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Abstract: Automated segmentation methods are critical for early detection, prompt actions, and
immediate treatments in reducing disability and death risks of brain infarction. This paper aims to
develop a fully automated method to segment the infarct lesions from T1-weighted brain scans. As
a key novelty, the proposed method combines variational mode decomposition and deep learning-
based segmentation to take advantages of both methods and provide better results. There are three
main technical contributions in this paper. First, variational mode decomposition is applied as a pre-
processing to discriminate the infarct lesions from unwanted non-infarct tissues. Second, overlapped
patches strategy is proposed to reduce the workload of the deep-learning-based segmentation task.
Finally, a three-dimensional U-Net model is developed to perform patch-wise segmentation of infarct
lesions. A total of 239 brain scans from a public dataset is utilized to develop and evaluate the
proposed method. Empirical results reveal that the proposed automated segmentation can provide
promising performances with an average dice similarity coefficient (DSC) of 0.6684, intersection over
union (IoU) of 0.5022, and average symmetric surface distance (ASSD) of 0.3932, respectively.

Keywords: brain infarction; stroke; U-Net; variational mode decomposition

1. Introduction

Brain infarction, generally known as stroke, is a global health issue and public health
priority. It is a significant cause of disability and the second leading cause of death world-
wide [1]. Based on the up-to-date statistical data from the World Stroke Organization
(WSO), over 13.7 million new cases and 5.5 million deaths of stroke are occurring annu-
ally [2]. Moreover, up to two-thirds of stroke survivors usually suffer residual disabilities
and no longer participate in their daily activities [3]. Examples of disabilities may include
transient or lasting paralysis on one or both sides of the body, difficulties in speaking
or eating, and muscular coordination loss. Such devastating and life-altering results af-
ter brain infarction can seriously impact a critical economic and humanistic burden as
well [1]. Approximately an annual $51.2 billion economic loss results from stroke-reducing
approaches, for example, medical costs and costs for rehabilitation in poststroke patients
such as physical functioning and caregiver involvement [4].

In medical terminology, “infarction” is also known as “necrosis.” It is damage or
death of tissues due to the failure of blood and oxygen supply to the affected area. Brain
infarction or stroke is a type of infarction that mainly affects the brain. Specifically, it is a
cerebrovascular disease resulting from the formation of necrotic or damaged tissues inside
the brain. It commonly occurs when an artery in the brain gets blocked by clots (ischemic
stroke) or bursts (hemorrhagic stroke) [5]. Fortunately, brain infarction is curable if it is
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promptly detected after it occurred. Thrombolysis, which is a treatment of dissolving the
blood clots and restoring the blood flow to the brain, is generally used to cure ischemic
infarction. However, prompt time is critical, and it should be performed within 4.5 h.
Similarly, hemorrhagic also needs emergency surgery to stop the bleeding in the brain. For
those problems, early detection, prompt actions, and immediate treatments are essential in
reducing disability and death risks by stroke.

Neuroimaging technologies such as magnetic resonance imaging (MRI) and computed
tomography (CT) scans are standard modalities to diagnose the brain infarction. Compared
to CT, MRI is more commonly used in clinical practice because it can expose a more precise
representation of brain lesions such as soft-tissues, nerves, ligaments, and muscles [6].
However, to date, manual lesion tracing by expert neurologists remains the gold standard
for infarct lesion segmentation in practice. They read the individual brain scans slice by
slice and delineate the infarcted brain lesions. Indeed, this manual delineation process is
tremendously tricky due to the similar appearance but ambiguous boundaries between nor-
mal and infarct lesions. Besides, it is effort-intensive and time-consuming to distinguish the
complicated structures such as shape, size, and texture of brain lesions. A study conducted
by [7] stated that the manual segmentation of abnormal lesions from the neuroimaging
scans takes between 4.8 and 9.6 h. As a negative consequence, manual diagnosis ultimately
becomes a key impediment for urgent clinical decisions and stroke treatments. Therefore, a
quick, accurate, and automatic diagnosis scheme is essential to provide prompt and reliable
therapy for stroke patients.

2. Related Works

In neuroimaging analysis, several studies for automated delineation of brain infarct
lesions from MRI scans have emerged. Generally, previous studies that were conducted at
the beginning of the last decade were based on the standard machine learning algorithms
such as K Nearest Neighbors (KNN) [8], Naive Bayes (NB) [8,9], Support Vector Machine
(SVM) [6,10,11], Random Forest (RF) [12–14], and so on. These conventional techniques
were simple and easy to use; however, their major weakness is that the performance was
strongly dependent on the quality of handcraft features. Extracting meaningful features
from the images is crucial to make the machine learning models learnable and robust [15].
In practice, handling of such features is very time-consuming and challenging because
machine learning engineers are not medical domain experts.

With the state-of-the-art advancements and substantial results of convolutional net-
works, there is no doubt that deep learning algorithms hit a milestone in medical image
analysis. Unlike the standard machine learning techniques, deep learning-based methods
are not necessary to extract handcrafted features. They can learn high-level features directly
from the input images and can provide more reliable results. Due to these advantages, the
deep learning-based methods became trendier in automated diagnosis of brain infarction.
For example, the use of benchmark deep learning models such as AlexNet, VGG, Inception,
ResNet, are found as transfer learning algorithms for infarct lesion detection and classi-
fication [16–18]. Although they are applicable for detection and classification tasks, they
need to follow a general encoder-decoder architecture to perform a semantic segmentation.
More specifically, such standard deep networks can be applied as encoders to extract the
discriminative features from the inputs and to perform pixel-wise classification. However,
due to the use of constitute convolutions in encoder networks, the resolution of the inputs
becomes lower and cannot produce the segmentation results having the same dimension
as the input. For this problem, a decoder network is necessary to upsample and enhance
the resolution of the convoluted images. Based on a recent and intensive review of deep
learning method for neuroimaging, it is found that fully connected network (FCN) and
U-Net were widely used for semantic segmentation of infarct lesions. Both methods fol-
low encoder-decoder structure, but FCN based semantic segmentations have only one
upsampling layer in the decoder part and mainly use bilinear interpolation for upsampling.
Unlike FCN, U-Net’s architecture is designed using multiple upsampling layers along with
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skip-connections and concatenations. Moreover, it uses learnable weight filters instead
of fixed interpolation for upsampling. This architecture makes U-Net more robust and
provides better segmentation results compared to conventional FCN based segmentations.
For these strengths, we choose U-Net over other deep learning models in this study.

