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Pre‑existing and machine 
learning‑based models 
for cardiovascular risk prediction
Sang‑Yeong Cho1, Sun‑Hwa Kim2, Si‑Hyuck Kang2,3*, Kyong Joon Lee4, Dongjun Choi4, 
Seungjin Kang5, Sang Jun Park6, Tackeun Kim7, Chang‑Hwan Yoon2,3, Tae‑Jin Youn2,3 & 
In‑Ho Chae2,3

Predicting the risk of cardiovascular disease is the key to primary prevention. Machine learning 
has attracted attention in analyzing increasingly large, complex healthcare data. We assessed 
discrimination and calibration of pre-existing cardiovascular risk prediction models and developed 
machine learning-based prediction algorithms. This study included 222,998 Korean adults aged 
40–79 years, naïve to lipid-lowering therapy, had no history of cardiovascular disease. Pre-existing 
models showed moderate to good discrimination in predicting future cardiovascular events 
(C-statistics 0.70–0.80). Pooled cohort equation (PCE) specifically showed C-statistics of 0.738. Among 
other machine learning models such as logistic regression, treebag, random forest, and adaboost, 
the neural network model showed the greatest C-statistic (0.751), which was significantly higher than 
that for PCE. It also showed improved agreement between the predicted risk and observed outcomes 
(Hosmer–Lemeshow χ2 = 86.1, P < 0.001) than PCE for whites did (Hosmer–Lemeshow χ2 = 171.1, 
P < 0.001). Similar improvements were observed for Framingham risk score, systematic coronary risk 
evaluation, and QRISK3. This study demonstrated that machine learning-based algorithms could 
improve performance in cardiovascular risk prediction over contemporary cardiovascular risk models 
in statin-naïve healthy Korean adults without cardiovascular disease. The model can be easily adopted 
for risk assessment and clinical decision making.

Abbreviations
ACC/AHA	� American College of Cardiology /American Heart Association
AUC​	� Area under curve
CIs	� Confidence intervals
CVD	� Cardiovascular disease
FRS	� Framingham risk score
ICD‐10	� International Classification of Diseases, 10th Revision
MESA	� Multi-Ethnic Study of Atherosclerosis
ML	� Machine learning
NHIS-HEALS	� National Health Insurance Service-Health Screening
PCE	� Pooled cohort equation
SCORE	� Systematic coronary risk evaluation

Cardiovascular disease (CVD) is the leading cause of illness and death worldwide1, 2. Several risk assessment 
tools have been proposed to accurately predict the risk of CVD, among which the Framingham risk score (FRS), 
pooled cohort equation (PCE), systematic coronary risk evaluation (SCORE), and QRISK3 are widely used3–6. The 
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individual assessment of cardiovascular risk is a fundamental step for CVD prevention. Contemporary guidelines 
for primary prevention highly recommend the use of risk calculators to assess the risk of individuals and guide 
the intensity of preventive interventions7–10. However, there is still room for improvement in their accuracy: the 
area under the curve (AUC) has been shown to be between 0.65 and 0.8511–13. In addition, the overestimation 
of CVD risk, as well as underestimation, have been reported for specific individuals and population subgroups.

Recent years have seen remarkable advances in the application of machine learning (ML) in healthcare and 
medical research, thanks to high-performance computers14. ML is a method of data analysis that automates 
model building based on patterns and inferences with no prior explicit instructions. The increasing volume 
and complexity of healthcare information call for the application of big data analytics. ML methods have been 
increasingly applied in imaging interpretation and shown promising results15, 16. They can also be used to develop 
prediction models from existing data to yield highly accurate results17.

This study was designed to assess the calibration and discrimination of pre-existing CVD risk algorithms 
among Korean adults naïve to cholesterol-lowering therapy. In addition, we developed ML-based risk prediction 
models and compared their performance with that of contemporary algorithms.

