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Abstract

The rate of cell growth is crucial for bacterial fitness and a main driver of proteome allocation1,2, 

but it is unclear what ultimately determines growth rates in different environmental conditions. 

Increasing evidence suggests that other objectives also play key roles3–7, such as the rate of 

physiological adaptation to changing environments8,9. The challenge for cells is that these 

objectives often cannot be independently optimized, and maximizing one often reduces another. 

Many such tradeoffs have indeed been hypothesized, based on qualitative correlative studies8–11. 

Here we report the occurrence of a tradeoff between steady-state growth rate and physiological 

adaptability for Escherichia coli, upon abruptly shifting a growing culture from a preferred carbon 

source to fermentation products such as acetate. Such transitions, common for enteric bacteria, are 
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often accompanied by multi-hour lags before growth resumes. Metabolomic analysis revealed that 

the long lags resulted from the depletion of key metabolites due to the sudden reversal of central 

carbon flux imposed by these nutrient shifts. A model of sequential flux limitation not only 

explained the observed universal tradeoff between growth and adaptability, but also generated 

quantitative predictions that were validated experimentally. The observed trade-off reflects the 

opposing enzyme requirements for glycolysis versus gluconeogenesis.

To study the interrelation between the rate of cell growth and the rate of physiological 

adaptation (characterized by the inverse of the “lag time” defined in Fig. 1a), we shifted 

wild-type Escherichia coli (Table S1) between two minimal media, each containing a single 

carbon source. Defined postshift conditions and very rapid environmental changes were 

implemented as “complete shifts” that ensure no preshift carbon source was available to 

cells in the postshift medium (Fig. 1b). We first investigated shifts from different glycolytic 

carbon sources into acetate, a gluconeogenic carbon source that requires fluxes through 

glycolysis to reverse direction. Because acetate is the primary fermentation product of many 

bacteria, including E. coli, it is naturally available to these bacteria upon the exhaustion of 

the primary carbon source.

When quantified by lag time, defined as the integrated time lost during the adaptation to new 

conditions compared to an immediate response (Fig. 1a), these shifts exhibited extended lags 

of up to 10 hours (Fig. 1c circles), much longer than the doubling times in preshift and 

postshift media (< 2 hours), and often included periods without detectable biomass 

production lasting several hours (Extended Data Fig. 1a). A striking correlation emerged 

between the growth rate in the preshift medium and the lag time, (circles, Fig. 1c), i.e., fast 

growing cells took a long time to adjust to the new medium while slow growing cells 

resumed growth much more quickly. The same relation was obtained when preshift growth 

was varied by titrating the uptake rates of lactose as an example of a glycolytic carbon 

source (squares, Fig. 1c), suggesting that the relation between preshift growth and lag times 

is dependent on the carbon influx rate rather than the specifics of the preshift carbon sources. 

A similar pattern was found for population growth dynamics with chemostat-controlled 

growth rates12. The data in Fig. 1c shows that lag times (Tlag) increased with increasing 

preshift growth rate (λpre), with an apparent divergence at a critical growth rate λ0. Indeed, 

re-plotting the data of Fig. 1c reveals an approximately linear relation (purple symbols and 

line in Fig. 1d) between the inverse lag time 1/Tlag, a measure of adaptability, and λpre, i.e.,

1/T lag = α ⋅ λ0 − λpre , [1]

where α is a dimensionless proportionality constant.

To test the generality of this relation, we analyzed lag times in 144 transitions (see Tables S2 

& S3), yielding long lag times for shifts from six glycolytic to six gluconeogenic carbon 

sources (Extended Data Fig. 2a–f). Strikingly, all these shifts exhibited similar linear 

relations between the preshift growth rate and inverse lag time, but with different 

proportionality constants α for different postshift carbon sources, all with the same critical 

growth rate λ0 ≈1.1/hr (see Fig. 1d & Extended Data Fig. 2). Some degree of correlation 

exists also between the lag time and postshift growth rates (Extended Data Fig. 2g) as 
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observed previously13, but the pattern is much weaker compared to those in Fig. 1c, 1d. We 

also examined several classic diauxic shifts, where both carbon sources are present in 

preshift, and the lag times were found to be almost identical to those from the complete 

shifts that we study here in most cases (Extended Data Fig. 1b–d).