Brain infarct lesions segmentation based on U-Net architecture was the most frequently
used method in recent studies [19–25]. It is a baseline and famous state-of-the-art deep
learning architecture in biomedical image segmentation. Depending upon the modification
of the U-Net architecture, the names of the segmentation Nets were changed study by study.
Among [19–25], Cross-Level fusion and Context Inference Network X-Net [21], (CLCI-
Net) [22], Deep Residual Attention Convolutional Neural Network (DRANet) [23] used
two-dimensional (2D) based U-Net architectures. They segmented the infarct lesions from
input 2D slices of the MRI based on a single orientation. As a weakness, the performance
of such 2D-based methods is limited because they cannot access the spatial information of
the lesions from the other two planes. Moreover, those methods also required extensive
postprocessing mechanisms to combine slice-by-slice predictions into final volumetric
segmentation outputs.

Unlike the 2D-based U-Nets, multi-path 2.5D CNN [24] considered the volumetric
information of the brain lesions by performing three different normalizations for each of
the three axial, sagittal, and coronal planes. Nine different 2D paths resulted from the nor-
malizations were then fed into the nine end-to-end U-Nets, and path-wise segmentations
were performed. However, like the aforementioned 2D-based U-Nets, the 2.5D net also
had to perform an extensive postprocessing task. It used 3D CNN to concatenate 2D lesion
masks for postprocessing.

Apart from the previous 2D and 2.5D U-Nets, fully 3D architectures were also found
in 3DCRF [19], D-UNet [20], and 3D-Res-UNet [25]. Since these U-Nets worked on the
volumetric inputs in 3D space, they can fully utilize the contextual and spatial information
of the infarct lesions to provide more robust predictions. However, as a tradeoff, these fully
3D models significantly spend more computational resources in training.

The primary purpose of this paper is to present an alternative and automatic scheme
to segment infarct lesions from brain MRI scans. Like the previous 3D-based methods,
our proposed approach is also based on volumetric segmentation using U-Net. However,
as a difference, the automated infarct lesion segmentation proposed in this paper applies
variational mode decomposition (VMD) followed by a three-dimensional U-Net-based
segmentation. VMD is a popular preprocessing method, and its efficacy in brain MRI
analysis had been proposed in [6,11,26]. However, all those studies utilized conventional
machine learning algorithms, specifically support vector machine (SVM), combined with
VMD to classify normal and abnormal brain lesions. To our knowledge, the use of VMD
together with a deep learning model has not been conducted in previous brain abnormali-
ties detections. Indeed, deep learning-based methods obviously outperform traditional
machine learning algorithms, and it has been proven by several technical studies. For
this reason, we decided to apply VMD and U-Net model in order to take advantage of
both methods.

Our proposed method brings three significant technical contributions as follows:

(i) For the first contribution, we proposed variational mode decomposition (VMD) as a
preprocessing task. It helps remove non-infarct tissues from the input MRI scans and
lessens the amount of unwanted information from the input volumes.

(ii) For the second contribution, we presented overlapped patches strategy, which divides
the input MRI volumes into smaller patches. The divided patches were fed into the
U-Net model to perform patch-wise segmentation. The proposed overlapped patch
strategy also performed patch pruning to reduce the workload of the segmentation
model. Moreover, it records the reference numbers of patches aiming at seamless and
intensive postprocessing.
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(iii) For the last contribution, we developed a three-dimensional U-Net model for the
segmentation of infarct lesions from volumetric patches. Then, a postprocessing was
followed in order to produce the final segmentation results.

The rest of the paper is organized as follows: Section 3 will discuss the details about
the materials and methods applied in this study. Section 4 will explain the experimental
results and discussion, and finally, Section 5 will summarize and conclude the paper.

3. Materials and Methods
3.1. Overview of the Proposed Method

This paper developed a deep learning-based algorithm for the segmentation of in-
farct lesions from chronic-stroke MRI scans. Figure 1 demonstrates an overview of the
proposed method, and it consists of three fundamental processes, namely preprocessing,
segmentation, and postprocessing.

The primary objective of preprocessing in this study is to reduce the computational
workload by suppressing and removing unwilling parts from the input images, for instance,
background, skull, and other non-infarct tissues. We conducted three main operations in
the preprocessing step. They are (i) stripping of the skull using a pretrained model, (ii)
removing non-infarct lesions using variational mode decomposition (VMD), and (iii) divid-
ing the output volumes of VMD into small patches using overlapped patches strategy. The
outputs of preprocessing step are three-dimensional patches of brain scans and associated
lesion masks. In the second process, segmentation, the divided patches are subsequently
fed into a three-dimensional U-Net model to perform patch-wise semantic segmentation.
Finally, a postprocessing step is followed to combine the segmented patches and generate
the segmented infarct lesions.

3.2. Data Source

The brain MRI scans applied in this study are obtained from a freely accessible and
standard dataset called Anatomical Tracings of Lesions After Stroke (ATLAS) [3]. The raw
images in the dataset were collected from chronic-stroke patients in 11 cohorts worldwide.
There was a total of 304 T1-weighted MRIs in the original version of the dataset. Along with
the dataset, manually delineated lesion masks and metadata can also be downloaded for
the ground truths. The reliability of the lesion masks in ATLAS dataset were thoughtfully
reviewed and confirmed by an expert radiologist. The individual subject of MRI contains
at least one lesion, and 58% of subjects in the dataset have a single lesion. The rest, 42.1%,
are multiple lesions, and separate lesion masks were used to identify them.

Besides the original raw MRIs, ATLAS also provides a standardized version of the
dataset. This standard version was created to reduce the technical difficulties due to the
image quality produced by different scanners. Some MRI subjects, especially collected
using 1.5 T scanner, were removed from the original raw dataset (containing 304 T1-
weighted MRIs), and the rest were defaced, normalized to standard MNI-152 space. As
a result, there were a total of 239 scans in the standard ATLAS dataset. In this study, we
will apply the standard ATLAS dataset to conduct the experiments. Each input MRI in the
standard dataset has a dimension of 197 × 233 × 189 mm3 with a canonical voxel size of
1 mm3.
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Figure 1. Overview of the proposed method, which contains three main processes: (a) preprocessing, (b) segmentation, and
(c) postprocessing.