Related research
Several studies were conducted to verify the pre-existing CVD risk model. The Copenhagen study compared 
PCE and SCORE12. The discrimination function was considered good with C-statistics ranging from 0.71 to 
0.85 for PCE and 0.69–0.84 for SCORE. The predicted/observed event ratio was 1.2 for PCE and 5.0 for SCORE, 
which raises an issue of overestimation. A recent study based on individual-level meta-analysis showed simple 
recalibration of the pre-existing risk models may help11. C-index was shown to range from 0.7010 to 0.7605. To 
date, only limited number of studies have applied ML techniques for cardiovascular risk prediction in the general 
population. A study from the Multi-Ethnic Study of Atherosclerosis (MESA) cohort used the random survival 
forest technique to identify the importance of subclinical disease markers, such as tissue necrosis factor-α recep-
tor, coronary artery calcium score, and carotid ultrasound findings for cardiovascular outcomes17. Another 
study from the MESA cohort utilized support vector machine algorithms, which showed markedly improved 
discrimination over the PCE model using same parameters of PCE model18. Weng et al. also showed improved 
risk prediction by using ML algorithms from a prospective cohort of 378,256 patients, in which 22 more variables 
were used in addition to the 8 parameters from PCE19.

However, there is still controversy regarding the role of ML for clinical prediction. A meta-analysis of 71 
studies demonstrated no definite evidence of superior performance of ML over logistic regression20. The authors 
claimed that model validation procedures are often not sound or not well reported, and that it hampers a fair 
model comparison. Hot debates followed21–23. Despite general optimism about the impact of artificial intelli-
gence, experts think there are still substantial barriers in the real world such as lack of expertise and inadequate 
regulation24.

Cardiovascular risk prediction is one of the fields that improved risk prediction algorithm can benefit the 
largest population at risk. Conventional cardiovascular risk calculators are basically based on logistic regression. 
In this study, we tested multiple ML models and sought to evaluate how much they can improve performance. 
The advantage of the new model was validated using multiple metrics including discrimination, calibration, and 
decision curve analysis.

Results
Characteristics of the study population.  The PCE cohort was the main analysis cohort, in which 
222,998 individuals with no previous history of atherosclerotic CVD were included (Fig. 1). Their mean age 
was 58.0 years, 58.1% were men, 5.5% had diabetes mellitus, and 21.1% were receiving antihypertensive treat-
ment (Table 1). During the 5-year follow-up, 7819 subjects experienced atherosclerotic CVD events (event rate: 
3.51%) (Supplementary Table S1).

The FRS, SCORE, and QRISK3 cohorts had 180,305, 166,824, and 196,970 individuals, respectively, who 
matched the target population of each scoring system. Although the risk profiles did not differ largely across the 
cohorts, there were several distinctions such as no atrial fibrillation in the PCE cohort and no diabetes or chronic 
kidney disease in the SCORE cohort. Study endpoints were also defined separately in each cohort according to 
each system. Accordingly, 5-year event rates varied from 0.30% in the SCORE cohort-where only cardiac death 
was counted to 3.51% in the PCE cohort where hard atherosclerotic CVD was counted.

Performance of pre‑existing risk prediction models.  Figure  2A,B shows the discrimination and 
calibration of the pre-existing models in each corresponding cohort. All models showed moderate to good dis-
criminatory function with c-statistics between 0.70 and 0.80. In the PCE cohort, the equations for whites outper-
formed the ones for African Americans (C-statistics [95% confidence intervals (CIs)], 0.741 [0.735–0.747] and 
0.732 [0.726–0.737]; p < 0.001). Calibration was plotted for the incidence rate per 1000 person-years against the 
10-year predicted risk. PCE showed the best calibration: PCE for whites underestimated the risk in the lower 3 
deciles, while overestimation occurred in deciles 7 through 10. FRS, SCORE, and QRISK3 were shown to over-
estimate the risk compared to the observed incidence rates.

