advantages of ultra-thin single crystal nanowires (see Figure 19). Studies carried out by
Dmitriev et al. [274] showed that the narrow segments serve as ideal “necks,” as observed between
particles in conventional polycrystalline thin film gas sensors, but provide the significant advantages
of greater morphological integrity and stability. Reports of the methodology of the segmented oxide
nanowire (SN) controllable growth via a programmable change in the local vapor supersaturation ratio
(SnxOy (x, y = 1, 2 . . . )) in the vicinity of the wires during their vapor solid growth have been published
in [278]. This is an interesting but complicated approach to the manufacture of 1D-based sensors.
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of the electrical properties of the contact in the results of nanowire characterization, which may hide 
the phenomena occurring on the NW surface due to the interaction with a gas environment 
[158,230,244,280,281]. Therefore, Ebbesen et al. [243] and Hernandez-Ramirez et al. [230] believed that 
in order to reduce the influence of contacts on sensor readings, it is necessary to use a four-probe 
contacts configuration of the sensors (see Figure 20a). It is also necessary to monitor the dissipated 
power on the contacts in the process of testing. Even with powers exceeding 1 μW of heat dissipation, 
local heating is possible, which can originate many physical problems related to material diffusion, 
transformation, and fusion, that must be avoided to ensure nanosensor stability. Figure 20b shows 
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Figure 19. The response of straight and segmented nanowires as a function of their radius at various
contact resistances (b = 0, 0.025, 0.25). For segmented nanowires (SNWs), the curve is drawn versus
the radius of the smaller segment. The solid curve (top) corresponds to the nanowire with no contact
resistance; the dashed curve corresponds to the SNW with thick segments of a 500 nm diameter and
b = 0.025; the solid curve marked with circles corresponds to the SNW with b = 0.025; the dotted curve
corresponds to the SNW with b = 0.25. The depletion width is ~10 nm at all cases. Reproduced with
permission from Dmitriev et al. [274]. Copyright 2007: Institute of Physics.

According to Kolmakov [108], the segmentation of NWs can also be organized using approaches
such as:

• increased amount of defects and, therefore, increased scattering of the carriers in a selected area;
• lateral inhomogeneity in doping and, therefore, formation of Schottky-like junctions along the

length of the nanowire; and
• narrowing of the conductive channel of the nanowire as a result of sputtering.

The creation of a reliable low-resistance electric contact with such thin nanowires is also an essential
problem [273,279], since the quality of the contacts directly influences the performance of the sensors.
The reduced contact area between metal electrodes and NWs increases the contribution of the electrical
properties of the contact in the results of nanowire characterization, which may hide the phenomena
occurring on the NW surface due to the interaction with a gas environment [158,230,244,280,281].
Therefore, Ebbesen et al. [243] and Hernandez-Ramirez et al. [230] believed that in order to reduce
the influence of contacts on sensor readings, it is necessary to use a four-probe contacts configuration
of the sensors (see Figure 20a). It is also necessary to monitor the dissipated power on the contacts
in the process of testing. Even with powers exceeding 1 µW of heat dissipation, local heating is
possible, which can originate many physical problems related to material diffusion, transformation,
and fusion, that must be avoided to ensure nanosensor stability. Figure 20b shows the final electrical
breakdown consequence of this phenomenon. Hernandez-Ramirez et al. [158] have also noted that
before arrival to this failure state, the electrical characteristics drifted and showed a strong degradation
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and non-repeatability. Comini et al. [5] believed that the exact technical difficulty, connected with the
fabrication of reliable low-resistance electrical contacts on individual 1D nanostructures, is one of the
reasons, limiting the number of works on this topic.
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future, attempts will be made to increase the response of 1D-based gas sensors by reducing the 

Figure 20. (a) A fabricated FIB four-probes contacted SnO2 nanowire and (b) a detail of the contact
after an electrical failure likely caused by the excess of heat dissipation in the contacts. Reproduced
with permission from Hernandez-Ramirez et al. [159]. Copyright 2007: Elsevier.

2.4.3. Stability and Reproducibility

It should be noted that despite the seemingly indisputable advantages of 1D structures for the
development of gas sensors with increased stability, the problem of thermal instability of 1D structures
cannot be neglected. If we analyze the results confirming the increased stability of sensors based
on 1D structures compared to conventional metal oxide gas sensors (see for example, Figure 19),
we will see that all statements, regarding an experimental confirmation of the better stability of the 1D
structure-based gas sensors, relate to sensors fabricated using nanowires with the diameter significantly
exceeding crystallite sizes in polycrystalline metal oxides. For example, the results presented in
Figure 21 were obtained for nanowires with a diameter of 200–900 nm and nanocrystallites with a
diameter of ~4 nm.
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Figure 21. The change of sensing characteristics of the median sensor segment of a SnO2 3D mesoporous
nanoparticle (NP) or nanograins (NG) layer and nanowire (NW) mat versus measurement day:
(a) Sensitivity or response to 1 ppm of 2-propanol vapors; (b) background resistance in air. Open and
filled circles correspond to the NP and NW samples, respectively. Reproduced with permission from
Sysoev et al. [129]. Copyright 2009: Elsevier.
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Unfortunately, at present, as we mentioned above, nobody wants to work with individual 1D
structures with a characteristic size of less than 20–30 nm [128,158,159,275,276]. Of course, in the future,
attempts will be made to increase the response of 1D-based gas sensors by reducing the diameter
of the nanowire. In this case, we must be prepared for the fact that if we have the opportunity to
fabricate sensors based on nanowires with a diameter of less than 10–15 nm, it is quite possible that we
will also face the problem of reducing the stability of these devices. For example, studies carried out
on the basis of metal and semiconductor nanowires, showed that 1D structures with a characteristic
size in the range of 10–20 nm are also unstable [109,282–286]. With a decrease in the diameter of
nanowires their melting temperature drops sharply, just as in the case of nanocrystallites [287,288].
For example, the melting of a Ge nanowire with a diameter of 55 nm begins at a temperature of about
650 ◦C, while the melting point of bulk Ge is 930 ◦C [282]. Given the tendency of thin nanowires
to be cut due to melting at a relatively low temperature, we must recognize that sensors, in which
such a phenomenon is possible, cannot be considered devices with increased stability. This limitation,
undoubtedly, should be taken into account during the analysis of the prospects of 1D structures using
conductometric gas sensors developed for operation at elevated temperatures. This limitation may be
especially relevant in the development of self-heating sensors [102], where even small variations in the
diameter of nanowires and contact resistance or the uncontrolled increase in the current can cause local
heating to temperatures close to or above the melting temperature (Tm). One should also to take into
account that due to the nonlinearity of the I(V) characteristics and because of the reducing resistance of
nanowires during the interaction with reducing gases, the Joule power dissipated by the nanowire can
be increased even under a constant bias voltage [289]. These processes form a positive feedback and,
therefore, they can ultimately destroy the nanowire resistor. This effect is usually observed for metal
and highly doped semiconductor nanowires with moderate melting points [290,291].

The instability associated with surface diffusion of the electrode material along the nanowire
and the migration of surface clusters used for surface functionality can also be significantly increased;
1D structures do not contain edges and stages, which can serve as particle pinning centers that hinder
the diffusion of noble metal clusters on the surface of metal oxide supports.

The reproducibility of the parameters of the 1D nanostructure-based gas sensors should also be
improved [273]. Due to the sample to sample variation (see Figure 22), it is very difficult to produce
individual 1D structure-based gas sensors with identical parameters. A small change in the size and
shape of 1D structures leads to a sharp change in electrophysical, electronic, and surface properties,
which will undoubtedly be accompanied by a significant change in sensor performances. However,
this is unacceptable for the sensor market. All sensors must have the same parameters.