3.3. Variational Mode Decomposition (VMD)

Variational mode decomposition (VMD) is one of the most popular decomposition
methods in biomedical image analysis. It decomposes an image into a specific number of
spectral bands, having different directional and oscillatory characteristics. As a result of
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decomposition, VMD produces a discrete number of modes in which each mode has limited
bandwidth around its center frequency. For instance, suppose a two-dimensional input
image f (x) is decomposed into k number of modes using VMD. The spatial bandwidths in
each mode k are needed to be compact around a center pulsation ωk [27]. To calculate the
bandwidths in each mode uk, analytical signals of each mode should be computed first
using the following equations.

minuk , ωk

{
∑k ∝k

∣∣∣∣∣∣∇[uAS, k (x) e−j(ωk ,x)
]∣∣∣|22}, (1)

s.t. ∀ x : ∑
k

uk (x) = f (x) (2)

where ∝ is the bandwidth constraint and uAS, k(x) represents the analytic signal of the
kth mode.

However, the objective function in Equation (1) has a reconstruction constraint because
it was calculated by setting one half-plane of the frequency domain to zeros. Therefore,
quadratic penalty and Lagrangian multiplier are conducted to render this constraint.
Finally, the optimal mode uk of the image can be obtained using the following equa-
tions [26,27].

minuk , ωk maxλL ({uk}, {ωk}, λ), (3)

where L in Equation (3) is the augmented Lagrangian, and the saddle point of L is the so-
lution to the original constraint minimization problem. λ is the Lagrangian multiplier term,
and the following Equation (4) can be derived to change into the quadratic penalty term,

∑
k

∝k

∣∣∣∣∣
∣∣∣∣∣∇[uAS, k (x) e−j(ωk ,x)

]∣∣∣∣∣|22 +
∣∣∣∣∣
∣∣∣∣∣ f (x) − ∑

k
uk (x) +

λ (x)
2

∣∣∣∣∣|22−
∣∣∣∣∣
∣∣∣∣∣λ (x)2

4

∣∣∣∣∣|22, (4)

The main idea of applying VMD in this study is to extract silent image features from
the spectral characteristics of the decomposed images. For a clear understanding, a visual
representation can be seen in Figure 2. It compares the VMD of normal and infarcted
(denoted by the red circle) brain MRI scans. As we can see in Figure 2, VMD transforms the
input images into a number of spectral bands exposing different directions and oscillatory
characteristics. Such spectral characteristics are the key indicators of distinctive anatomical
features, which are very useful for further diagnostical analysis. In the second row of
Figure 2, it can be evidently seen that the spectral bands around the abnormal (infarct)
lesion exposes higher oscillations compared to other areas. Based on this fact, we create
candidate infarct lesion masks by suppressing the mode oscillation values. Applying these
masks, the objects showing low potential to be infarct lesions can be removed.

3.4. Overlapped Patches Strategy

Deep learning for medical images is notably arduous when the input images are
volumetric data obtained from a stack of multiple sequential 2D images. The overlapped
patches strategy proposed in this research intends to reduce the training efforts and time by
dividing the input volume into smaller patches. As described in Section 3.2, the dimension
of each input MRI is 197 × 233 × 189 mm3 with a canonical voxel size of 1 mm3. Feeding
the whole volume into the deep learning-based segmentation model is very bulky and
computationally intensive. For this reason, our proposed overlapped patches strategy
tries to create smaller, same-dimensioned patches before segmentation. Note that the MRI
volumes in this stage were resulted from skull stripping and VMD decomposition, as
illustrated in Figure 1. Since the skull stripping and VMD do not affect the input MRIs’
dimension, the resulted volumes after passing those operations remain the same as the
original input volume (197 × 233 × 189 mm3).
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Figure 2. Variational mode decomposition (VMD) of healthy and abnormal (infarcted) brain scans.

These skull-stripped and VMD-masked volumes are divided into small, overlapped
patches using the overlapped patches strategy. Each patch has 64 × 64 × 64 in dimension,
and ten voxels overlapped to its adjacent patches. A zero-padding of the original volume
(197× 233× 189) is conducted to exactly divide the input volume into 64× 64× 64 patches.
Thus, after padding, the volume size became 256 × 256 × 192. Therefore, every input
volume MRI generates the same number of patches (48 patches in total). The corresponding
annotation masks are also divided into patches. Moreover, the reference numbers of patches
for each input subject are also recorded, aiming for seamless, intensive stitching in the
postprocessing stage. We used the subject_ID and a serial number of the patch to record
the reference numbers—for example, “c0003_patch_1” means the very first patch of the
input c0003.

Although the primary purpose of separating overlapped patches is to reduce the
volume size and computation effort, the padding makes the volume size bigger. Thus,
our proposed overlapped patches strategy alleviates this problem by pruning unnecessary
patches. Figure 3 demonstrates how the proposed overlapped patches strategy works. If
the summation of all voxels in a patch is equal to zero, then that patch does not need to
consider for segmentation. Moreover, patch pruning does not hinder the postprocessing
thanks to using the same number of patches for every subject and recording the reference
number of patches.

3.5. Three-Dimensional U-Net (3D U-Net)

U-Net [28] is one of the state-of-the-art deep learning models for semantic segmen-
tation of images, and it has been successfully applied in biomedical image segmentation.
As the name implies, the architecture of U-Net exposes a U-shaped structure, which is
comprised of two main parts: contracting path (encoder) and expansive path (decoder).
The first path, the encoder, extracts the discriminative features from the input images.
Specifically, it follows the typical architecture of a convolutional neural network and con-
tains repeated series of two 3 × 3 convolutions, each followed by a rectified linear unit
(ReLU) and a 2 × 2 max pooling. Since the goal of the contracting path is feature extraction,
the number of feature channels in each downsampling step becomes double while the
spatial dimensions are reduced. The bottommost layer of the U-Net is treated as a bridge
between contraction and expansive paths, and it contains two 3 × 3 convolution layers
followed by ReLU and one 2 × 2 up convolution layer.
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U-Net applies a series of convolutional filters in the contraction path; thus, the spatial
dimensions of the inputs at the bottommost layer become smaller than that of the original
images [20]. Since the ultimate goal of U-Net is semantic segmentation, which is a classifi-
cation of pixels to determine whether a specific pixel in the input is part of a lesion, the
output should be the same dimension as the input. For this reason, the expensive (decoder)
path of U-Net semantically projects the discriminative features (lower spatial dimensions)
generated by the encoder onto the pixel space (higher spatial dimensions) to maintain
symmetric dimensions between input and output images. Similar to the encoder, every
step in the decoder path consists of a 2 × 2 upsampling (upconvolution), followed by two
3 × 3 convolutions with ReLU. At the final layer, U-Net ends up with a 1 × 1 convolution
that converts the size of the feature map of the first last layer to the desired number of
output classes.