Performance of machine learning algorithms to the pooled cohort equation cohort.  ML-based 
algorithms were applied to the PCE cohort. The performance of the ML-based algorithms are detailed in Table 2, 
and graphically shown in Fig. 3. The Brier score was between 0.030 and 0.032 across PCE and ML-based models. 
The neural network and logistic regression showed significantly improved discrimination compared to PCE 
for whites. The neural network exhibited the highest C-statistics (0.751 [95% CIs 0.740‒0.761]), which was 



3

Vol.:(0123456789)

Scientific Reports |         (2021) 11:8886  | https://doi.org/10.1038/s41598-021-88257-w

www.nature.com/scientificreports/

significantly greater than that of any other models except logistic regression (Supplementary Table S2). The dif-
ference in C-statistics between the neural network and logistic regression was marginal (p = 0.071). A sensitivity 
analysis was performed with the neural network using 8 variables (age, sex, systolic pressure, total cholesterol, 
high-density lipoprotein cholesterol, smoking status, history of diabetes, and antihypertensive medication use), 
which also showed significantly improved discrimination compared to PCE. 

Calibration was improved with logistic regression, AdaBoost, and the neural network. The Hosmer–Leme-
show χ2 values were 171.1, 15.3, 19.9, and 86.1 for PCE for whites, logistic regression, AdaBoost, and the neural 
network, respectively. Decision-curve analysis showed that ML-based algorithms provided an incremental net 
benefit across a range of thresholds (Fig. 4). The net benefit values at a threshold of 5% were shown to be 0.0072, 
0.0079, 0.0074, and 0.0078 for PCE for whites, logistic regression, AdaBoost, and the neural network, respectively. 
At this particular cutoff, the neural network-based model would lead to 6 more treatments per 10,000 patients 
at the same number of unnecessary treatments compared to PCE for whites.

Performance of machine learning algorithms in other cohorts.  Logistic regression and the neu-
ral network were also applied to the remaining cohorts (FRS, SCORE, and QRISK3 cohorts) (Supplementary 
Table S3). Logistic regression and the neural network showed significantly higher C-statistics than FRS, and 
logistic regression showed significantly higher C-statistics than SCORE. No ML algorithms outperformed the 
pre-existing prediction model in the QRISK3 cohort.

Discussion
In this study, we found that pre-existing risk models showed acceptable performance in predicting cardiovas-
cular risk in real-world Korean adults who were free from CVD and naïve to statin therapy. However, they were 
mostly shown to overestimate individual risk and to have moderate to good discrimination. On the other hand, 
models using ML techniques were shown to improve cardiovascular risk prediction. Algorithms using logistic 
regression, AdaBoost, and the neural network showed significantly higher discrimination and better calibration 
than pre-existing calculators.

Prevention is the most effective way to reduce the impact of CVD25. Current guidelines recommend that the 
assessment of CVD risk should be the start of cardiovascular risk-reducing strategies. The Third Report of the 
Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults guidelines recom-
mended the use of the FRS26. European guidelines recommend risk assessment via the SCORE system9, 10, the 
United States’ guidelines advocate for the PCE4, 7, and QRISK has been endorsed by the National Institute for 
Health and Clinical Excellence in the United Kingdom. Risk prediction is considered the key component in 
deciding treatment strategies. The American College of Cardiology /American Heart Association (ACC/AHA) 
guidelines for high blood pressure recommend medical treatment for primary prevention if a patient with hyper-
tension (defined as ≥ 130/80 mm Hg) has an estimated 10-year atherosclerotic CVD risk of ≥ 10%8. Similarly, 
statin therapy should be considered in adults with a 10-year atherosclerotic CVD risk of ≥ 7.5% according to the 
ACC/AHA guidelines on blood cholesterol7.

Figure 1.   Description of the study population. NHIS-HEALS cohort national health insurance service-
health screening cohort, SCORE systematic coronary risk evaluation, CVD cardiovascular disease, ASCVD 
atherosclerotic cardiovascular disease.
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The performance of risk prediction models has been validated by a number of studies11–13, 27, 28. Similarly, 
our study demonstrated the competency of risk prediction algorithms in the real world. All pre-existing models 
showed C-statistics of 0.70‒0.80 for their dedicated endpoints. PCE showed relatively good agreement between 
the predicted risk and observed event rates, while FRS, SCORE, and QRISK3 were shown to overestimate risk in 
this study population. Previous studies on the Korean population have also shown that the accuracy of preexist-
ing models was fairly good29, 30.