Nanomaterials 2020, 10, x FOR PEER REVIEW 22 of 60 

 

diameter of the nanowire. In this case, we must be prepared for the fact that if we have the 
opportunity to fabricate sensors based on nanowires with a diameter of less than 10–15 nm, it is quite 
possible that we will also face the problem of reducing the stability of these devices. For example, 
studies carried out on the basis of metal and semiconductor nanowires, showed that 1D structures 
with a characteristic size in the range of 10–20 nm are also unstable [109,282–286]. With a decrease in 
the diameter of nanowires their melting temperature drops sharply, just as in the case of 
nanocrystallites [287,288]. For example, the melting of a Ge nanowire with a diameter of 55 nm begins 
at a temperature of about 650 °C, while the melting point of bulk Ge is 930 °C [282]. Given the 
tendency of thin nanowires to be cut due to melting at a relatively low temperature, we must 
recognize that sensors, in which such a phenomenon is possible, cannot be considered devices with 
increased stability. This limitation, undoubtedly, should be taken into account during the analysis of 
the prospects of 1D structures using conductometric gas sensors developed for operation at elevated 
temperatures. This limitation may be especially relevant in the development of self-heating sensors 
[102], where even small variations in the diameter of nanowires and contact resistance or the 
uncontrolled increase in the current can cause local heating to temperatures close to or above the 
melting temperature (Tm). One should also to take into account that due to the nonlinearity of the I(V) 
characteristics and because of the reducing resistance of nanowires during the interaction with 
reducing gases, the Joule power dissipated by the nanowire can be increased even under a constant 
bias voltage [289]. These processes form a positive feedback and, therefore, they can ultimately 
destroy the nanowire resistor. This effect is usually observed for metal and highly doped 
semiconductor nanowires with moderate melting points [290,291]. 

The instability associated with surface diffusion of the electrode material along the nanowire 
and the migration of surface clusters used for surface functionality can also be significantly increased; 
1D structures do not contain edges and stages, which can serve as particle pinning centers that hinder 
the diffusion of noble metal clusters on the surface of metal oxide supports. 

The reproducibility of the parameters of the 1D nanostructure-based gas sensors should also be 
improved [273]. Due to the sample to sample variation (see Figure 22), it is very difficult to produce 
individual 1D structure-based gas sensors with identical parameters. A small change in the size and 
shape of 1D structures leads to a sharp change in electrophysical, electronic, and surface properties, 
which will undoubtedly be accompanied by a significant change in sensor performances. However, 
this is unacceptable for the sensor market. All sensors must have the same parameters. 

 

Figure 22. (a) SEM image of SnO2 nanowires after the synthesis using the gas transport method based 
on the vapor-liquid-solid (VLS) mechanism, and (b) SEM image of a single SnO2 nanowire. 
Reproduced from Shaposhnik et al. [292]. Published by Beilstein Sci. as open access. 

The lack of technology for the synthesis of well-controlled one-dimensional structures with an 
industrial-scale production rate is also a significant limitation [130]. However, the hydrothermal 
method can be considered as a potential scale-up method for the synthesis of 1D nanomaterials. 

Figure 22. (a) SEM image of SnO2 nanowires after the synthesis using the gas transport method
based on the vapor-liquid-solid (VLS) mechanism, and (b) SEM image of a single SnO2 nanowire.
Reproduced from Shaposhnik et al. [292]. Published by Beilstein Sci. as open access.
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The lack of technology for the synthesis of well-controlled one-dimensional structures with an
industrial-scale production rate is also a significant limitation [130]. However, the hydrothermal
method can be considered as a potential scale-up method for the synthesis of 1D nanomaterials.

There are also difficulties in growing the 1D structures, faceted by crystallographic planes with
more unsaturated metal cations. As previously shown, these planes can provide maximum sensitivity
for gas sensors. Gao and Zhang [183] noted that the controlled synthesis of metal oxide nanomaterials
with exposed high-energy facets is a difficult task since facets with a high surface energy usually
grow rapidly and eventually vanish. Although there have been several successful cases, there is still
a lack of understanding of the growth mechanism of high-energy facets. More in-depth research
should be carried out to investigate the mechanism and find out viable synthesis methods. There are
also questions regarding the long-term stability of high-energy facets during the gas sensing process.
High-energy crystal surfaces are extremely active. Therefore, it is unclear how long a gas-sensitive
metal oxide-based 1D nanostructure with exposed high-energy facets can remain active and exhibit
excellent performance?

2.5. How to Improve 1D Structure-Based Gas Sensors

2.5.1. Sensors Based on 1D Structures Array

The study showed that the application of an array of 1D nanostructures, placed in the form
of monolayer mats (see Figure 23a), allows the use of a standard thick-film technology for gas
sensor fabrication. It also gives the opportunity to eliminate many of the technological difficulties
associated with the manufacture of 1D nanostructure-based sensors and makes it possible to already
realize now a number of indisputable advantages of 1D nanostructures usage in gas sensors. That is
why this approach is currently the most common in the manufacture of gas sensors based on 1D
nanostructures [213]. However, in this case, such gas sensors do not have a fundamental difference from
traditional polycrystalline sensors manufactured by the thick-film technology. Impedance spectroscopy
studies showed that the gas-sensing mechanism for sensors on the base of networked 1D nanowires
involves changes in both the nanowire resistance, and the resistance of inter-nanowire interface [293].
This situation is shown in Figure 23b. The only advantage of such sensors is a large porosity, that is,
the better gas permeability of the sensing layer and, as a result, faster response.
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Figure 23. (a) Schematic diagrams for multi-nanowire-based chemical sensors; (b) schematic illustration
of the gas sensing mechanism in a network of nanowires. Reproduced with permission from Vomiero
et al. [294]. Copyright 2007: American Chemical Society.

Nanowires can be converted to a gas sensitive layer using several methods. The 1D metal oxide
NWs mat can be converted to a gas sensitive layer using several methods. Deposition of a slurry
containing NWs onto the electrodes and subsequent heat treatment is the simplest method to fabricate
the gas sensor [295–297]. However, in this case, the use of transfer media, in most cases liquid,
poses potential harm to the unique properties of the nanowires, such as surface reactivity. As is known,
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the surface cleanliness of a nanowire is crucial for gas sensor performances. This means that the
reduction or elimination of post-processing of the nanowires during gas sensor fabrication is the best
solution of this problem. In this regard, the integration of nanowires into devices by the direct growth
of nanowires in the required place of the substrate has an obvious advantage over transfer methods.
In this case, the mat-type films can be prepared by simply pressing long NWs grown on a substrate.
However, both these methods do not provide a reproducible deposition of the NW network onto a
defined area, especially in cases where the gas-sensitive layer must be formed on a sub-millimeter-scale
or micrometer-scale area [296]. In addition, the sensor stability against vibrational environments can
be deteriorated due to the poor adhesion between the NWs and the electrodes.

The direct growth of oxide NWs on metal or metal oxide electrodes can be an alternative method
for manufacturing well-defined metal oxide NWs-based gas sensors [153,294,298]. A strong adhesion
between the NWs and electrodes significantly improves not only the electrical contacts between
the NWs and electrodes, but also the operation stability against mechanical vibration. In addition,
highly miniaturized sensors can be fabricated by the selective growth of NWs within a defined area.
Below we will consider these methods in more detail. However, to begin with, we note that the
functional arrays of various metal oxide nanowires could be synthesized using either the template-free
method or template-assisted strategy. The template-free synthesis provides a fast enough growth of 1D
nanostructure arrays of a big group of metal oxides, suitable for chemical sensors, such as ZnO, Ga2O3,
TiO2, and In2O3. Their growth is controlled by adjusting process parameters such as the temperature,
process duration, and the type and the concentration of the precursor. In contrast, the template-assisted
method, due to the possibility to control the template geometry and pattern distribution, could be
more effective in adjusting the morphology and size of nanostructures (length, density, and diameter).
The patterned templates as a unique mask could also endow the ability to define the shape and the
position of nanoarrays. However, it must be borne in mind that the template-assisted method has
limitations on growing nanowires with a minimum diameter. The template-free method is free from
this drawback. However, when using the template-free method, due to not using the uniform growth,
poor control over the density and distribution of NWs is observed; 1D structures can have a wide
variation in their geometric parameters such as length, thickness, or diameter. This significantly limits
the possibility of manufacturing sensors with reproducible parameters.