The detailed architecture of our proposed 3D U-Net is illustrated in Figure 4. The
original version of U-Net was designed for the segmentation of two-dimensional color
images. However, in this research, we tend to segment infarct lesions from volumetric
patches of brain MRIs. Therefore, we develop a three-dimensional (3D) version of U-Net
based using divided patches using overlapped patches strategy.
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4. Results and Discussion
4.1. Configurations of the Proposed Method

Working with deep learning models can guarantee better performance, but they
considerably demand a high number of hyperparameters. A correct configuration and the
best choice of hyperparameters for the model are the most critical issues to get the accurate
outputs. This section will discuss the details of the experimental setups and the results of
our proposed method.
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4.1.1. Data Preparation

As stated in the materials and methods (Section 3), the experiments of our proposed
method are done using 239 MRI exams of the standardized ATLAS dataset. We divided
those input data into three partitions: 60% for training (143 scans), 20% for validation
(48 scans), and 20% for testing (48 scans). Since some MRI scans contain more than one
infarct lesion, we summarized data preparation details in Table 1.

Table 1. Data preparation of the proposed method.

Partitions Number of Scans Subject ID Number of Lesions

Training 143 c0003 to c0007 (c0007s0020t01) 268
Validation 48 c0007 (c0007s0021t01) to c0010(c0010s0009t01) 88

Testing 48 c0010(c0010s0009t02) to c0011(c0011s0015t01) 74

4.1.2. Preprocessing

Once preparing the data, we perform the preprocessing of the input images. Since an
input MRI exam is taken from an individual patient and contains multiple two-dimensional
(2D) sequential slices, we stacked these 2D slices in sequential order and constructed them
as a volumetric image. However, we did not normalize the input volumetric images
because we used the standardized ATLAS dataset version. All the exams are already
undergone a standardization process and formatted into 197 × 233 × 189 mm3 dimensions
with a canonical voxel size of 1 mm3. For this reason, we skipped the standardization
process and continued the following preprocessing steps.

• Skull Stripping

Skull stripping is one of the most initial and crucial tasks in every type of neurological
MRI analysis. On a head scan, the brain region occupies approximately one-third of the
entire scan while the rest, two-third, is occupied by extra-meningeal tissues. Skull stripping
detects the boundaries of the skull to determine the brain area. Subsequently, it removes
nonbrain tissues outside of boundaries and extracts the brain region only. In this study, we
focus on detecting the infarct brain lesions located within the brain area. Thus, this step
is necessary not only to reduce search area and computational effort but also to improve
the detection accuracy. Several approaches had been proposed to perform this operation.
Among them, we applied a deep learning-based method called DeepBrain [29] for skull
stripping. The main reasons for using DeepBrain includes (i) it is developed using T1
weighted MRIs, and we are also working on T1 weighted MRIs, (ii) it is easy to use and
fast (only ~20 s in CPU version and ~2 s in GPU version), (iii) it is working well on 3D
volumetric data without requiring any extra effort and (iv) it had proven high accuracy
(>0.97 dice metric) using popular standard datasets.

• Variational mode decomposition (VMD)

After skull-stripping from the input brain MRIs, the next preprocessing step is vari-
ational mode decomposition (VMD). As described in Section 3.3, applying VMD as a
preprocessing is one of the major contributions of this study. Our main objective of this
contribution is to suppress the non-infarct lesions inside the brain. It can significantly
reduce the computation effort and time because the deep learning model does not need to
segment such non-infarct lesions. On the other side, VMD also provides a great deal of
help in reducing overfitting and data imbalance problems. VMD works on a number of
hyperparameters, and we selected the appropriate values of hyperparameters as described
in Table 2. Among (K = 5) modes of decomposed images, experiments showed that mode
number 3 is the most suitable for decomposition because it can represent most information
about infarct lesions. Thus, we applied mode three decomposed images to create masks
and applied them to cover out undesired non-infarct lesions.
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Table 2. Parameter values for VMD.

Names of the Hyperparameters Selected Values

Bandwidth constraint (∝) 1000
Number of modes (K) 5

Lagrangian multipliers dual ascent time step (s) 0.5
Tolerance (τ) K × 10−6

Estimated mode center-frequencies (Ω) 1

• Overlapped Patches Strategy

Once masking out the non-infarct candidates, we then divided the resulted volumes
into smaller patches. These patches have the same dimensions (64 × 64 × 64), and
each patch possesses ten overlapped pixels from its adjacent patches. Moreover, each
patch’s reference position number is also extracted simultaneously, aiming for seamless
and intensive stitching in the postprocessing step. These divided patches are then fed into
the 3D U-Net algorithm in order to perform patch-wise segmentation.

4.1.3. Segmentation Using 3D U-Net

We preprocessed for all MRIs and associated ground-truth scans in the dataset hence
each patch has its own associated mask patch. The outputs from the preprocessing step are
3D overlapped patches and corresponding masks, and they were used as the inputs for 3D
U-Net based segmentation. As described in the graphical representation of the proposed U-
Net (Figure 4), the inputs are 64 × 64 × 64 × 1 patches. Here, the color channel is assigned
as one because MRIs are the grayscale images. The output of U-Net is 64 × 64 × 64 × 2 for
two classes, that is one for background and another for the infarct lesion.

The proposed 3D U-Net was trained using 3D patches that were obtained from MRIs
in training partition. The patches for validation were apart from the training patches and
used to evaluate the model performance. Dice loss function is calculated to assess the
training performance and Adam optimizer is applied to optimize the loss. Moreover, we
applied batch normalization after each layer of convolution to improve the stability of
the training and drop-out after each level of U-Net to reduce overfitting. Several times of
training using different values of hyperparameters are conducted to get the lowest loss
value on the validation samples. Based on the experimental trials and results, we achieved
our best segmentation model using the following hyperparameters stated in Table 3.