Our study showed that several ML techniques including the neural network led to improved cardiovascular 
risk discrimination and calibration as well as net benefit. The AUC of the neural network was + 0.13 compared 
to that of PCE for whites while calibration was significantly better. In addition, the improved performance also 
resulted in net clinical benefit: better classifying the patients who require blood pressure-lowering or lipid-
lowering therapy. An artificial neural network solves a problem through the learning process by controlling 
the strengths of connections between complexly intertwined neurons. The learning process is similar to human 

Table 1.   Baseline profiles of the study population. Data were presented as mean ± SD or % (N). FRS 
Framingham risk score, SCORE systematic coronary risk evaluation, PCE pooled cohort equation.

Characteristics PCE cohort (n = 218,299) FRS cohort (n = 176,271)
SCORE cohort 
(n = 163,221)

QRISK cohort 
(n = 196,970)

Common variables

Age, years 58.0 ± 8.8 56.9 ± 8.3 56.6 ± 8.1 57.6 ± 8.7

Male sex 126,803 (58.1%) 106,418 (60.4%) 97,644 (59.8%) 113,025 (58.7%)

Systolic blood pressure, 
mmHg 124 ± 15 124 ± 15 124 ± 15 124 ± 15

Total cholesterol, mg/dL 193.3 ± 31.8 193.8 ± 31.8 194.0 ± 31.6 193.6 ± 31.9

HDL cholesterol, mg/dL 55.3 ± 30.3 55.4 ± 29.7 55.2 ± 25.5 55.3 ± 28.9

Antihypertensive medica-
tion 46,079 (21.1%) 29,104 (16.5%) 24,815 (15.2%) 37,008 (19.2%)

Diabetes mellitus 12,111 (5.5%) 7420 (4.2%) N/A 9784 (5.1%)

Smoking status

Non-smoker 177,105 (81.1%) 140,783 (80.0%) 130,489 (79.9%) 155,072 (80.5%)

Current smoker 41,194 (18.9%) 35,488 (20.1%) 32,732 (20.1%) 37,575 (19.5%)

Variables in QRISK3

Body mass index, kg/m2 23.6 ± 2.9 23.6 ± 2.8 23.5 ± 2.8 23.6 ± 2.8

Atrial fibrillation N/A 2088 (1.2%) 1928 (1.2%) 2342 (1.2%)

Chronic kidney disease 17,702 (8.1%) 12,807 (7.3%) N/A 15,051 (7.8%)

Migraine 14,265 (6.5%) 8412 (4.8%) 8275 (5.1%) 10,775 (5.6%)

Rheumatic arthritis 4241 (1.9%) 2819 (1.6%) 2601 (1.6%) 3491 (1.8%)

Corticosteroid use 8251 (3.8%) 5937 (3.4%) 5595 (3.4%) 6990 (3.6%)

Atypical antipsychotic use 543 (0.2%) 328 (0.2%) 336 (0.2%) 386 (0.2%)

Systemic lupus erythe-
matous 598 (0.3%) 405 (0.2%) 390 (0.2%) 473 (0.2%)

Smoking status

Never smoker 136,236 (62.4%) 106,543 (60.4%) 99,331 (60.9%) 118,987 (60.9%)

Ex-smoker 40,869 (18.7%) 34,240 (19.4%) 29,363 (18.0%) 36,085 (18.7%)

Light smoker (1 ~ 9 pcs) 4557 (2.1%) 3655 (2.1%) 3369 (2.1%) 4051 (2.1%)

Moderate smoker (10 ~ 19 
pcs) 15,627 (7.2%) 13,613 (7.7%) 12,508 (7.7%) 14,331 (7.4%)

Heavy smoker (> 20 pcs) 21,013 (9.6%) 18,220 (10.3%) 16,857 (10.3%) 19,193 (10.0%)