To investigate the origin of the extended lag time in our shifts, we first tested if dormant and 

heterogeneous subpopulations may play a role. Using two complementary methods (see 

Supplementary Note 1, Extended Data Figure 3, 4), we quantified cell-to-cell variability 

following the shift from glucose to acetate. The results revealed some heterogeneity in lag 

times, but no distinct subpopulations: None of the cells resumed growth immediately after 

the shift, and virtually all cells resumed growth shortly after the average lag time.

To determine if the observed correlation between lag time and preshift growth is due to a 

limitation in central metabolism (referred to as “metabolic limitation”), we quantified 

metabolite pools throughout the lag phase of the glucose-to-acetate transition (Fig. 2a). By 

comparing the dynamics of metabolite pools and fluxes with steady-state levels during 

exponential growth on glucose and acetate, we can infer metabolic bottlenecks. Remarkably, 

over the course of the lag phase, the concentrations of different metabolites increased in a 

sequential manner (Fig. 2b) that matched their position in gluconeogenesis: Metabolites in 

the tricarboxylic acid (TCA) cycle (citrate, malate) started to accumulate 1–2 hours into the 

lag phase and also overshot their postshift steady-state values (dashed black line, Fig. 2b) by 

several-fold once growth resumed ~4 hr after shift (Fig. 2a). The levels of metabolites in 

upper glycolysis increased even later (Fig. 2b & Extended Data Fig. 5a). Importantly the 

increase of the latter coincided with the time of growth resumption (Fig. 2a). In particular, 

the pool of the key regulatory metabolite fructose-1–6-bisP (FBP) plunged rapidly by 200-

fold within 30 minutes of the shift and remained well below its postshift steady-state level 

until 30 minutes before growth resumption (see Extended Data Fig. 5c). This finding is not 

compatible with the mechanism recently proposed to underlie lag phases to gluconeogenesis 

based on a postulated high FBP pool in the majority of the cell population during lag 

phase12.

Estimating the fluxes by multiplying measured metabolite concentrations and the turnover 

rates derived from 13C-labeling dynamics, we observed a sequential pattern that followed 

their position in gluconeogenesis (Fig. 2c). TCA cycle metabolites quickly became fully 
13C-labeled. In contrast, gluconeogenic flux to upper glycolysis was hardly detectable even 

30 minutes after the shift, and was still below 1% of the steady-state level 1.5 hours after 

shift.

The observed metabolic dynamics suggest that gluconeogenic flux limits biosynthesis of 

biomass components derived from intermediates in upper glycolysis. In particular, 

metabolites like erythrose-4-P and ribose-5-P, branching off from upper glycolysis and 

required for the biosynthesis of specific amino acids and nucleotides, may limit biomass 

production. Because biomass synthesis requires fixed stoichiometric ratios of building 

blocks, metabolites in TCA cycle and lower glycolysis accumulate far beyond their steady 

state concentrations (Fig. 2b), since they cannot be incorporated into biomass without 

sufficient metabolites in upper glycolysis. In accordance with this hypothesis, we found the 
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absolute concentrations of key metabolites in upper glycolysis (e.g. F6P) to be small 

compared to the affinity constants of the key enzymes required for the production of 

erythrose-4-P and ribose-5-P (Table S4) .

After the shift to acetate, gluconeogenic flux is essential for biomass production and enzyme 

synthesis. While many glycolytic enzymes are reversible and can thereby also catalyze 

gluconeogenesis, several glycolytic reactions are thermodynamically strongly favored in the 

glycolytic direction such that they can be considered effectively irreversible. As illustrated in 

Fig. 2d, in a simplified picture of central metabolism, gluconeogenesis can be considered as 

a linear pathway consisting of “lower gluconeogenenic” reactions (catalyzed by 

phosphoenolpyruvate carboxykinase: Pck; malate dehydrogenases: MaeA, MaeB; 

phosphoenolpyruvate synthetase: Pps) and “upper gluconeogenic” reactions (catalyzed 

primarily by the essential enzyme fructose-1,6-bisphosphatase: Fbp). These dedicated 

gluconeogenic enzymes are required for gluconeogenesis but many of them are lowly 

expressed during preshift growth and immediately after the shift, when compared to their 

abundances in postshift steady state (Extended Data Fig. 6), presumably because the 

activities of the gluconeogenic enzymes can lead to substantial futile cycling that dissipates 

energy. Consistent with the observed lag time increase with higher preshift growth rates 

(Fig. 1c), the abundances of the lower gluconeogenic enzymes (quantified by proteomics in 

a previous work3) decease with higher preshift growth rates (Fig. 3a).