Table 3. Hyperparameter values for proposed 3D U-Net.

Names of the Hyperparameters Selected Values

Batch size 16
Drop-out rate 0.2
Learning rate 0.001

Number of iterations (Epochs) 20
Optimizer Adam

Loss function Dice loss

Figure 5 illustrates the learning curve of our proposed U-Net model, showing the
training and validation loss. The model reached the best stage at epoch 20 with a mean
DSC of 0.6738 for training, and 0.6718 for validation, respectively.

4.1.4. Postprocessing

The is the final step of our proposed infarct lesion segmentation. The segmented
image patches using 3D U-Net were stitched together again, using the reference patch
position numbers and 3D connected component labeling. In preprocessing, we pruned
out some patches having all black voxels, and they were not fed into the U-Net for seg-
mentation. Therefore, we substitute zero voxels again for those patches to get the same



Sensors 2021, 21, 1952 11 of 18

dimension as the original image. Then, we performed 3D connected component labeling
using voxel connectivity 26 to finetuned on full-size images and generate the final segmen-
tation of infarct lesions. In order to get more comprehensive understanding, Algorithm 1
describes the pseudo code to summarize the workflow of our proposed automated infarct
lesion segmentation.
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4.2. Results

To evaluate the performance of the proposed segmentation, we calculated the follow-
ing assessment measurements. Note that all of these measurements were calculated after
the postprocessing stage; that is, they were not calculated for patch-wise segmentation but
for the final volumetric lesion segmentation.

• Jaccard similarity coefficient (IoU)

This index is also known as intersection over union (IoU) and measures the over-
lap between the segmented lesions and the ground truth images. IoU value is ranging
from 0 (no overlapped) to 1 (perfect segmentation), and it can be calculated using the
following equation:

IoU (X, Y) =
|X ∩ Y|
|X ∪ Y| , (5)

where X is the segmented lesion and Y is the ground truth lesion mask.

• Dice similarity coefficient (DSC)

Similar to IoU, DSC also measures the overlapped between the segmented lesion and
the ground truth lesion mask. DSC can be calculated by:

DSC (X, Y) =
2|X ∩ Y|
|X|+ |Y| , (6)

• Average symmetric surface distance (ASSD)

Unlike IoU and DSC, this index is a distance measurement. It calculates the average
of all the distances from voxels on the boundary of the segmented lesion to those of
the ground truth and vice versa [30]. The smaller number of ASSD indicates the better
segmentation performance.

Figure 6 demonstrates the raincloud plots showing the distribution of three assess-
ment measurements on testing data. By analyzing the raincloud visual representation, it is
evident that the plots for IoU and DSC are relatively short, meaning overall segmentation
results have a high level of agreement with each other. For the ASSD, the plot is compara-
tively taller than the others because some outputs had low ASSD and some were high. The
mean and standard deviation values of each assessment measurement were summarized in
Table 4. Note that the lower number of ASSD value indicates the higher similarity between
the segmentation result and ground truth.
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Algorithm 1. Pseudo Code for Proposed Infarct Lesion Segmentation

Input: Brain MRI exams as S = {s1, s2, . . . ., sn}, and associated ground truth masks as
M = {m1, m2, . . . ., mn}, where n is the total number of exams in the given dataset.

Step 1: Prepare the data for training, validation, and testing.
Assign 60% of the given dataset for training, 20% for validation, and 20% for testing.
n_train = n ∗ (60/100)
n_val = n ∗ (20/100)
n_test = n ∗ (20/100)
Divide S and M into training split.
Strain = {s1, s2, . . . ., sn_train}
Mtrain = {m1,m2, . . . ,mn_train}
Divide S and M into validation split.
Sval = {sn_train +1, sn_train +2, . . . ., sn_train + n_val}
Mval = {mn_train +1, mn_train +2, . . . ., mn_train + n_val}
Divide S and M into testing split.
Stest = {sn_train+n_val +1, sn_train+n_val+2, . . . ., sn_train+ n_val+ n_test}
Mtest = {mn_train+n_val +1, mn_train+n_val+2, . . . ., mn_train+ n_val+ n_test}

Step 2: Perform preprocessing of the input MRI exams.
Perform skull-stripping using DeepBrain.

DeepBrain (Strain, Sval, Stest)
return Strain_stripped, Sval_stripped, Stest_stripped

Perform variational mode decomposition of skull-stripped exams.
VMD (Strain_stripped, Sval_stripped, Stest_stripped)

return Strain_vmd, Sval_vmd, Stest_vmd
Divide the decomposed exams and associated ground truths into
overlapped patches.

Overlapped Patches (Strain_vmd, Sval_vmd, Stest_vmd, Mtrain, Mval, Mtest)
return Strain_patches, Sval_patches, Stest_patches

Mtrain_patches, Mval_patches, Mtest_patches
Step 3: Develop 3D U-Net model based on the desired architecture.
Step 4: Train the U-Net model using Strain_patches, Sval_patches, Mtrain_patches, Mval_patches.
Step 5: Test the trained U-Net using Stest and perform postprocessing.
Step 6: Evaluate the performance of U-Net using Mtest.
Output: Segmented infarct lesions of tested MRIs and assessment measurements.

Table 4. Average assessment measurement values.

Assessment Measures Mean (Std) Values

Intersection over Union (IoU) 0.5022 (±0.0206)
Dice similarity coefficient (DSC) 0.6684 (±0.0187)
Average symmetric surface distance (ASSD) 0.3932 (±0.1475)

4.3. Discussion

Some example outputs of our proposed segmentation method are illustrated in
Figure 7 using volume rendering. The first column of Figure 7 represents input MRI
scans from four different patients containing different sizes of infarct lesions. Then, in the
second column, we can see the skull stripped volumes of input images and associated
lesion masks (highlighted by the green color). The lesion size of each subject was also
described by measuring the number of voxels in the major axis length. And finally, the
last column shows the segmentation results (highlighted by the blue color) and associated
DSC values. From this figure, we can note that our proposed automated infarct lesion
segmentation performs well for any size of lesions.
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Moreover, we evaluated the performance of our proposed method by performing
a comparative analysis with state-of-art methods described in related work (Section 2).
Comparing different methods that were trained using different datasets and measured
using different assessments is very troublesome. For that reason, we ensure a fair and
quantitative comparison by selecting the previous methods using the same dataset base on
the same assessment method (DSC). Table 5 summarizes different infarct lesion segmenta-
tion methods applying the ALATS dataset. The details about the experimental setups of
each method and reported performance (DSC) are also described in the table [25]. From
this table, we can prove that our proposed infarct lesion segmentation method can provide
a slightly higher DSC value compared to the previous methods. As stated in [24], the DSC
of the human expert gold standard can be considered in the range of 0.67. Therefore, the
DSC of our proposed segmentation method is quite close to that of the gold standard.
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Table 5. Comparison of performance measurements with state-of-art methods.