Predicted 10-year risk, %

Pooled cohort equations, 
White 8.7 ± 9.6 7.7 ± 8.5 7.0 ± 7.4 8.3 ± 9.2

Pooled cohort equations, 
African 9.2 ± 8.0 8.4 ± 7.2 7.7 ± 6.2 8.9 ± 7.8

Framingham risk score 12.7 ± 4.2 12.3 ± 4.0 12.0 ± 3.8 12.5 ± 4.1

SCORE, low 6.7 ± 8.4 6.2 ± 7.8 6.0 ± 7.6 6.6 ± 8.3

SCORE, high 11.9 ± 13.5 11.0 ± 12.7 10.7 ± 12.4 11.6 ± 13.3

QRISK 3 11.3 ± 10.1 10.2 ± 9.2 9.3 ± 8.3 10.9 ± 9.9

Predicted 5-year risk, %

Pooled cohort equations, 
White 3.7 ± 4.5 3.3 ± 4.0 3.0 ± 3.4 3.6 ± 4.3

Pooled cohort equations, 
African 5.4 ± 5.4 4.7 ± 4.7 4.3 ± 3.9 5.1 ± 5.2
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learning, memory, and inference. Its advantages include identifying arbitrary nonlinear multiparametric discri-
minant functions. In this manner, neural networks enable the learning of highly complex functions and accurate 
predictions for complex decision-making problems31.

Although ML-based models were shown to have better prediction capabilities, there may be criticism regard-
ing the performance of ML-based algorithms. Firstly, ML-based algorithms typically use large numbers of vari-
ables, some of which are not routinely recorded in clinical practice. Conventional risk prediction models have 
been developed to be broadly used cost-effectively, and therefore, use only a small number of essential variables. 
However, our sensitivity analysis showed that even after limiting the number of variables, ML-based algorithms 
still showed better performance than conventional models. Secondly, although there was an improvement, the 
absolute degree of improvement was small. The neural network model showed significantly increased C-statistics 
compared to PCE, but the absolute increase was no greater than + 1.3%. Although statistically significant, it is 
reasonable to assume that this was only a modest improvement. However, ML, especially the artificial neural 
network, is expected to provide better data interpretation and risk prediction as the volume of medical informa-
tion exponentially increases.

Figure 2.   Discrimination and calibration of contemporary prediction models in each cohort. (A) Receiver 
operating characteristic curve analysis for contemporary prediction models. (B) Hosmer–Lemeshow calibration 
plots of contemporary risk prediction models. Risk score-specific predicted (x-axis) and observed events 
(y-axis) are depicted by deciles of calculated risk. SCORE (low) systematic coronary risk evaluation for low 
cardiovascular disease risk, SCORE (high) systematic coronary risk evaluation for high cardiovascular disease 
risk, pooled cohort equation (white) pooled cohort equation for whites, pooled cohort equation (African) pooled 
cohort equation for African Americans.

Table 2.   Performance of machine-learning based risk prediction models in the test set of the pooled cohort 
equation cohort. ASCVD atherosclerotic cardiovascular disease, CI confidence interval.

Predicted 5-year ASCVD 
risk

Overall Discrimination Calibration Clinical usefulness

Brier Brierscaled C-statistic (95% CI) P value Hosmer–Lemeshow χ2 P value
Net benefit at threshold 
of 3.75%

Net benefit at threshold 
of 5%

Pooled cohort equation 
(African) 0.032 35.0% 0.726 (0.716‒0.737) 0.004 506.0  < 0.001 0.0086 0.0049

Pooled cohort equation 
(white) 0.031 7.3% 0.738 (0.727‒0.749) – 171.1  < 0.001 0.0106 0.0072

Logistic regression 0.030 4.6% 0.749 (0.738‒0.759)  < 0.001 15.3 0.053 0.0109 0.0079

Random forest 0.031 2.7% 0.720 (0.709‒0.731)  < 0.001 805.8  < 0.001 0.0094 0.0064

TreeBag 0.032 5.9% 0.674 (0.662‒0.685)  < 0.001 403.0  < 0.001 0.0067 0.0038

AdaBoost 0.031 3.9% 0.740 (0.729‒0.751) 0.434 19.9 0.011 0.0107 0.0074

Neural network (16 vari-
ables) 0.031 4.4% 0.751 (0.740‒0.761)  < 0.001 86.1  < 0.001 0.0108 0.0078