2.5.2. Sensors with Vertically Oriented Nanomaterials

One of the progressive approaches to the fabrication of gas sensors, based on 1D structures
array, involves growing parallel NWs or nanotubes on the substrates in the perpendicular direction to
the surface (see Figure 24). In this case, although the 1D structures array is used, this configuration
makes it possible to realize the advantages of the sensors characteristic of devices based on individual
1D nanostructures. In [106,299,300], the application of this approach to the development of devices
from TiO2 nanotubes was described. This technique is similar to the manufacture of thin films,
but promises higher accuracy in making the columnar nano-elements. Contacts can also be made using
electrochemical deposition methods [279].
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A description of other approaches to the formation of vertically oriented nanomaterials as
applied to ZnO can be found in [219,301–303]. For example, such structures can be created using
template-assisted techniques, such as filling the membrane pores of porous silicon or anodized
alumina [304,305]. This template-based method for nanowire array fabrication provides a low cost
technology acceptable for large-area processes. This approach is one of the feasible techniques to form
well-defined lateral or vertically oriented nanowires arrays, since it is easy to form electrodes to selected
nanowires. However, as a rule, nanowires, grown using the template-based method, are polycrystalline
and, in principle, do not apply to the nanomaterials considered in this article. As we indicated earlier,
in this article we consider single-crystal 1D nanostructures.

The view of vertically oriented NWs really related to 1D nanomaterials is shown in Figure 25c.
The method, developed by Wei et al. [302] for growing vertically oriented ZnO NWs, combines a
laser interference pattering technique and hydrothermal synthesis. A hole array is fabricated on the
surface of the substrate through laser pattering. The NWs are then formed from these holes in a mixed
growth solution, containing Zn(NO3)2 and hexamethylenetetramine (HMTA, (CH2)6N4) by using a
hydrothermal method (Figure 25a,b). However, in order to look this way, NWs must have a diameter
much larger than 500 nm, which does not contribute to the high sensitivity of gas sensors made on
their basis. With a smaller diameter, vertically oriented nanowires do not look so perfect. In particular,
Figure 26 demonstrates vertically aligned ZnO nanowires directly synthesized on fluorine-doped tin
oxide-coated substrates using the Chemical Vapor Deposition (CVD) method. Moreover, even in this
case, the diameter of nanowires was quite large. The top and bottom diameters of the needle-shaped
ZnO nanowires were around 100 nm and 1 µm, respectively [306].
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Figure 25. (a) Schematics of the fabrication sequences of vertically aligned ZnO NW arrays using laser
interference lithography (LIL); (b) optical image of a 2 in. Si wafer with a SU-8 open-hole pattern over
the whole surface area. The iridescence dispersion demonstrates the excellent periodicity over the
entire wafer surface. (c) The top-view SEM image of the patterned SU-8 film (thickness of 500 nm).
Inset, the top-view SEM image of the patterned SU-8 film at higher magnification. The area encircled
by the black dashed line is the exposed surface of the substrate. Reproduced with permission from
Wei et al. [302]. Copyright 2010: American Chemical Society.
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However, in reality, based on 1D nanowires vertically grown without any template, it is difficult
to implement the structures shown in Figure 24. The main difficulty lies in the formation of contacts to
the top of vertically grown nanowires. The deposition of a metal film by physical vapor deposition,
will not work as the metal seeps through the voids between the NWs and shorting with the bottom
electrode. Several approaches have been proposed to form such contacts. For example, to eliminate
the shorting with the bottom electrode, the NWs can first be embedded in a dielectric layer such as
a polymer (see Figure 27). Then, planarization is performed to obtain NWs of the desired length.
After etching the polymer with purpose to expose the tips of the NWs, a metal film is deposited on
top as a contact pad. The experiment has shown that oxygen plasma etching is the best method for
polymer etching and NWs cleaning. After metal deposition, the polymer is completely removed and
frees the NWs to interact with the atmosphere [307,308]. As we can see, this is a rather long and
laborious process.
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In order not to use any treatments that affect the surface properties of metal oxides,
Parthangal et al. [309] proposed a different approach. An electrical contact with the top of the nanowire
array is fabricated by creating a continuous conductive film through the electrostatic attachment of
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conductive gold nanoparticles exclusively onto the tips of nanowires (Figure 28). Au nanoparticles
were generated through an aerosol spray pyrolysis method. The droplet-containing flow was passed
through dehumidifiers and then into a tube furnace maintained at 600 ◦C to thermally crack the
precursor and form Au particles. The particles were then positively charged with a home-made
unipolar charger and introduced into an electrostatic precipitator containing the substrate with the
grown nanowire arrays of ZnO. A high negative electric field of −10 kV/cm was applied to drive
the particle deposition. Parthangal et al. [309] stated that this assembly approach is suitable for any
nanowire array that requires an upper contact electrode. However, we must admit that this method of
forming contacts is also not simple and does not provide a good process performance (see Figure 28).
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Figure 28. SEM images of Au nanoparticles attached to the tips of the nanowire assembly at different
stages of the deposition: (a) 10 min; (b) 1 h; (c) 2 h. Scale bars = 1 µm. Reproduced with permission
from Parthangal et al. [309]. Copyright 2007: Cambridge University Press.

Radha et al. [310] developed another interesting approach to forming contacts to vertically
grown nanowires that does not require additional operations. It is schematically represented in
Figure 29. To implement it, they used a chemically synthesized single-crystalline Au microplate as
the top electrode. The contact is electrically activated, and the formation of the contact is mainly
due to electromigration. With this approach, the electrode could ohmically contact several thousand
nanowires at once. This method has been developed for InAs nanowires. However, it can undoubtedly
be used as applied to metal oxide nanowires, though only for research purposes.
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The approach proposed by Choi et al. [134] and Ahn et al. [311,312] was also of interest for the gas
and vapor sensor design (see Figure 24). Figure 30b,d shows side- and top-view scanning electron
microscope (SEM) images of ZnO nanowires grown on patterned electrodes. ZnO nanowires, grown
only on the patterned electrodes, have many nanowire/nanowire junctions as seen in Figure 30c.
These junctions act as an electrical conducting path for electrons. The device structure is very simple
and efficient for gas sensitive elements forming, because the electrical contacts to nanowires are
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self-assembled during the synthesis of nanowires. In addition, growing nanomaterials directly onto
the sensor chips simplifies the manufacture of sensors. Ahn et al. [311,312] asserted that this method
of on-chip fabrication of nanowire-based gas sensors is scalable and reproducible. Furthermore,
it integrates stable nanomaterials onto the electrode surface without using any binders for fixing
nanomaterials onto the electrodes. A more detailed description of the sensors based on vertically
oriented nanomaterials can be found in [220]. It is important to note that this method of manufacturing
sensors does not require any manipulation of nanomaterials, and therefore, in their manufacture,
one can use the technological modes that allow growing nanowires of a small diameter. This means
that sensors manufactured in this way can have very high sensitivity, which was experimentally
confirmed [130,219,220,313]. For example, Figure 31 shows the results reported by Yuon et al. [313].
It is seen that sensors really show very high sensitivity. High sensitivity appears to be due to the
small area of inter-nanowires contacts. With a sufficiently large diameter of NWs, only the presence of
the adsorbate-modulated Schottky barriers [108], formed between individual nanowires, can explain
high sensitivity.
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Ahn et al. [312]. Copyright 2009: Elsevier.