Quantitative proteomics measurements showed that the abundances of gluconeogenic 

enzymes increased very gradually, coinciding with exit from the lag phase (Extended Data 

Fig. 6). During the lag phase, formation of these lower gluconeogenic enzymes requires 

precursors (e.g. specific amino acids), whose synthesis rate is in turn limited by the 

gluconeogenic flux. Hence, right after the shift, the cell is trapped in a state where a 

bottleneck in gluconeogenic flux limits the synthesis of amino acids, and hence the 

production of enzyme needed to alleviate this bottleneck (Extended Data Fig. 7a). Indeed, 

reducing the requirements of metabolites resulting from gluconeogenic flux such as 

erythrose-6-phosphate by addition of the three aromatic amino acids derived from it (Trp, 

Phe, Tyr) to the postshift medium (Fig. 2e), reduced the lag time by ~50%, even though 

individually these amino acids do not support growth14.

For rapid adaptations dominated by simple catabolic bottlenecks, a kinetic model of growth 

adaptation based on the dynamic reallocation of proteomic resources was shown recently to 

give quantitatively accurate descriptions of adaptation dynamics15. However for the very 

long lag phases studied here, severe internal metabolic bottlenecks are involved due to the 

reversal of central carbon fluxes. Guided by the metabolomic and proteomic data (Figs. 2), 

we constructed a minimalistic mathematical model. The gluconeogenic flux is assumed to be 

the bottleneck for amino acid synthesis required for de novo production of gluconeogenic 

enzymes during the lag phase (illustrated in Extended Data Fig. 7a and resulting in Eq. [a] in 

that figure). As illustrated in Extended Data Fig. 7b and explained in Supplementary Note 2, 

the gluconeogenic flux is determined by the scaling of metabolite concentrations at the 

lower and upper gluconeogenesis, which are in turn determined by the levels of lower 

gluconeogenic enzymes (resulting in Eq. [b] in that figure). Solving the resulting differential 

equation, we arrived at a simple expression for the inverse lag time:
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1/T lag ∝   ϕGNG,  lower
pre , [2]

where ϕGNG,  lower
pre  denotes the preshift abundance of lower gluconeogenic enzymes that 

provide the initial condition. The abundances of these enzymes rise throughout the lag phase 

(Extended Data Fig. 6) and their abundances in preshift conditions14 are well described by a 

linear decrease with increasing preshift growth rate, λpre, i.e.,

ϕGNG,  lower
pre ∝ λC − λpre , [3]

vanishing at a characteristic growth rate, λC ≈ 1.1/hr (lines in Fig. 3a). This resembles the 

linear cAMP-mediated increase of catabolic protein abundances for carbon-limited 

growth14. Inserting this growth-rate dependence into Eq. [2], we obtain 1/Tlag ∝ (λC−λpre), 

which is identical to the empirical relation Eq. [1], with the same critical growth rate λ0 ≈ 
1.1/hr. Thus, our model successfully recapitulates the observed growth rate-lag time 

relations (Fig. 1d) up to an overall scaling factor α (Eq. [1]).

Lag times for most postshift carbon sources collapse on the same curve (black curve, Fig. 1d 

& Extended Data Fig. 2). However, shifts to acetate are described by a different scaling 

factor α (magenta symbols and line), and a milder deviation for shifts to malate (green 

circles and line). A possible explanation for the altered acetate line is that only growth on 

acetate requires the glyoxylate shunt in addition to other gluconeogenic enzymes. If true, 

then pre-expressing enzymes of the glyoxylate shunt (AceB and AceA) should eliminate this 

additional bottleneck and revert the relation between lag time and growth rate to that 

observed for shifts to most other TCA cycle substrates (black line, Fig. 1d & Extended Data 

Fig. 2). Indeed, preshift expression of the glyoxylate bypass reduced the lag times for 

various shifts to acetate (compare red circles and magenta curve in Fig. 3b), such that the 

reduced lag times actually fall on the relation followed by most other gluconeogenic 

substrates as predicted (black curve, Fig. 3b).