Neural network (8 vari-
ables) 0.031 4.2% 0.748 (0.738‒0.759)  < 0.001 91.2  < 0.001 0.0105 0.0077
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This study has several limitations. Firstly, only 5-year follow-up data were available in the present study. Most 
risk prediction models aim to predict 10-year outcomes. However, the use of population-based data allowed 
for a large sample of statin-naïve healthy adults without CVD. Most contemporary prospective studies are not 
free from potential bias associated with statin use, which may cause an effect modification. Secondly, the study 
is not free from selection bias since the study population was chosen from the recipients of the general health 
screening program. However, the national insurance system covers 97% of Korean residents. The health screen-
ing program included 51.2% of the recipients in 2009 and 54.1% in 2010 according to the national statistics32. 
Thirdly, there is a potential risk of misclassification bias as many covariates and outcomes were defined using 
claims information33. For example, the status of blood pressure-lowering treatment may have changed during 
the follow-up duration, which was not considered in the model.

Figure 3.   Discrimination and calibration of novel machine learning-based models in the test set of the 
pooled cohort equation (PCE) cohort. (A) Receiver operating characteristic curve analysis and (B) Hosmer–
Lemeshow calibration plots of PCE and machine learning-based models. Risk score-specific predicted (x-axis) 
and observed events (y-axis) are depicted by deciles of calculated risk. Pooled cohort equation (white), pooled 
cohort equation for whites; pooled cohort equation for African Americans.

Figure 4.   Decision curves for pooled cohort equations and machine learning-based models. Pooled cohort 
equation (white), pooled cohort equation for whites; pooled cohort equation (African), pooled cohort equation 
for African Americans.



7

Vol.:(0123456789)

Scientific Reports |         (2021) 11:8886  | https://doi.org/10.1038/s41598-021-88257-w

www.nature.com/scientificreports/

Pre-existing risk prediction models, such as the FRS, SCORE, PCE, and QRISK3, showed good performance 
in statin-naïve healthy Korean adults without CVD. This study suggests that ML-based cardiovascular risk pre-
diction algorithms offer improved discrimination and calibration over contemporary models. Future studies are 
required to test the feasibility and usefulness of our models in the real-world clinical practice.

Methods
The data reported in this article are available to other researchers via application to the National Health Insurance 
Sharing Service (https://​nhiss.​nhis.​or.​kr/) for purposes of reproducing the results or replicating the procedure.

Data source and study individuals.  The study subjects were extracted from the National Health Insur-
ance Service-Health Screening (NHIS-HEALS) cohort from Korea. The cohort design and profiles have been 
reported previously34. In brief, the insurance system covers 97% of Korean residents. General health screening 
programs are provided to all insured adults aged 40 years or older every 2 years for the prevention and early 
detection of major diseases. The National Health Insurance Service-Health Screening cohort includes 514,866 
individuals who participated in health screening programs from 2002 to 2015.

Individuals who participated in the health screening program between 2009 and 2010 were chosen for this 
study. This selection of time period was to ensure a complete 5-year follow-up because the screening program 
started including fasting serum lipid levels (total cholesterol, triglycerides, high-density lipoprotein cholesterol, 
and low-density lipoprotein cholesterol) in 2009. Follow-up data until December 2015 are provided for the 
cohort. In line with the target population of contemporary scoring systems, selection criteria included (1) age 
between 40 and 79 years, (2) no previous diagnosis of CVDs, such as myocardial infarction, ischemic stroke, 
and congestive heart failure, (3) Those with angina who received coronary revascularization therapy, such as 
percutaneous coronary intervention and coronary artery bypass surgery were excluded. (4) In addition, to avoid 
bias caused by statin therapy, individuals who had been receiving a statin before the screening or started statin 
therapy during the study period before the obtaining of the study outcomes were also excluded.

Next, 4 separate cohorts were built following the intended target population and outcome definitions of each 
scoring system: the FRS, PCE, SCORE, and QRISK3 cohorts (Fig. 3). The definitions of the cohort population 
and study outcomes are detailed in Supplementary Table S4. The PCE cohort was the main target of analysis and 
results from the FRS, SCORE, and QRISK3 cohorts were provided for sensitivity analyses. The Seoul National 
University Bundang Hospital’s institutional review board determined that our study was exempt from review 
(X-1708-417-911). The present study was performed in accordance with the Declaration of Helsinki and the 
need for informed consent was waived.