However, despite the general progress in on-chip fabrication of metal oxide-based nanomaterials,
few of them can be directly grown on substrates/electrodes. In this regard, ZnO is the best material
for these purposes. It should also be taken into account that NWs in such structures can form
inter-nanowires contacts without sintering. This means that with any vibration of the sensor, the area
and the number of such contacts can change, leading to a change in the basic sensor characteristics.
According to McAleer et al. [314], a significant reduction in the number of contacts in the NWs
networks, involved in the percolation-dependent transport, compared with polycrystalline metal
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oxides, inevitably should worsen also the stability (thermal, mechanical, and chemical), as well as the
overall performance of the devices, fabricated using the indicated approach [108].Nanomaterials 2020, 10, x FOR PEER REVIEW 29 of 60 
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Figure 31. (a) SEM images of ZnO NWs grown on substrates with the Au electrodes (electrode line
width × gap distance = 3 × 5 µm); (b) schematic representation of the nanobridge junctions formed and
(c) sensor response to the CO gas. Reproduced with permission from Yuon et al. [313]. Copyright 2010:
American Chemical Society.

2.5.3. Sensors with Horizontally Oriented Nanomaterials

The experiment showed that from the point of view of the stability of sensors parameters, a more
reliable configuration is the structure shown in Figure 32, when the nanowires grow and form a
bridge between the electrodes, fabricated on the substrate [163,219,315]. However, to implement this
configuration, NWs should be sufficiently long to create a connection between the two electrodes.
Therefore, the distance between the electrodes should be extremely small. This will facilitate both the
formation of the bridge and will allow the formation of such bridges using nanowires of a smaller
diameter, which is necessary to achieve high sensitivity. Another important step for the NWs growth is
the deposition of a catalytic film on the sidewall of electrodes. This step allows the NWs to grow first on
the catalytic film and then pass through the trench to the opposite side of the electrode. Unfortunately,
it is difficult to control this process, which introduces an element of randomness and uncertainty in the
properties of sensors manufactured using this technology.

Additionally, noteworthy is the approach proposed by Kim and Son [316]. They adapted a step
edge decoration (SED) method [317], as a bottom-up technique to fabricate a lateral nanowire array
(see Figure 33). Using this technique, high quality ZnO nanowires with a diameter of about 20 nm
and a regular interval of about 80 nm were fabricated on a sapphire substrate. Gas sensors based on
these structures demonstrated a high response to ethanol (S = Rg/Ra ~170 for 200 ppm). Despite the
possibility of creating gas sensors based on individual nanowires without using any operations related
to their separation and manipulation, this technology is still too expensive for large-scale use.

In this regard, the methods described in [318–320] are more suitable for forming a lateral nanowire
array. These methods are based on creating conditions for the growth of nanostructures along the
surface of the substrate. For example, the crystallographic property of the substrate should be
suitable for the orientation growth of growing NWs along the substrate surface. Using this approach,
Nikoobakht et al. [318,319] successfully fabricated horizontally aligned ZnO NWs on an α-plane
sapphire (1120). ZnO NWs are grown along the [1100] direction, in which the lattice parameters of
c-plane ZnO NWs and α-plane sapphire are similar. In this architecture, NWs can be grown on the
places where the nanodevices could be subsequently manufactured. In this case there is no need to
transfer NWs to a different surface or align them. With the use of only three photolithographic steps,
this technique allows the industrial-scale production of nanodevices (see Figure 34). First, an α-plane
sapphire surface is patterned with gold nanodroplets. Next, small-diameter zinc oxide NWs are
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grown selectively on the predefined gold sites. A growth direction of the NWs is controlled using
the anisotropic crystal match between zinc oxide and the underlying substrate. Unfortunately, it is
very rarely possible to fulfill the condition for horizontal growth, because substrates should exhibit a
good lattice mismatch with the growing NWs. This significantly limits the applicability of this method.
In addition, the reality is not so good. The method suggested by Qin et al. [321] allows circumventing
this limitation. Qin et al. [321] showed that by applying the combined effect of a ZnO seed layer
and a catalytically inactive layer (Cr or Sn), one can fabricate horizontally aligned ZnO NWs on
various organic and inorganic substrates with single crystal, polycrystalline, and amorphous structures.
Wang et al. [322], when this method was employed, fabricated the aligned SnO2 NWs and showed that
gas sensors based on these structures can have a high sensitivity to NO2.
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Figure 32. (a,b) Schematic of the bridging NW growth. Reproduced with permission from
Huang et al. [219]. Published by Elsevier as open access; (c,d) SEM images of the fabricated CuO
NWs-based gas sensor: (c) Low magnification; (d) high magnification. Reproduced with permission
from Steinhauer et al. [163]. Copyright 2013: Elsevier.
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Figure 33. Diagram of the gas sensor fabrication process: (a) Uniform terraces formed on the (0001)
sapphire substrate, (b) nanowires growth on the terrace using the laser pulsed layer deposition method,
(c) nanowire-based gas sensor on the terrace. Reproduced with permission from Kim and Son [316].
Copyright 2009: Institute of Physics.
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Figure 34. Schematic of the photolithography process for a scalable fabrication of nanowire devices.
(a) Gold pads and fiducial marks are deposited on the surface. (b) NWs are grown selectively from the
two sides of the gold pads. (c) Metal electrodes and bonding pads are placed exactly on NWs by the
alignment of fiducial marks. Reproduced with permission from Nikoobakht [319]. Copyright 2007:
American Chemical Society.

2.5.4. Large-Scale Fabrication of Nanowire Networks-Based Gas Sensors

As we can see, quite a lot of different methods of direct growth of NWs have been developed to
date, allowing the production of 1D nanostructure-based gas sensors. However, to date, a reliable
technological route for the production of large-scale gas sensors based on the NW networks for
commercial purposes has not yet been developed. Hwang et al. [153] suggested a facile route to
fabricate single crystalline SnO2 NW networks-based gas sensors on a large scale. The SnO2 NW
networks were grown on 16 different sensor elements via a single step vapor phase reaction using
laser-scribed Al2O3 substrates with patterned Au catalyst layers, Au electrodes, and Pt heaters
(Figure 35). NWs were several tens of micrometers long and 30–100 nm thick. Hwang et al. [153]
showed that fabricated sensors had high sensitivity and selectivity to NO2 and C2H5OH (see Figure 36).
At the same time, they did not show how identical the parameters of all these 16 sensors were.
Without this, one cannot talk about a large-scale production. It should be noted that the nanowire
networks shown in Figure 35c looks like a loose structure in which the position of the nanowires
relative to each other is not fixed. In this situation, doubts arise about the stability of this structure and
its electrophysical and gas sensing properties when exposed to an external vibration.
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Figure 36. (A) Dynamic sensing transients to 0.12–5 ppm NO2 at (a) 141, (b) 190, and (c) 240 ◦C and the
corresponding sensor response as a function of NO2 concentration (insert); (B) (a) dynamic sensing
transients to 2.5–100 ppm C2H5OH, (b) gas responses as a function of the C2H5OH concentration, and
(c) the 90% response times (τres) and 90% recovery times (τrec). Reproduced with permission from
Hwang et al. [153]. Copyright 2012: Elsevier.

3. 2D Nanomaterials

3.1. Introduction

The use of 2D nanomaterials is another promising area in the development of gas sensors. 2D
nanomaterials are objects that in one direction have a size in the range of up to 100 nm. The most
famous 2D nanomaterials are graphene [8,323], black phosphorus or phosphorene [324], silicene,
borophene, boron nitride [325], and transition metal dichalcogenides (TMDs) [326], which have
a layered structure and allow the formation of atomically thin 2D nanomaterials of a large area.
2D materials are characterized by a high degree of anisotropy and chemical functionality. All these
nanomaterials differ in their mechanical, chemical, electrophysical, surface properties, as well as in size,
shape, biocompatibility, and stability to the influence of external factors. However, their low-dimension
nanostructure gives them some common characteristics. 2D nanomaterials are the thinnest materials
known, which means that they have the highest specific surface areas among all known materials. As a
result, they can adsorb large numbers of gas and drug molecules and provide excellent control over the
kinetics of surface reactions. In addition, the thinness of these nanomaterials allows them to respond
rapidly to external signals such as light or chemical and biological agents. This characteristic makes
these materials invaluable for applications requiring high levels of surface interactions on a small
scale. An experiment showed that these properties make 2D nanomaterials suitable for a wide range
of applications, such as drug delivery, energy conversion and storage, electronics, optoelectronics,
biosensing, various biomedical applications, and design of chemical sensors, including gas sensors,
etc. [327–333].