To directly test the prediction of a linear relation between the inverse lag time and the 

abundance of lower gluconeogenic enzymes (Eq. [2]), we considered a shift from glucose to 

pyruvate, where a single gluconeogenic enzyme, phosphoenolpyruvate synthetase (PpsA), is 

required for the lower gluconeogenic reaction. We constructed a strain with linearly 

titratable PpsA expression that had a negligible effect on preshift growth. Titrating PpsA 

expression indeed affected the lag time of the glucose-to-pyruvate shift and the model 

prediction was quantitatively validated by the observed proportionality between the preshift 

induction level of PpsA and inverse lag time (Fig. 3c) over a 5-fold range in lag times. Since 

the full induction of PpsA in postshift alone was insufficient to overcome the lag phase, 

whereas preshift induction resulted in a large reduction of lag time, our results demonstrate 

the importance of expressing gluconeogenic enzymes in glycolytic conditions to shorten lag 

phase.

An important remaining question is why E. coli cannot avoid the depletion of gluconeogenic 

metabolite pools after shift to gluconeogenesis. We hypothesized that allosteric regulation of 

the opposing glycolytic enzymes by metabolic intermediates does not achieve a complete 
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inhibition of their activities during lag phase. To test whether residual activity of glycolytic 

enzymes may be a significant cause of long lag, we overexpressed glycolytic enzymes 

catalyzing irreversible reactions in preshift conditions. Indeed, this severely impaired the 

switch from glycolysis to gluconeogenesis, more than doubling the lag time in most cases, 

as compared to preshift overexpression of a control enzyme (Extended Data Fig. 8). As 

glycolytic enzymes are abundant throughout the lag phase of wild-type strain (Extended 

Data Fig. 6), the transition from glycolysis to gluconeogenesis is likely dominated by futile 

cycling, with both gluconeogenic and glycolytic enzymes active and working in opposite 

directions.

In this study, we have established a series of low metabolite pools in gluconeogenesis as the 

cause of long lags during the transition from glycolysis. This is because for fast glycolytic 

growth, the distribution of enzymes strongly favor glycolysis over the opposing 

gluconeogenesis (Extended Data Fig. 7c). At lower glycolytic fluxes such as on poor 

glycolytic substrates, the change in the enzyme distribution (lower glycolytic enzyme and 

higher gluconeogenic enzyme abundances) favors glycolysis less, and the transition to 

gluconeogenic growth becomes faster. Thus, the two important fitness measures, growth rate 

and adaptability (inverse lag time), are constrained as captured by Eq. [1]. As this simple 

empirical relation holds broadly for many pairs of carbon sources tested (Fig. 1d & 

Extended Data Fig. 2), we propose Eq. [1] be considered a phenomenological law of the 

growth-adaptation tradeoff, with the quantitative form arising from the structure of central 

carbon metabolism as suggested by the model described in Extended Data Fig. 7.

The existence of this tradeoff suggests that it might be advantageous for cells to choose 

slower growth for the benefit of shorter lag, in anticipation of switching to gluconeogenesis 

when the primary glycolytic substrates run out. It provides a unique perspective towards 

understanding the notorious problem of why bacteria grow on different substrates at broadly 

disparate rates. Hence, the quality of a substrate as measured by growth rate is a reflection of 

the ecological likelyhood that conditions will change in fluctuating natural environments or 

across the bacterial infectious cycle, rather than based on fundamental biochemical 

properties of the substrate, e.g. its energy content. As an example, wildtype E. coli grew 

substantially more slowly on fructose and mannose compared to glucose despite their similar 

chemical properties. A knockout of the transcriptional regulator Cra, which activates the 

expression of gluconeogenic enzymes while repressing those of glycolytic enzymes, 

increased growth on both fructose and mannose (Extended Data Fig. 9a), but is unable to 

shift to many gluconeogenic substrates. Thus, Cra may be designated to hold back the 

growth of wildtype cells on glycolytic substrates to enable a swift shift to gluconeogenesis 

when necessary. More striking is the growth on glycerol, often thought of as a poor nutrient 

compared to glucose due to reduced energy content. Yet, a single-residue mutation in the 

glycerol uptake protein GlpK, which increases its uptake efficiency, increases growth on 

glycerol by over 20%16,17. This faster growing mutant has been extensively characterized18, 

but a disadvantage of this mutation was only demonstrated previously when combined with 

additional mutations19, raising the possibility that E. coli may be simply maladapted to 

glycerol. Guided by our model, we find this mutant to exhibit a substantially longer lag 

compared to the slower-growing wildtype (Fig. 3d), suggesting that slower growth of 
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wildtype E. coli on glycerol might be selected to reduce the lag time upon abrupt transition 

to gluconeogenic substrates in the natural habitat.