Risk factor variables and risk score calculations.  Sixteen variables were selected as risk factors: 8 vari-
ables that were commonly used in the established risk prediction models, and 8 variables used in only QRISK3. 
The 8 common variables included age, sex, systolic blood pressure, total cholesterol, high-density lipoprotein 
cholesterol, smoking status, history of diabetes, and antihypertensive medication use. Demographic character-
istics such as age and sex were extracted from the enrolment status database. Systolic blood pressure, total cho-
lesterol level, and high-density lipoprotein cholesterol level were derived from the results of the health screening 
program. Smoking status and the amount of smoking were identified using self-report questionnaires. Histories 
of diabetes and hypertension medication use were identified using previous claims data from 2002 until the date 
of enrollment. The 8 variables from the QRISK3 algorithm were steroid use, body mass index (kg/m2), atrial 
fibrillation/flutter, migraine, systemic lupus erythematosus, rheumatic arthritis, atypical antipsychotic use, and 
chronic kidney disease (Supplementary Table S5). Erectile dysfunction and schizophrenia, which are also used 
in the QRISK3 algorithm, were not included in this study because as the accuracy of the former has not been 
validated and the latter was not available from the NHIS-HEALS cohort due to privacy issues. No imputations 
were applied for continuous variables (age, systolic blood pressure, total cholesterol, high-density lipoprotein 
cholesterol, and body mass index), and subjects with any missing values and outliers were removed from the 
cohort.

Four types risk prediction scores were calculated with equation-based methods using patients’ baseline data: 
the FRS, PCE, SCORE, and QRISK3 (Supplementary Table S4)3–6. PCE was originally developed to obtain 10-year 
cardiovascular risk. The predicted risk at 5 years was calculated using parameters that were published previously 
by Muntner et al.27 Because Asian ethnicity is not represented in the PCE, both the equations (one for whites and 
the other for African-Americans) were calculated. Similarly, two risk calculators of the SCORE (one for low-risk 
populations, and the other for high-risk populations) were studied.

Outcome.  The study endpoints were defined separately in each cohort following the definitions of each algo-
rithm (Supplementary Table S5). The PCE cohort was the main study cohort, where the endpoint was first hard 
atherosclerotic CVD (defined as cardiac death, non-fatal myocardial infarction, and fatal or nonfatal stroke). 
Mortality was determined from the National Death Index by linking identification codes to the correspond-
ing individual. Cardiac death was defined as death due to cardiovascular etiology. Nonfatal myocardial infarc-
tion and ischemic stroke were determined with claims records. Myocardial infarction was defined by discharge 
diagnosis codes I21 and I23 of the International Classification of Diseases, 10th Revision (ICD‐10). Stroke was 
defined as a discharge diagnosis (ICD-10-code, I63) of patients who needed hospitalization and underwent 
brain imaging, such as computed tomography and magnetic resonance imaging. Individuals were followed up 
until death from any cause or until the end of the cohort study (December 2015). Endpoint definitions of the 
FRS, SCORE, and QRISK3 cohorts are summarized in Supplementary Table S6.

https://nhiss.nhis.or.kr/


8

Vol:.(1234567890)

Scientific Reports |         (2021) 11:8886  | https://doi.org/10.1038/s41598-021-88257-w