3.2. Advantages of 2D Nanomaterials for Gas Sensor Design

The main advantages of 2D nanomaterials for use in gas sensors include:

1. 2D layered nanomaterials, as well as 1D nanomaterials, possess a large surface area and high
surface-to-volume ratio (see Figure 37), allowing more atoms to interact with the atmosphere.



Nanomaterials 2020, 10, 1392 33 of 62

This is especially important for gas sensors, since such a structure of a gas sensitive material
facilitates surface reactions, such as adsorption, chemisorption, and heterogeneous catalysis,
controlling gas sensitive effects [324,334].

2. Unique structures of 2D nanomaterials can provide these materials with properties that cannot be
achieved with conventional bulk structures.

3. The 2D layered structure has an increased mechanical stability, which is very important when
developing sensors on flexible substrates [336,337].

4. Bandgap engineering is another advantage of 2D nanomaterials for gas sensor applications. It is
assumed that bandgap engineering via a thickness control at the atomic level will make it possible
to control the electronic and adsorption/desorption properties of gas sensing materials [324].

5. Due to their relatively larger lateral size, 2D nanostructured materials offer a better conformal
contact with the electrodes in comparison with 1D nanomaterials.

6. The possibility of assembly into three-dimensional (3D) architectures can also be attributed to the
advantages of 2D nanomaterials [338].

7. In addition, it should be borne in mind that in 2D nanomaterials only one crystallographic plane
is involved in gas-sensitive effects. This, as well as in the case of 1D nanostructures, significantly
simplifies the modeling of processes, occurring on this surface, and contributes to a better
understanding of the nature of gas-sensitive effects [339]. Moreover, when the crystallographic
structure of 2D nanomaterials is correctly selected, then this factor can contribute to improved
sensor selectivity.

8. Different composite materials based on two-dimensional materials is another opportunity for
creating gas-sensitive materials with unique properties that are not accessible in a 2D material or 3D
structures based on one oxide material [340,341]. The experiment showed that, in addition to metals,
polymers, and metal oxides, other 2D nanomaterials can be used to form 2D-based composites.
Layered combinations of different 2D materials are generally called van der Waals heterostructures
or hybrid two-dimensional materials. Hybrid two-dimensional materials are considered to be
advanced multifunctional materials that have outstanding physical and chemical properties
important for various applications [342,343]. In particular, Shanmugasundaram et al. [344]
and Yang et al. [345] believed that gas sensors based on such heterostructures can overcome
the disadvantages inherent in gas sensors based on simple materials such as low selectivity.
Some approaches that can be used in the formation of 2D-based heterostructures are described
in [346].
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Currently, based on these 2D nanomaterials, a large number of prototypes of gas sensors have
been made, which have increased sensitivity to various gases. An analysis of these results can be found
in numerous reviews devoted to the consideration of these materials [323,326,334,345,347–354].

3.3. Features of 2D Nanomaterials Synthesis

Studies have shown that in addition to traditional layered 2D nanomaterials such as graphene,
black phosphorus or phosphorene, silicene, borophene, boron nitride, and transition metal
dichalcogenides (TMDs), metal oxides may also have 2D structures [351,355]. It was established that
some metal oxides such as Ga2O3 and metal trioxides with a general formula of MO3 (M = Mo, Ta,
W, etc.) have a layered structure in hydrate or anhydrate phases [356]. For example, MoO3 has a
layered structure in which each layer is predominantly composed of a distorted MoO6 octahedra
in an orthorhombic crystal (space group Pcmn) [357]. The α-V2O5, the most stable phase in the
vanadium oxide family due to its highest oxidation state of vanadium, also has a layered structure and
crystallizes with an orthorhombic unit cell structure (space group: Pmmn). Each layer is composed of a
distorted trigonal bipyramidal polyhedral where O atoms locate around the V atoms [358]. To form
2D nanomaterials based on such layered metal oxides, one can use methods commonly used in the
formation of graphene, phosphorene, and transition metal dichalcogenides (TMDs) [324,348,359].
Thus, Ji et al. [360] combined grinding and sonication to exfoliate bulk α-MoO3 crystals into single-
and few-layer nanosheets. A surfactant was used to stabilize them. It is important that nanosheets of
the aforementioned oxides with oxygen terminated basal surfaces are stable both in air and in water.

Perovskites are another large family of layered 2D metal oxides [361]. Layered perovskites consist
of ABO3 layers interleaved by thin sheets of motifs with A and B cations of possibly different sizes.
Three main layered perovskites are the Aurivillius (AU), Dion-Jacobson (DJ), and Ruddlesden-Popper
(RP) phases [362]. The general formula of the AU phases is [Bi2O2]-[A(n−1)BnO3n+1]. Bi2WO6 and
SrBi2Ta2O9 are examples of such oxides. The general formula of the DJ phases is MA(n−1)BnO(3n+1).
Metal oxides LaNb2O7, (Ca,Sr)2Nb3O10, and La2Ti2NbO10 have such a formula. The RP phases include
compounds such as SrLaTi2TaO10 and Ca2Ta2TiO10. They can be directly synthesized into a 2D form
using layer-by-layer deposition techniques with possible stabilization steps. If the perovskites bulk
crystals are stratified, similar to graphene or TMDs, 2D perovskites can be directly exfoliated from
their naturally stratified phases. However, indicated perovskites were not used in the development
of gas sensors. Many of the parent layered perovskites are highly polarizable and form the basis of
dielectric and ferroelectric materials [362].

As for the traditional metal oxides used in the development of gas sensors, such as SnO2,
ZnO, In2O3, etc., they do not have a natural layered crystal phase. Therefore, for the formation of 2D
nanostructures of these metal oxides, one has to use other approaches based on the development of special
synthesis modes. Using this approach, 2D nanomaterials based on oxides such as ZnO [200,363–365],
SnO2 [366,367], WO3 [368], CuO [369], Co3O4 [370,371], In2O3 [372], and V2O5 [373] were formed.
It was established that for these purposes it can be used as either the hydrothermal or solvothermal
synthesis [200,363–368], as well as precipitation [374], layer-by layer deposition, and sonochemical
processes [375]. The appearance of such structures is shown in Figure 1c,e. Typically, these structures
are quasi-single crystalline structures.

3.4. Gas Sensors Based on 2D Nanomaterials and Their Limitations

3.4.1. Sensors Performances

The parameters of gas sensors developed on the basis of 2D metal oxides are shown in Table 4.
As one can see, sensors based on 2D nanomaterials have the characteristics typical of metal oxide-based
gas sensors. The maximum sensor response, depending on the material used, its structural parameters,
and the nature of the detected gas, is observed in the temperature range from RT to 400 ◦C. The best
samples are also fast-acting and exhibit increased sensitivity.
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It should be noted that both in the formation of sensitive layers, and in the fabrication of sensors
based on 2D nanomaterials, in order to optimize their parameters, all approaches, developed previously
for conventional metal oxides and other 2D nanomaterials, can be used [376]. They are bulk doping
or surface modification with noble metals [377] and metal oxides [378–380]. As with conventional
metal oxides [115,123], these approaches provide a significant improvement in sensor parameters such
as sensitivity, selectivity, and the time of sensor response and recovery (see Figure 38). For example,
Yin et al. [379] showed that the response of the WO3 nanosheet-based sensors coated with SnO2

nanoparticles to a 50 ppm acetone vapor was 10 times higher than that of the pristine WO3 nanosheet
gas sensor. However, it must be borne in mind that despite the progress made, the efficient integration
of 2D functional layers with a three-dimensional sensor platform remains a significant challenge,
limiting device performance and circuit design [381].