Method X-Net [21] (CLCI-Net) [22] 2.5D CNN [24] D-UNet [20] 3D-Res-UNet [25] Proposed Method

Data Source ATLAS ATLAS KF & MCW (Train)
ATLAS (Test) ATLAS ATLAS ATLAS

Number of Samples 229 220 99 (54 from ATLAS) 229 239 239

Data Split Ratio
(Train, validation, test) 5-fold cross validation 55, 18, 27 100 for testing 80, 20, 0 76, 11, 13 60, 20, 20

Input size
(Height ×Width × Depth) 192 × 224 × 1 176 × 233 × 1 192 × 224 × 192 192 × 4 × 192 144 × 172 × 168 197 × 233 × 189

Base Architecture 2D U-Net 2D U-Net 2.5D U-Net 3D U-Net 3D U-Net 3D U-Net

Loss function Dice loss, cross-entropy Dice loss Dice loss Dice loss,
focal loss

Dice loss,
cross-entropy Dice loss

Reported DSC 0.49 0.58 0.54 0.54 0.64 0.6684 *

* The highest DSC value was highlighted in bold.
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5. Conclusions

In this study, we have proposed a method for automated segmentation of infarct
lesions from T1 weighted brain MRIs. For technical contributions, our study brings three
major ideas: (1) applying variational mode decomposition (VMD) for preprocessing of
input MRI volumes, (2) dividing the preprocessed MRIs into overlapped patches together
with the associated reference numbers, and (3) segmenting the infarct lesions using three-
dimensional U-Net. The first contribution, VMD, decomposed the input MRIs into different
images by highlighting different spectral bands, which are the key indicators to extract
silent image features from infarct lesions. We suppressed the non-stroke (non-infarct)
lesions inside the brain by analyzing the spectral characteristics of decomposed images.
This contribution helps to reduce the computation effort and time because the segmentation
model does not need to work on non-infarct lesions. Moreover, it can implicitly relieve
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the overfitting and data imbalance problems that specifically occurred due to the high
numbers of non-infarct lesions. The second contribution, overlapped patches strategy, is
also applied as a preprocessing aiming to reduce the workload of the 3D U-Net based
segmentation. Instead of direct inputting the whole MRI volume (197 × 233 × 189 mm3),
overlapped patches are generated and fed into the U-Net model. Training the U-Net using
multiple small patches is also an implicit way of data argumentation and it makes the
model more robust. Moreover, thanks to the use of VMD in preprocessing, we can get rid of
some empty patches from segmentation. This also considerably reduces the computational
effort. Besides, as our proposed overlapped patches strategy records the reference number
of the patches, we can easily finetune the final segmented volumes in the postprocessing
step. Finally, the last contribution is the development of a three-dimensional U-Net using
the extracted patches to segment the infarct lesions. U-Net model performed patch-wise
segmentation, and its outputs are postprocessed to get the full-size segmented volumes.

Our proposed method is developed and evaluated using 239 T1 weighted MRI scans
(with a total of 430 infarct lesions) from a standard dataset called ATLAS. Based on the
experimental results, our method has achieved a mean DSC (0.6684), IoU (0.5022), and
ASSD (0.3932), respectively. Moreover, empirical comparison with some previous pop-
ular works established using the same dataset also proved that our proposed method
can provide preferable segmentation performance. Thus, we believe that our proposed
automated infarcted lesion segmentation method can be applied as an adjunct tool to
relieve the complications of manual lesion segmentation and assist in providing timely
diagnosis decisions and treatments for patients. However, as a major limitation, our pro-
posed work is a unimodal and focus on T1 weighted MRI scans. Hence, its efficacy can
be further improved using multimodal MRI scans. Moreover, we have a great interest in
improving the performance of our segmentation model using VMD with a combination
of the modernized architecture of U-Net. Thus, we believe that the proposed idea of this
paper will also be a great help for readers to get future research directions in the automatic
diagnosis of any other neurological diseases.

Author Contributions: Conceptualization, M.P.P. and C.P.; methodology, M.P.P., T.H.B. and C.P.; data
curation, M.P.P.; software, M.P.P. and T.H.B.; validation, M.P.P., T.H.B. and C.P.; writing—original
draft preparation, M.P.P.; writing—review and editing, S.V., S.T. and C.P.; supervision, S.V., S.T. and
C.P.; funding acquisition, S.V., S.T. and C.P. All authors have read and agreed to the published version
of the manuscript.

Funding: This work was funded by King Mongkut’s Institute of Technology Ladkrabang Research
Fund [2563-02-01-007].

Data Availability Statement: Brain MRI scans applied in this study can be accessed via https://doi.
org/10.3886/ICPSR36684.v3 or https://www.icpsr.umich.edu/icpsrweb/ADDEP/studies/36684
(accessed on 17 September 2019) with appropriate data usage agreement.

Acknowledgments: Authors would like to thank the ICPSR (Inter-University Consortium for Politi-
cal and social research) for allowing us to use the ALATS dataset. As well as authors’ sincere thanks
go to Sook-Lei Liew et al., the principal investigators of the ALATS dataset (specifically supported by
the NIH-funded Center for Large Data Research and Data Sharing in Rehabilitation (P2CHD06570
and NIH1K01HD091283).