This growth-adaptation tradeoff can be turned into a quantitative criterion for selecting the 

rate of cell growth (λ), by minimizing the total time for growth on a glycolytic substrate (~1/

λ) together with its subsequent lag, Tlag(λ) (Eq. [1]). Using parameters for the E.coli strain 

characterized in this study and assuming the environment provides glycolytic substrate at a 

concentration that would support bacterial growth by a factor N (Extended Data Fig. 10a), 

we obtain an optimal glycolytic growth rate λ* for which the time spent on growth and lag 

is balanced and minimized (Extended Data Fig. 10b).

Interestingly, values for the optimal growth rate range from 0.5/hr to 1/hr for a broad range 

nutrient abundances (Extended Data Fig. 10c), coinciding rather well with the range of 

growth rates observed for our strain on different glycolytic carbon sources2. The growth-

adaptation tradeoff may thus be an important factor in the evolutionary selection of growth 

rate on specific substrates.

Although our study was focused on E. coli, we expect a similar tradeoff in other microbes 

because the biochemical structure of central metabolism is highly conserved. For anaerobic 

bacteria, which typically do not grow on gluconeogenic carbon sources, our model would 

predict a lack of tradeoff such that fast growth would be selected for many carbon sources. 

Indeed, the gut anaerobe Bacteroides thetaiotaomicron grows at similarly fast rater on 

several tested carbon sources; see Extended Data Fig. 9e. We also confirmed the existence of 

the tradeoff in the strictly aerobic bacterium Bacillus subtilis and in two wild-type strains of 

the lower eukaryote Saccharomyces cerevisiae (see Extended Data Fig. 9b–d).

Recent studies have identified multiple, conflicting objectives affecting microbial 

phenotypes8–10,20–22, e.g., between growth and motility2,23,24, or between growth and 

survival25–27. The establishment of quantitative relations for these and other pairs of 

conflicting traits can be expected to connect apparently disparate fitness measures into a 

unified framework. Identifying their occurrences and elucidating their origins will be crucial 

for gaining a better understanding of the diversity of microbial phenotypes across conditions 

and across species.

Methods

a, glucose to acetate; b, glucose to pyruvate; c, glucose to malate; d, glucose to succinate.

Strain construction

All E. coli strains used in this study are derived from K-12 NCM372230. B. thetaiotaomicron 
was obtained from the American Type Culture Collection (ATCC 29148).

Construction of Ptet-aceB and Ptet-ppsA strains (NQ1350, NQ1357): The DNA 

region containing the kmr gene, rrnBT and the promoter Ptet of the pKDT Ptet plasmid31 

was PCR amplified with upstream and downstream primers ptet-aceB-insert-F / ptet-aceB-

insert-R and Ptet-ppsA-insert-F / Ptet-ppsA-insert-R respectively and subsequently 
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integrated into the chromosome of E. coli strain NQ309 to replace the chromosomal 

promoters of aceB and ppsA (each from -150 bp untill -1 bp relative to transcriptional start 

site)32. Each of the Ptet-promoter substitutions was then transferred to NQ1358 (NCM3722 

ycaD: Ptet-tetR Δ Kmr)31 backgrounds by phage P1 vir mediated transduction, resulting in 

the strains NQ1350, NQ1357.

Construction of the cra deletion strain (NQ1077): The Δ cra deletion allele in strain 

LJ2801 (E. coli Genetic Stock Center, Yale Univ.), in which a Kmr gene is substituted for the 

cra gene, was transferred to wildtype NCM3722, resulting in the strain NQ1077.

Construction of the PykF, PfkA and ArgA overexpression strains (NQ1543, 
NQ1544, NQ1545): Overexpression plasmids pNT3 from the library from Saka et al.33 

expressing the genes pykF, pfkA and argA respectively from Ptac, were purified and 

transformed into wildtype NCM3722, resulting in the strains NQ1543, NQ1544 and 

NQ1545.