Table 4. Parameters of gas sensors based on 2D metal oxide structures.

Nanosheets
(Technology)

DT,
nm Response a),b) DL, ppm Target

Gas
τres/τrec

s
Toper,
◦C Ref.

ZnO (ST) 30 ~11a)@100 ppm 5.0 CO 25/36 300 [63]

P ZnO (HT) ~100 ~84a)@50 ppm 1.0 C2H5OH 15/12 330 [200]

MP ZnO (HT) ~18 101a)@100 ppm 1.0 C2H2 11/5 400 [364]

ZnO (FP) ~20 106a)@200 ppm <1.0 CH3COCH3 19/14 300 [374]

ZnO (SC) 10–60 ~75%b)@1 ppm 0.05 HCHO,
CH3CHO 10/62 220 [375]

ZnO:Sn-Rh (HT) - 15a)@100 ppm 5.0 C2H5OH 3/10 300 [378]

SnO2 (HT) ~15 40a)@100 ppm 5.0 C2H5OH 1/9 300 [366]

SnO2 (HT) ~20 ~70a)@100 ppm 100 CO 9/18 300 [367]

SnO2 (HT) ~10
~70a)@100 ppm <5.0 C2H5OH - 250 [382]
~10a)@500 ppm <50 CO 1/3 300

WO3 (HT) ~10 ~6a)@50 ppb 0.05 NO2 140/75 140 [368]

WO3 (HTA) 10–50 80%b)@ ppm 600 H2 120/235 250 [383]

WO3/SnO2 (HT) 30–90 45a)@100 ppm ~1.0 C3H6O 2/30–60 260 [379]

CuO (FHT) ~19 ~9a)@100 ppm 10 C2H5OH 15/11 370 [369]

CuO (FHT) ~63 ~10a)@100 ppb <0.01 H2S 234/76 RT [384]

P NiO (HT) ~14 13a)@10 ppm 0.001 H2S 100/79 92 [385]

NiO (ACD) ~100 ~650%b)@8 ppm 0.008 HCHO 120/120 150 [386]

Co3O4 (FHT) 20–50 ~14a)@100 ppm 10 C2H5OH N/A 160 [387]

Co3O4 (FHT) ~40 9a)@100 ppm 0.2 NH3 9/134 RT [371]

In2O3 (FTSS) ~3.5 213a)@10 ppm 0.01 NOx 4/9 120 [372]

In2O3/WO3 (4wt%) (IM) ~2.5 25a)@100 ppm 0.1 HCHO 1/67 170 [380]

V2O5·0.76H2O (MOA) 1.5–2.6 2%b)@10 ppm 10 H2 – 250 [373]

RuO2 (LPE) ~1.3 1.1%b)@20 ppm 5 NO2 – 80 [388]

ACD—aqueous chemical deposition process; DL—detection limit; DT—thickness; FP—facile precipitation method;
FHT—facile hydrothermal process; HTA—high temperature anodization; FTSS—facile two-step synthetic method;
HTS – hydrothermal synthesis; IM—impregnating method; MOA—molecular-level oriented attachment method;
MP—mesoporous; LPE—liquid phase exfoliation technique; P—porous; Response: a) Rair/Rgas; b) ∆R/R0 (%);
RT—room temperature; SC—sonochemical method; ST—solvothermal process; Toper—operation temperature;
τrec—recovery time; τres—response time.

Bag and Lee [389] showed that the parameters of 2D structure-based gas sensors can
also be improved through the formation of various types of heterostructures, such as 2D-0D,
2D-1D, 2D-2D, and 2D-3D heterostructures. However, they also recognize that despite their many
advantages, the development and manufacture of 2D nanostructured material-based gas sensors
using heterostructures still face problems. Too many technological difficulties arise in the preparation
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of gas-sensitive materials based on such heterostructures. At that point, the formation of 2D-2D
heterostructures is of particular difficulty, since in this case it is necessary to layer one 2D nanomaterial
onto another with the formation of a close contact between them. A description of possible approaches
to the formation of such structures can be found in [346].
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working temperature (300 ◦C): 1—ZnO nanosheets; 2—ZnO:Rh; 3—ZnO:Rh-Sn. Reproduced from
Sun et al. [335]. Published by Nature Research as open access.

At the beginning of this section, we noted that one crystallographic plane is involved in gas
sensitive effects in 2D nanomaterials, which makes it possible to determine the crystallographic
planes most suitable for constructing gas sensors with improved parameters. Unfortunately, due to
the difficulties in forming nanosheets with the required crystallographic orientation, research in this
direction is almost not carried out. Only Xu et al. [200] in their work have compared the gas-sensitive
characteristics of ZnO nanosheets (NSs) with (0001) и(1010) planes and established that the ZnO NS
(0001) sensor shows a better performance than the NS (1010)-based sensors (see Figure 39). This means
that the 2D ZnO structures faceted by the (0001) plane are preferred when developing gas sensors.
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3.4.2. Technologies of Sensor Fabrications and Their Limitations

Despite the progress made in the development of sensors based on 2D metal oxides, it must
be recognized that these sensors are still inferior in parameters to many conventional metal oxide
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nanocrystallite-based gas sensors. Some studies [360,366] point to the significant superiority of 2D
nanomaterial-based sensors over conventional polycrystalline gas sensors. However, as a rule, in these
articles, the conventional polycrystalline gas sensors that are used for comparison do not have the
optimal structure of the gas-sensitive layer. For example, Lou et al. [366] compared sensors based on
2D SnO2 nanosheets with a thickness of ~15 nm with sensors, fabricated using agglomerated SnO2

powders with a crystallite size of more than 20 nm.
From our point of view, the advantages of conventional gas sensors based on polycrystalline

material in comparison with 2D nanomaterial-based devices are due to the following reasons:
Firstly, there are technological difficulties in the fabrication of gas sensors based on 2D

nanomaterials [360,390–392]. For example, if 2D nanomaterials are in the form of a large nanosheet,
then in the case of a thick-film technology used for forming a gas-sensitive layer, there is a threat of the
formation of the layer, consisting of strongly agglomerated 2D nanosheets. This makes it difficult for
the gas to penetrate the inter-nanosheet space. Additionally, this further reduces the sensitivity and
significantly increases the response and recovery times. Wherein, unlike the conventional material,
i.e., polycrystalline metal oxides, we cannot use the mechanical milling of agglomerated materials,
since milling will be accompanied by crushing of 2D nanomaterials.

Secondly, it is very difficult to grow 2D nanomaterials, which are large but small in thickness,
using traditional approaches to the synthesis of metal oxides. When nanosheets become large in
size, then their thickness becomes more than 10–50 nm, which does not contribute to achieving high
sensitivity of the sensors. If during the synthesis of 2D nanomaterials we try to limit the thickness of
the plates, then in the end we get a material that is slightly different from ordinary nanocrystallites
used in conventional gas sensors.

Some problems associated with the excess thickness of nanosheets have been resolved on the
basis of new technological approaches [348,393]. It was shown that with an appropriate optimization
of the process, thin nanosheets can be synthesized using a wide variety of techniques such as
hydro/solvothermal synthesis [335], the interface-mediated synthesis method [394], 2D-oriented
attachment method [395], 2D-templated synthesis [396], self-assembly of nanocrystals [395,397],
and the on-surface synthesis method [398]. Using this strategy, large 2D structures of TiO2, ZnO, Co3O4,
WO3, Fe3O4, V2O5·0.76H2O, and MnO2 with a thickness ranging from 1.6 to 5.2 nm (corresponding to
2−7 stacking monolayers) have been synthesized [355,373]. It is important to note that metal oxides
with such a thickness should have unique properties in terms of gas sensitive effects. For example,
five-atomic-layer-thick SnO2 sheets (0.66 nm) have a 40% surface occupancy by highly reactive Sn
and O atoms with low coordination numbers [399]. These surface atoms could serve as centers to
efficiently adsorb gaseous molecules, and/or as catalytically active sites, favoring the surface reactions
with participation of adsorbed species.