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Gorelick, P.B. The Global Burden of Stroke: Persistent and Disabling. Lancet Neurol. 2019, 18, 417–418. [CrossRef]
2. Kim, J.; Thayabaranathan, T.; Donnan, G.A.; Howard, G.; Howard, V.J.; Rothwell, P.M.; Feigin, V.; Norrving, B.; Owolabi, M.;

Pandian, J.; et al. Global Stroke Statistics 2019. Int. J. Stroke 2020, 15, 819–838. [CrossRef] [PubMed]
3. Liew, S.-L.; Anglin, J.M.; Banks, N.W.; Sondag, M.; Ito, K.L.; Kim, H.; Chan, J.; Ito, J.; Jung, C.; Khoshab, N.; et al. A Large, Open

Source Dataset of Stroke Anatomical Brain Images and Manual Lesion Segmentations. Sci. Data 2018, 5, 180011. [CrossRef]
[PubMed]

https://doi.org/10.3886/ICPSR36684.v3
https://doi.org/10.3886/ICPSR36684.v3
https://www.icpsr.umich.edu/icpsrweb/ADDEP/studies/36684
http://doi.org/10.1016/S1474-4422(19)30030-4
http://doi.org/10.1177/1747493020909545
http://www.ncbi.nlm.nih.gov/pubmed/32146867
http://doi.org/10.1038/sdata.2018.11
http://www.ncbi.nlm.nih.gov/pubmed/29461514


Sensors 2021, 21, 1952 17 of 18

4. Kwon, S.; Hartzema, A.G.; Duncan, P.W.; Min-Lai, S. Disability Measures in Stroke: Relationship Among the Barthel Index, the
Functional Independence Measure, and the Modified Rankin Scale. Stroke 2004, 35, 918–923. [CrossRef]

5. Mohd, A.; Kipli, K.; Hamdi, M.; Jobli, A.; Sahari, S.; Muhammad, M.; Chong, S.K.; Kharabsheh, B. A Review of MRI Acute
Ischemic Stroke Lesion Segmentation. IJIE 2020, 12, 117–127. [CrossRef]

6. Gudigar, A.; Raghavendra, U.; Ciaccio, E.J.; Arunkumar, N.; Abdulhay, E.; Acharya, U.R. Automated Categorization of Multi-
Class Brain Abnormalities Using Decomposition Techniques With MRI Images: A Comparative Study. IEEE Access 2019, 7,
28498–28509. [CrossRef]

7. Fiez, J.A.; Damasio, H.; Grabowski, T.J. Lesion Segmentation and Manual Warping to a Reference Brain: Intra- and Interobserver
Reliability. Hum. Brain Mapp. 2000, 9, 192–211. [CrossRef]

8. Maier, O.; Schröder, C.; Forkert, N.D.; Martinetz, T.; Handels, H. Classifiers for Ischemic Stroke Lesion Segmentation: A
Comparison Study. PLoS ONE 2015, 10, e0145118. [CrossRef] [PubMed]

9. Griffis, J.C.; Allendorfer, J.B.; Szaflarski, J.P. Voxel-Based Gaussian Naïve Bayes Classification of Ischemic Stroke Lesions in
Individual T1-Weighted MRI Scans. J. Neurosci. Methods 2016, 257, 97–108. [CrossRef]

10. Maier, O.; Wilms, M.; von der Gablentz, J.; Krämer, U.; Handels, H. Ischemic Stroke Lesion Segmentation in Multi-Spectral MR
Images with Support Vector Machine Classifiers. In Proceedings of the SPIE Medical Imaging, San Diego, CA, USA, 24 March
2014; Volume 9035, p. 903504. [CrossRef]

11. Rajendra Acharya, U.; Meiburger, K.M.; Faust, O.; En Wei Koh, J.; Lih Oh, S.; Ciaccio, E.J.; Subudhi, A.; Jahmunah, V.; Sabut, S.
Automatic Detection of Ischemic Stroke Using Higher Order Spectra Features in Brain MRI Images. Cogn. Syst. Res. 2019, 58,
134–142. [CrossRef]

12. Mitra, J.; Bourgeat, P.; Fripp, J.; Ghose, S.; Rose, S.; Salvado, O.; Connelly, A.; Campbell, B.; Palmer, S.; Sharma, G.; et al. Lesion
Segmentation from Multimodal MRI Using Random Forest Following Ischemic Stroke. NeuroImage 2014, 98, 324–335. [CrossRef]

13. Pustina, D.; Coslett, H.B.; Turkeltaub, P.E.; Tustison, N.; Schwartz, M.F.; Avants, B. Automated Segmentation of Chronic Stroke
Lesions Using LINDA: Lesion Identification with Neighborhood Data Analysis: LINDA: Auto-Segmentation of Stroke Lesions.
Hum. Brain Mapp. 2016, 37, 1405–1421. [CrossRef] [PubMed]

14. Subudhi, A.; Jena, S.S.; Sabut, S. Automated Detection of Brain Stroke in MRI with Hybrid Fuzzy C-Means Clustering and
Random Forest Classifier. Int. J. Comp. Intel. Appl. 2019, 18, 1950018. [CrossRef]

15. Ali, F.; El-Sappagh, S.; Islam, S.M.R.; Kwak, D.; Ali, A.; Imran, M.; Kwak, K.-S. A Smart Healthcare Monitoring System for Heart
Disease Prediction Based on Ensemble Deep Learning and Feature Fusion. Inf. Fusion 2020, 63, 208–222. [CrossRef]

16. Dawud, A.M.; Yurtkan, K.; Oztoprak, H. Application of Deep Learning in Neuroradiology: Brain Haemorrhage Classification
Using Transfer Learning. Comput. Intell. Neurosci. 2019, 2019, 4629859. [CrossRef] [PubMed]

17. Suberi, A.A.M.; Nurshazwani, W.; Tomari, R.; Nazari, A.; Norzali, M.; Farhan, N. Deep Transfer Learning Application for
Automated Ischemic Classification in Posterior Fossa CT Images. IJACSA 2019, 10. [CrossRef]

18. Jung, S.-M.; Whangbo, T.-K. A Deep Learning System for Diagnosing Ischemic Stroke by Applying Adaptive Transfer Learning. J.
Internet Technol. 2020, 21, 1957–1968.