Construction of glpK22 strain (NQ898): To create a strain that grows faster on 

glycerol, the glpK gene in NCM3722 was replaced with the glpK22 variant17 by two P1 

transduction steps. First, the pfkA::km marker was transferred into NCM3722 by phage 

P1vir, prepared from the Keio collection. The resulting strain (NQ632) from the transduction 

cannot utilize mannitol as sole carbon source. Second, phage P1vir prepared from 

CGSC5511 (Lin-43)16 harboring glpK22 was infected into NQ632. Selecting a colony that 

grew on mannitol minimum medium yielded a strain, NQ898, that harbors glpK22 mutation 

in NCM3722 background.

Construction of YCE44: The recipient strain NCM3722 was used for P1 transduction34 

with P1 lysate prepared from the Keio collection to create the fliC::Kan mutant. This mutant 

was then transformed with the Pcp20 plasmid32 to flip out the Kanamycin marker. The 

resultant strain was then used as a recipient strain for P1 transduction with BO3735 (3) P1 

lysate to create the final target strain, YCE44 (NCM3722, fliC::FRT-FRT, glmS::PRNAI-

mCherry1–11-mKate-T1 terminator-FRT Kan FRT::pstS). The donor strain BO37 was 

kindly provided by Somenath Bakshi (Paulsson Lab, Harvard Medical School).

Strains used in this study.—Except for BW25113 wildtype used as a control, all the 

strains used are derived from E. coli K-12 strain NCM372236,37 provided kindly by Sydney 

Kustu lab. See Supplementary Methods for details of strain construction. See Table S1 for 

summary of strains.

Growth of bacterial culture

Growth media: Unless otherwise indicated, we used N+C+ minimal medium38, which 

contains K2SO4 (1 g), K2HPO4.3H2O (17.7 g), KH2PO4 (4.7 g), MgSO4.7H2O (0.1 g), and 

NaCl (2.5 g) in one liter, and is supplemented with 20 mM NH4Cl and the specified carbon 

sources. Carbon sources concentrations were based on the number of carbon atoms in the 

molecule: 20 mM for C6-carbons, 30 mM for C4-carbons and 40 mM for C3-carbons.

Basan et al. Page 8

Nature. Author manuscript; available in PMC 2021 January 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



The base minimal medium used for the anaerobic growth of E. coli NCM3722 consisted of 

KH2PO4 (2 g), K2HPO4 (14.8 g), NaCl (0.58 g), NH4Cl (0.54g), and Na2SO4 (0.07 g), and 

1000x mineral solution (1 mL) per liter. One liter of the 1000x mineral solution contained 

MgCl2 (60 g), CaCl2 (5.5 g), FeSO4.7H2O (5.5 g), MnCl2 (19.7 mg), CoCl2 (23.8 mg), 

Ni2SO4 (26.2 mg), CuCl2 (15.9 mg), (NH4)2MoO4 (23.5 mg), SeO2 (11 mg), ZnSO4 (28.7 

mg), and H3BO4 (6.2 mg) dissolved in 100 mM HCl. For the consistency of comparison, 

aerobic the same medium was used for the aerobic growth of NCM3722 reported in 

Extended Data Fig. 9. Carbon sources were added as indicated.

The medium used for the anaerobic growth of B. thetaiotaomicron was the same as that used 

for the anaerobic growth of E. coli but also included 2 mg cyanocobalamin, 2 mg hemin, and 

0.6 g cysteine per liter. To make the media anoxic, Hungate tubes (16 mm × 125 mm) filled 

with 7 mL medium were shaken at 270 rpm under a 7% CO2, 93% N2 atmosphere 

pressurized to 1.5 atm for 75 min. Cultures were transferred anoxically into Hungate tubes 

with disposable syringes.

Growth measurements: Batch culture aerobic growth was performed in a 37°C water 

bath shaker or air incubator shaking at 250 rpm. The culture volume was at most 10 ml in 25 

mm × 150 mm test tubes. For seed culture, one colony from fresh LB agar plates was 

inoculated into liquid LB and cultured at 37°C with shaking. Cells were then diluted into the 

minimal medium and cultured in 37°C water bath shaker overnight (pre-culture). The 

overnight pre-culture was allowed to grow for at least 3 doublings. Cells from the overnight 

pre-culture was then diluted to OD600 = 0.005–0.025 in identical pre-warmed minimal 

medium, and cultured in 37°C water bath shaker (experimental culture). 200 μl cell culture 

was collected in a Sterna sub-micro cuvette for OD600 measurement using a thermal 

spectrophotometer every half doubling of growth after allowing at least 4 generations of 

growth. The time taken for each sample collection is < 30 sec and had no measureable effect 

on cell growth.