It should be noted, however, that the proposed technologies very often do not agree well with the
large-scale production of gas sensors. For example, in [371,379,385], NiO, Co3O4, and CuO nanosheets
were synthesized directly on an Al2O3 tube, into which a heater was subsequently mounted inside,
and in [363,388], ZnO and NiO nanosheets were synthesized directly on a substrate with already
formed contacts (see Figure 40a). Li et al. [371] believed that sensors with nano-sheets grown directly
on substrates should have excellent performance, since during the process of synthesis the nanosheets
form a network porous nanoscale system that promotes fast diffusion and efficient adsorption of
gas over the entire sensor surface, which should significantly improve its sensitivity and reduce
the response time. SEM images shown in Figure 40b,c demonstrate that the structure of the gas
sensitive layer formed in this way really compares favorably with the structure of the gas sensitive
layer formed using conventional thick film technology [364,366]. SEM images on nanosheets used for
fabrication of gas sensing layers using thick-film technology are shown in Figure 41. 2D nanomaterials
aggregated into three-dimensional (3D) architectures are indeed characterized by a significantly greater
porosity and better gas permeability. Therefore, in most of the studies, using 2D nanosheets as active
sensing elements, these 2D nanomaterials are aggregated in various porous 3D architectures [363,400].



Nanomaterials 2020, 10, 1392 38 of 62

The nanosheets may self-assemble spontaneously or can grow on pre-existing cores. The 2D nanosheets
in 3D assemblies generally require a thickness of several nm or more in order to have sufficient
mechanical strength to sustain an open architecture under dry conditions [400]. However, in this
article we will not analyze gas sensors developed on the basis of such porous 3D assemblies. A special
article (the second part of our review) will be devoted to the consideration of such 3D nanomaterials,
mesoporous-macroporous, and hierarchical structures.
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Figure 41. Low and high magnification (inset) FESEM images of WO3 (a) and Co3O4 nanosheets (b).
Nanosheets were synthesized via a hydrothermal method. The thickness of nanosheets was from 20 to
30 nm for WO3 and from 20 to 50 nm for Co3O4 nanosheets. (a) Reproduced with permission from
Wang et al. [368]. Copyright 2017: Elsevier; (b) reproduced with permission from Wang et al. [387].
Copyright 2015: Royal Society of Chemistry.

As for the porosity or gas permeability of 2D-based nanomaterials used in the formation of a
gas-sensitive layer by the methods of thick-film technology, several approaches have been proposed
to solve this problem. In particular, Cao et al. [384] for this purpose used surface decoration of
In2O3 nanosheets (NSs) by WO3 nanoparticles. As a result, both an increase in sensitivity and an
improvement in the rate of sensor response were achieved. It can be assumed that WO3 nanoparticles
provide the necessary gap between In2O3 nanosheets. Choi et al. [388] used another approach. For the
effective penetration of gas molecules into the sensing layers, sub-5 nm-scale pores were generated on
the Ru oxide NSs by an ultrafast optical sintering technique. Wang et al. [372] showed that nanopores
with a diameter of ~ 3 nm in ultrathin In2O3 nanosheets with a thickness of 3.5 nm can also be formed
in the process of their synthesis. Wang et al. [372] suggested that the formation of mesopores in In2O3
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nanosheets should be attributed to the removal of glycerol ligands during the hydrolysis process.
Huang et al. [401] showed that ZnO nanosheets, fabricated by an annealing monodisperse basic zinc
nitrate (BZN) nanosheets at 300 ◦C for 2 h in air, are also highly porous (see Figure 42).
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Figure 42. SEM images of (a) the as-synthesized BZN nanosheets, and (b) porous ZnO nanosheets
after BZN nanosheets annealing at 300 ◦C. The thickness of nanosheets before annealing was in the
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Copyright 2011: Elsevier.

In addition, in many works devoted to the development of gas sensors based on 2D nanomaterials,
the temperatures above 200 ◦C were not used [372,374,380]. Moreover, in some works [373,379,387]
an additional heat treatment was not used at all. As a rule, this decision was due to the fact that
the heat treatment at an elevated temperature led to a drop in the sensor response (see Figure 43).
This suggests that one of the reasons for the increased response of gas sensors based on 2D nanomaterials
may be the small contact area between the nanosheets, due to the feature of the gas-sensitive layer
structure (see Figure 44). The absence of high temperature treatments suggests that we do not have
any sintering between nanosheets, and, therefore, usual mechanical contacts are formed between
nanosheets. The last one also means that the adhesion of the formed layers to the substrate and the
stability of inter-nanosheets contacts may not be good enough for a long-term operation in various
conditions. As a rule, only 2D nanomaterials-based layers formed by methods of thick-film technology
were subjected to heat treatments at a temperature of 350–600 ◦C [200,369,375,378,388].
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We must not forget the fact that the smaller the thickness of nanosheets, the worse their stability.
Wang et al. [368] drew attention to this in their research. Studying the synthesis of 2D WO3 nanosheets
with a wall thickness of ~10 nm and analyzing the parameters of gas sensors, they found that
the stability of much thinner WO3 nanosheets is poorer. In this case, the removal of templates
P123 (polyethylene oxide-polypropylene oxide-polyethilene oxide) resulted in the formation of large
agglomerates, accompanied by a decrease in the sensor response. Zhang et al. [375] also pointed to the
importance of this process. They noted that gas sensors with highly agglomerated ZnO nanosheets
had significantly worse parameters. This is natural, since the existence of channels and gaps between
the nanosheets is a necessary condition for providing good gas permeability of the sensitive layer
required to achieve a high sensitivity and fast response of gas sensors [74].
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3.4.3. Sensors on Individual 2D Nanomaterials

It seems that many of the problems described earlier can be solved through the manufacture of
sensors based on individual 2D nanomaterials, since with this approach it is possible to fully realize
the advantages of 2D nanomaterials. However, the experience of using 1D nanomaterials shows
that in this way there are many technological difficulties. Unfortunately, individual nanosheets or
nanoflakes, as it was observed earlier with the 1D nanomaterials, are difficult to handle. Therefore,
for the transfer of individual nanosheets, it is necessary to develop special technologies and instruments
that are poorly compatible with the technologies intended for the mass production of gas sensors [403].
Usually for the transfer of layered 2D materials onto different substrates at a desired location it is
necessary to use a long working distance optical inspection system in combination with an XYZθ
direction micro-manipulator for an accurate placement, and a certain polymer layer as a transfer
medium. The PMMA/sacrifice layer, PDMS, thermoplastic polymer, and hybrid stamp composed
of PDMS/PPC or (PC, PMMA)/hBN are usually used as polymer carriers [403]. The comparison of
the methods designed for the 2D materials transfer is given in Table 5. The transfer process involves
several steps (see Figure 45). At the first stage, the polymer carrier is spin-coated onto a Si/SiO2
substrate or a glass slide and then thin flakes of 2D nanostructures are mechanically exfoliated onto the
carrier. In the second stage: The substrate with a polymer layer and 2D nanomaterial is attached on the
micro-manipulator and transferred to the desired location. At the final stage, the substrate-carrier rises
slowly and the residual polymer in the acetone solution is removed. For the transfer media, such as a
thermoplastic polymer and a hybrid stamp, additional heating of the substrates is required to release
the stacking. Given the complexity and labor input of this process, atomically thin nanoflakes and
nanosheets, were mostly employed for sensing in a suspended form to detect solutes [400].
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Table 5. Comparison between the different deterministic placement methods. Qualitative comparison
in terms of cleanness, easiness, and speed between the different deterministic placement methods
described in the text. Comments about their main drawbacks are also included in the table.