www.nature.com/scientificreports/

Machine‑learning algorithms.  ML-based prediction models were developed to assess the participants’ 
5-year risk for atherosclerotic CVD. Each cohort was partitioned into training/validation and test datasets in a 
7:3 ratio using permutation. During the learning phase, the training/validation dataset was again divided into 
training and validation sets in an 8:2 ratio. The low overall event rate of CVD in the dataset posed the potential 
risk of biased predictions and misleading accuracy. Random oversampling was performed to develop a more 
balanced datasets during the training stage. We also obtained Cox-proportional hazard ratio to evaluate the 
association between 16 variables and endpoint in the PCE cohort (Supplementary Table  S7). The predicted 
probability was a number between 0 and 1. Receiver operating characteristic curves were constructed, and the 
optimal cutoff value was determined by calculating Youden’s index for each model. Logistic regression and three 
other types of ML algorithms, including TreeBag, random forest, and neural networks, were pre-planned. One 
ML algorithm (AdaBoost) was added during the analysis. Logistic regression, which is also considered as an 
ML algorithm, uses a linear equation with independent predictors to predict a value35. TreeBag and random 
forest are algorithms that combine a multitude of decision trees via bagging36, 37. While random forest improves 
variance by reducing the correlation between trees, TreeBag uses random selection of variables for the best split 
at each node. AdaBoost combines weak learners into a weighted sum that represents the final output38. Neural 
networks are statistical learning algorithms mimicking the biological neuron system39. All ML algorithms were 
built using the R program. Supplementary Methods S1 section further elaborates on the machine learning tech-
niques. The detailed architecture used in the neural networks is also described in Supplementary Methods and 
Supplementary Figure S1. The number of hidden layers and neurons in the layers were chosen empirically using 
the training/validation set. The consistency of the models was confirmed using fivefold cross-validation. The 
main models were constructed using the 16 baseline variables. A sensitivity analysis was done with models using 
the 8 variables that are commonly used in pre-existing prediction models.

Statistical analysis.  Analyses were performed separately in each cohort. Clinical characteristics are pre-
sented as numbers and percentages for categorical variables and means ± standard deviation for continuous vari-
ables. The performance of the contemporary and ML-based risk prediction models was assessed with respect 
to discrimination, calibration, and net benefit. Discrimination and calibration are the most commonly used 
parameters in risk prediction models. The overall performance was assessed using the Brier score, which was 
calculated as the squared differences between actual binary outcomes and predicted probabilities40. A lower 
score represented higher accuracy.

C-statistics and the 95% CIs were provided, to estimate the discrimination of the models. Delong’s test was 
used to compare two correlated C-statistics41. Predicted and observed event rates were compared for each model. 
Predictive accuracy, sensitivity, specificity, positive predictive values, negative predictive values, and F1 score 
were calculated, as shown below.

where TP indicates true positive, TN indicates true negative, FP indicates false positive and TN indicates true 
negative.

The goodness-of-fit (calibration) of the models was tested with the modified Hosmer–Lemeshow χ2 statistic42. 
Study subjects were divided into deciles based on their predicted risk. For pre-existing prediction models, the 
observed incidence rate per 1000 person-years was compared against the predicted 10-year risk in each cohort. 
Incidence rates per 1000 person-years were calculated by dividing the number of events that occurred during 
the follow-up period. Calibration of the ML-based algorithms and PCE was determined using the predicted and 
observed numbers of events at 5 years in the PCE cohort.

Decision-curve analysis was used to quantify the clinical usefulness of each prediction model in the PCE 
cohort43. A threshold probability indicates the relative weight of the harms of a false positive at which a patient 
would opt for treatment expecting its benefit. The net benefit of a model was calculated as the difference between 
the proportion of true positives and the proportion of false positives weighted by the odds of the selected 
threshold. Then net benefit was plotted across different threshold probabilities. A model that provides higher 

Predictive accuracy =
TP + TN

TP + FP + FN + TN

Sensitivity =
TP

TP + FN

Specificity =
TN

TN + FP

Positive predictive value =
TP

TP + FP

Negative predictive value =
TN

TN + FN

F1 score = 2×

(

Senstivity × Positivepredictivevalue
)

(

Senstivity + Positivepredictivevalue
) ,
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net benefit at a particular threshold is preferred. The net benefit was presented at cutoffs of 3.75% and 5%, which 
correspond to 7.5% and 10% thresholds, respectively, in blood cholesterol and high blood pressure guidelines7, 8.

Two-sided P values of less than 0.05 were considered statistically significant. All statistical analyses were 
performed with R programming version 3.3.3 (R Foundation for Statistical Computing, Vienna, Austria).
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