Anaerobic growth was performed similarly with a few exceptions: All growth for B. 
thetaiotaomicron was carried out in Hungate tubes. For seed culture, a single colony from 

Wilkens-Chalgren agar plates were inoculated into anoxic Hungate tubes filled with 7mL 

Wilkens-Chalgren broth and incubated at 37°C with shaking. Cells were then diluted ~300 

fold into pre-culture medium to grow overnight. The next day, cells were diluted to OD600= 

0.01–0.025 for experimental cultures in the same medium as the pre-culture. OD600 

measurements for cells in Hungate tubes were made with a Thermo Genesys 20 modified to 

hold Hungate tubes in place of a cuvette. To keep the culture tube temperature stable, tubes 

were removed from the water bath shakers to measure OD600 and returned within 30 

seconds. The OD600 measured through the Hungate tubes was equivalent to the OD600 

measured through a cuvette in the range of at least 0.04 – 0.5.

Anaerobic growth of E. coli NCM3722 was measured similarly as B. thetaiotaomicron 
except seed cultures were performed aerobically in LB broth before being diluted ~300 fold 

into anoxic Hungate tubes for overnight pre-culture with the same media as the experimental 

culture. Cells were again diluted into fresh Hungate tubes with OD600 = 0.01–0.025 for 

experimental culture and growth was measured with the modified Thermo Genesys 20.
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pH Changes: Because anaerobic growth of E. coli and B. thetaiotaomicron involves 

copious acid production, the pH of cultures were monitored. Typical pH changes for the 

anaerobic growth of NCM3722 were from 7.2 (fresh anoxic medium) to 6.7 (at OD600 ~ 

0.4). For B. thetaiotaomicron, the pH changes were from 7.2 (fresh anoxic medium) to 6.9 

(OD600 ~0.4). The pH for the aerobic growth of NCM3722 stayed around 7.4–7.3 for fresh 

medium and cultures at OD600 ~0.4.

Medium shift and determination of lag times

E. coli growth: Exponentially growing cultures in preshift condition were obtained 

following the protocol outlined above for growth measurements in tubes or flasks for 

metabolomics and proteomics experiments. Cultures were grown up to OD600~0.5 before 

the shift was performed. Cells were then carefully transferred to a filter (previously washed 

with Milli-Q water) to remove preshift medium and washed twice with warmed postshift 

medium (at least twofold the volume of culture transferred to the filter). The filter was then 

moved to a sterile 50ml Greiner tube with warmed postshift medium and cells were gently 

resuspended from the filter by pipetting. Cells were then diluted in warmed postshift 

medium to OD600~0.05 for the purpose of lag time measurements and to OD600~0.5 for the 

purpose of metabolomics and proteomics measurements and incubated. The entire shift was 

typically completed in under 5 minutes. Lag times were determined as follows: After cells 

reached steady-state growth in postshift condition, about three to four OD600 data points 

were fitted with an exponential function. The intersection of the fitted exponential and initial 

postshift OD600 was used to determine the lag time.

To screen combinations of carbon sources using a plate reader, the protocol was slightly 

modified. After being transferred to the filter, cells were washed twice and resuspended 

using warmed medium without a carbon source. Cells were then diluted into the pre-warmed 

Thermo Fisher Scientific Nuclon 96 well bottom flat transparent plates filled with different 

postshift media. These plates covered with a lid were then incubated and culture density was 

monitored using a Tecan Infinite M200 plate reader at 37°C shaking at 880 rpm to measure 

lag times. Lag times were determined by fitting the growth curve over the range, where 

maximal exponential growth rate was reached, by the function OD(t) = ODinitexp[λ(t
−Tlag)], which is an exponential growth curve with growth rate λ that is shifted by the lag 

time Tlag. ODinit is the OD600, measured just after the shift and the fit parameters were the 

growth rate growth rate λ and the lag time Tlag. The fit was performed using the ‘fit’ 

command of Gnuplot, which is an implementation of the nonlinear least-squares (NLLS) 

Marquardt-Levenberg algorithm.