Method Cleanness Easiness Speed Notes

PMMA carrier layer *** *** *** Spin-coating is needed, direct contact with the
polymer, it can transfer large-area flakes.

Elvacite sacrificial layer * *** *** Capillary forces, spin-coating is needed, direct
contact with the polymer.

Wedging * ** *** Capillary forces, dip-coating is needed, difficult
alignment, direct contact with the polymer,

transfer over curved or uneven surfaces
is possible.

PDMS dry transfer *** ***** ***** Direct contact with the polymer.

Van der Waals pick-up ***** * ** Spin-coating is needed, several steps involved,
only works to transfer heterostructures, direct

contact with the polymer only for the
topmost layer.

Source. Reproduced with permission from Frisenda et al. [403]. Copyright 2018: Royal Society of Chemistry.

It should be recognized, however, that there are works aimed at the formation of 2D metal oxide
thin films, as close as possible to the monolayer. In particular, a few studies focused on the formation
of a monolayer film of 2D metal oxides were conducted by Sasaki’s team [404,405]. They successfully
fabricated a closely packed monolayer film of 2D titania nanosheet by the electrostatic self-assembly
method [404] and Langmuir−Blodgett technique [405]. Titania nanosheets, used in the last experiments,
were 10–30 µm in lateral size and 1.2–1.3 nm in thickness. A cross-sectional TEM image of the 10-layer
film of Ti0.87O2 nanosheets deposited on the atomically flat substrate of SrRuO3 revealed that the
substrate surface is uniformly covered with the ultrathin film (Figure 46). However, this study was not
focused on the application of monolayer films of 2D nanosheets in gas sensors. Therefore, the studies
performed by [406] can be considered as a first paper devoted to the fabrication of chemiresistive gas
sensors with a monolayer film of 2D nanomaterial. For these purposes Miao et al. [406] used copper(II)
oxide nanosheets, synthesized using the hydrothermal method (Figure 47a). Nanosheets had a length
and width ranging from 300 to 1000 nm, and the thickness was around 30 to 50 nm (Figure 47b).
A monolayer film of copper(II) oxide nanosheets (Figure 47c) was prepared by the self-assembly
method at the air−water interface (see Figure 48). After the formation of a monolayer at the air−water
interface, the lab jack was raised up at a rate of 5 mm/min until the glass holder was above water level
to transfer the monolayer onto the substrates. Then, films were dried at room temperature for 30 min.
The as-prepared monolayer with contacts was annealed in a furnace at 400 ◦C for 6 h before testing of
gas sensing characteristics. Miao et al. [406] showed that relying on this method and using the layer-by
layer deposition approach, one can also form a multilayer film, based on different 2D nanomaterials.

Miao et al. [406] stated that this method provides a facile, versatile, and highly reproducible
manufacturing of chemiresistive gas sensors with the sensing layer based on a monolayer film of 2D
nanomaterials. However, this method of manufacturing chemiresistive gas sensors is not a method
intended for large-scale production. The main result of the research conducted by Miao et al. [406],
is a conclusion that an increase in the number of nanosheets in gas sensitive layers, as previously
predicted, is accompanied by a decrease in sensitivity (see Figure 49a) and an increase in the response
time. The negative effect of the thickness of the sensing film is explained by the effect of dilution of the
analyzed gas and impeded gas diffusion (Figure 49b), which increase with an increasing thickness of a
sensing layer.
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Figure 45. Illustration of transfer methods: (a) The PMMA carrying layer transfer method.
The designated flake to be transferred is exfoliated onto a Si/SiO2 substrate which has been coated
with a water-soluble polymer layer and PMMA (1). The stack is then immersed in water (2) where
the water-soluble layer can dissolve leaving the PMMA layer carrying the flake floating on the water
surface (3). The PMMA is then attached to a glass slide connected to a micromanipulator with the
flake facing down (4). With the help of a microscope the flake is aligned with the target substrate
and is then brought in contact (5). By gently separating the PMMA from the final substrate the flake
gets transferred. (b) The Elvacite sacrificial layer transfer method. The target flake is exfoliated onto
a layer of Evalcite deposited onto an adhesive tape attached to a glass slide (1). The stack is then
positioned onto a target substrate and the flake is aligned with pre-existing features of the substrate
(2). The substrate is heated up at 100 ◦C and the stack can then be brought in contact with the hot
substrate (3) which melts the Evalcite layer leaving the capped flake on the final substrate (4). (c) The
wedging transfer method. The flake to be transferred is exfoliated onto a hydrophilic substrate such
as Si/SiO2 (1) and then covered by a layer of hydrophobic polymer (2). The stack is then immersed
in water where the water molecules can intercalate between the SiO2 and the polymer carrying the
flake (3). The polymer film carrying the flake remains floating on the water surface where it can be
aligned with the help of a needle to the final substrate (4). By pumping down the water the two can
be brought in contact (5). Then, the polymer can be dissolved leaving the flake transferred onto the
final substrate (6). (d) The PDMS dry transfer method. The flake to be transferred is exfoliated onto
a PDMS stamp (1) and the stamp is then attached to a glass slide connected to a micromanipulator
(2). Using a microscope, the flake can be aligned with the final substrate (3) and brought in contact (4).
By slowly peeling the PDMS stamp (5) the flake can be deposited on the substrate (6). Reproduced
with permission from Frisenda et al. [403]. Copyright 2018: Royal Society of Chemistry.
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4. Summary

As is known, for the large-scale implementation of new materials and technologies, it is necessary
that devices based on them are much cheaper and have significantly better parameters compared to the
samples, existing on the market. Unfortunately, the materials that were considered in this article do not
provide a significant improvement in the parameters of gas sensors. Despite the stated advantages of
1D and 2D nanomaterials for application in gas sensors, these sensors are far from perfect. Moreover,
the technologies used in the manufacture of gas sensors based on these nanomaterials are more
expensive than those used in the fabrication of conventional metal oxide-based gas sensors. In addition,
many of these technologies are hard-compatible with the processes used in large-scale production of
gas sensors.

Of course, over the past decade, various fabrication and characterization strategies have been
developed with the aim to accomplish electrical measurements of individual 1D and 2D metal oxide
structures free of parasitic effects, and to develop gas sensors that are competitive in parameters
with conventional devices. For instance, low-current measurement protocols were proposed that
allowed devices based on 1D nanomaterials to operate for a long time without degradation of their
performance [158,159,235]. Thus, it can be expected that the development of new technologies adapted to
nanomaterials can lead to complete and well-controlled characterization of devices based on 1D and 2D
structures, which were previously unattainable [5]. However, despite the significant successes achieved
in the development of new 1D and 2D nanomaterials, the improvement of their synthesis technologies,
and the manufacture of gas sensors based on them, do not expect the appearance on the sensor market
of gas sensors based on individual 1D and 2D nanomaterials. This means that with traditional gas
sensors developed based on the nanocrystalline metal oxides using conventional well-developed
thin-film and thick-film technology, a long time will dominate the sensor market [24,29,74,97].

Regarding 1D nanostructures arrays and 2D nanostructures assembled into three-dimensional (3D)
architectures such as nanoflowers, hollow spheres, etc., we must state that these nanostructures have
much more prospects for appearance in devices developed for the sensor market. After appropriate
optimization of the technology of 1D and 2D nanomaterials synthesis, which will allow both to form
nanostructures with controlled and reproducible parameters, and to improve the sensors performances,
sensors based on 1D nanostructures arrays and assembled 2D nanomaterials may well compete with
gas sensors based on conventional metal oxides. A detailed discussion of assembled 1D and 2D
nanomaterials and gas sensors, developed on their basis, will be presented in the second part of
this article.
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