19. Kamnitsas, K.; Ledig, C.; Newcombe, V.F.J.; Simpson, J.P.; Kane, A.D.; Menon, D.K.; Rueckert, D.; Glocker, B. Efficient Multi-Scale
3D CNN with Fully Connected CRF for Accurate Brain Lesion Segmentation. Med. Image Anal. 2017, 36, 61–78. [CrossRef]

20. Zhou, Y.; Huang, W.; Dong, P.; Xia, Y.; Wang, S. D-UNet: A Dimension-Fusion U Shape Network for Chronic Stroke Lesion
Segmentation. IEEE Acm. Trans. Comput. Biol. Bioinf. 2019. [CrossRef]

21. Qi, K.; Yang, H.; Li, C.; Liu, Z.; Wang, M.; Liu, Q.; Wang, S. X-Net: Brain Stroke Lesion Segmentation Based on Depthwise
Separable Convolution and Long-Range Dependencies. In Medical Image Computing and Computer Assisted Intervention—MICCAI
2019; Shen, D., Liu, T., Peters, T.M., Staib, L.H., Essert, C., Zhou, S., Yap, P.-T., Khan, A., Eds.; Lecture Notes in Computer Science;
Springer: Cham, Switzerland, 2019; Volume 11766, pp. 247–255. [CrossRef]

22. Yang, H.; Huang, W.; Qi, K.; Li, C.; Liu, X.; Wang, M.; Zheng, H.; Wang, S. CLCI-Net: Cross-Level Fusion and Context Inference
Networks for Lesion Segmentation of Chronic Stroke. In Medical Image Computing and Computer Assisted Intervention—MICCAI
2019; Shen, D., Liu, T., Peters, T.M., Staib, L.H., Essert, C., Zhou, S., Yap, P.-T., Khan, A., Eds.; Lecture Notes in Computer Science;
Springer: Cham, Switzerland, 2019; Volume 11766, pp. 266–274. [CrossRef]

23. Liu, L.; Kurgan, L.; Wu, F.-X.; Wang, J. Attention Convolutional Neural Network for Accurate Segmentation and Quantification of
Lesions in Ischemic Stroke Disease. Med. Image Anal. 2020, 65, 101791. [CrossRef] [PubMed]

24. Xue, Y.; Farhat, F.G.; Boukrina, O.; Barrett, A.M.; Binder, J.R.; Roshan, U.W.; Graves, W.W. A Multi-Path 2.5 Dimensional
Convolutional Neural Network System for Segmenting Stroke Lesions in Brain MRI Images. Neuroimage Clin. 2020, 25, 102118.
[CrossRef] [PubMed]

25. Tomita, N.; Jiang, S.; Maeder, M.E.; Hassanpour, S. Automatic Post-Stroke Lesion Segmentation on MR Images Using 3D Residual
Convolutional Neural Network. Neuroimage Clin. 2020, 27, 102276. [CrossRef] [PubMed]

26. Lahmiri, S. Image Characterization by Fractal Descriptors in Variational Mode Decomposition Domain: Application to Brain
Magnetic Resonance. Phys. A: Stat. Mech. Its Appl. 2016, 456, 235–243. [CrossRef]

27. Dragomiretskiy, K.; Zosso, D. Two-Dimensional Variational Mode Decomposition. In Energy Minimization Methods in Computer
Vision and Pattern Recognition; Tai, X.-C., Bae, E., Chan, T.F., Lysaker, M., Eds.; Lecture Notes in Computer Science; Springer: Cham,
Switzerland, 2015; Volume 8932, pp. 197–208. [CrossRef]

http://doi.org/10.1161/01.STR.0000119385.56094.32
http://doi.org/10.30880/ijie.2020.12.06.014
http://doi.org/10.1109/ACCESS.2019.2901055
http://doi.org/10.1002/(SICI)1097-0193(200004)9:4&lt;192::AID-HBM2&gt;3.0.CO;2-Y
http://doi.org/10.1371/journal.pone.0145118
http://www.ncbi.nlm.nih.gov/pubmed/26672989
http://doi.org/10.1016/j.jneumeth.2015.09.019
http://doi.org/10.1117/12.2043494
http://doi.org/10.1016/j.cogsys.2019.05.005
http://doi.org/10.1016/j.neuroimage.2014.04.056
http://doi.org/10.1002/hbm.23110
http://www.ncbi.nlm.nih.gov/pubmed/26756101
http://doi.org/10.1142/S1469026819500184
http://doi.org/10.1016/j.inffus.2020.06.008
http://doi.org/10.1155/2019/4629859
http://www.ncbi.nlm.nih.gov/pubmed/31281335
http://doi.org/10.14569/IJACSA.2019.0100859
http://doi.org/10.1016/j.media.2016.10.004
http://doi.org/10.1109/TCBB.2019.2939522
http://doi.org/10.1007/978-3-030-32248-9_28
http://doi.org/10.1007/978-3-030-32248-9_30
http://doi.org/10.1016/j.media.2020.101791
http://www.ncbi.nlm.nih.gov/pubmed/32712525
http://doi.org/10.1016/j.nicl.2019.102118
http://www.ncbi.nlm.nih.gov/pubmed/31865021
http://doi.org/10.1016/j.nicl.2020.102276
http://www.ncbi.nlm.nih.gov/pubmed/32512401
http://doi.org/10.1016/j.physa.2016.03.046
http://doi.org/10.1007/978-3-319-14612-6_15


Sensors 2021, 21, 1952 18 of 18

28. Ronneberger, O.; Fischer, P.; Brox, T. U-Net: Convolutional Networks for Biomedical Image Segmentation. In Medical Image
Computing and Computer Assisted Intervention—MICCAI 2015; Navab, N., Hornegger, J., Wells, W., Frangi, A., Eds.; Lecture Notes
in Computer Science; Springer: Cham, Switzerland, 2015; Volume 9351, pp. 234–241. [CrossRef]

29. Deepbrain. Available online: Https://Pypi.Org./Project/Deepbrain/ (accessed on 11 October 2020).
30. Yeghiazaryan, V.; Voiculescu, I. Family of Boundary Overlap Metrics for the Evaluation of Medical Image Segmentation. J. Med.

Imaging 2018, 5, 1. [CrossRef] [PubMed]

http://doi.org/10.1007/978-3-319-24574-4_28
Https://Pypi.Org./Project/Deepbrain/
http://doi.org/10.1117/1.JMI.5.1.015006
http://www.ncbi.nlm.nih.gov/pubmed/29487883

	Introduction 
	Related Works 
	Materials and Methods 
	Overview of the Proposed Method 
	Data Source 
	Variational Mode Decomposition (VMD) 
	Overlapped Patches Strategy 
	Three-Dimensional U-Net (3D U-Net) 

	Results and Discussion 
	Configurations of the Proposed Method 
	Data Preparation 
	Preprocessing 
	Segmentation Using 3D U-Net 
	Postprocessing 

	Results 
	Discussion 

	Conclusions 
	References