B. subtilis growth: A single colony of B. subtilis 3610 was inoculated in 3 ml LB in the 

morning as a seed culture at 37°C. In the evening, the seed culture was diluted into minimal 

medium containing various carbon sources: 20 mM glucose, 20 mM mannose, 20 mM 

maltose and 40 mM glycerol to ensure exponential growth the next day. The seed culture 

was then diluted to an OD600 of 0.025. When the culture reached an OD600 of 0.2–0.3, the 

cells were centrifuged, washed with prewarmed postshift medium, and shifted to minimal 

medium containing 60 mM Acetate. The OD values were recorded by BioTek Synergy H1 

microplate reader.
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Yeast growth: Overnight seed cultures of S. cerevisiae YPS128 and YPS163 were grown 

in chemically defined synthetic complete media39–41, containing 2 % (w/v) glucose. The 

next day, the seed culture was diluted to an OD600 of 0.025 in synthetic complete medium 

containing various single carbon sources: 2 % (w/v) of glucose, galactose, maltose or 

raffinose and incubated at 30°C. When cultures reached the exponential phase (OD600 of 

0.2–0.4), cells were washed twice with prewarmed postshift medium and shifted to the 

postshift medium containing 2% (w/v) acetate. Growth was followed and OD600 values were 

recorded in a BioTek Synergy H1 microplate reader. The chemically defined synthetic 

complete media used for this yeast carbon switch experiment left out inositol completely to 

ensure that cells were only growing one a single carbon source.

Mother machine methods: We use a microfluidic platform based on the ‘mother 

machine’ design42, to track individual cells during lag phase. We monitor the morphology of 

individual cells as they experience media switch under controlled conditions and use the 

morphological measurements to obtain both growth rate and lag times of individual cells 

(single-cell lag time analysis).

The mother machine microfluidic device, where cells grow and divide in narrow trenches 

and are fed by diffusion by an orthogonal feeding channel, has been used for long term 

tracking of cells42,43 under tightly controlled local conditions. The Paulsson lab has recently 

developed a microfluidic platform for tracking cell lineages along the growth curve (Bakshi, 

S., Leoncini, E., Baker, C., Cañas-Duarte, S., Okumus, B. and Paulsson, J., bioRxiv 

2020.03.27.006403), where a batch culture is connected to a microfluidic chip. We use this 

platform to obtain lag time information at single-cell level (see Extended Data Fig. 3a). Cells 

from YCE44 strain (expressing constitutively mCherry1–11-mKate) were loaded in a 

mother machine chip and were allowed to recover for several hours in N+C+ glucose 

minimal medium before starting imaging. A flask with glucose medium inoculated with 

YCE44 strain was then connected to the microfluidic device, so that the cells in the chip 

share the same environment as the cells in the flask. The platform enables us to monitor the 

OD of the batch culture at high frequency (30 seconds), and to grow the culture under usual 

laboratory conditions (37°C on orbital shaker, 220rpm). This allows us to monitor the 

behavior of the batch culture and individual cells synchronously. To perform the shift to 

acetate, cells in the flask were washed twice with postshift acetate minimal medium and 

resuspended in postshift acetate minimal medium as described in the batch protocol above. 

After the shift, cells kept growing for some time at the same growth rate both in the flask 

and in the microfluidic chip, possibly because some glucose medium was still present in the 

system. After about 60 minutes, glucose ran out and the cells underwent a diauxic shift. We 

kept monitoring cells in the Mother machine over the course of the lag phase, as they 

responded to changes in the batch culture. The experimental protocol is illustrated in 

Extended Data Fig. 3b.

Conditions of cells in the microfluidic chip are not identical to the ones in the flask since, for 

instance, cells under observation are diffusely fed in the growth trenches. We minimized this 

effect by using shorter growth trenches (20μm in length). Also, in order to reduce mixing of 

glucose and acetate media at the time of switch, we introduced a waste line before the 
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microfluidic chip, which allows to divert the flow at the time of switching, to better control 

the switch dynamics for the cells in the mother machine.

Imaging Parameters: Images were acquired using a Nikon Ti inverted microscope 

equipped with a temperature-controlled incubator (OKO lab), an Andor Zyla 4.2 camera, a 

40x Phase 2 Plan Apo (numerical aperture NA 0.95, Nikon), an automated motorized stage 

(Nikon) and Lumencor SpectraX light source. All images were acquired with a 1.5x post-

magnification, and the camera-objective combination gave a 0.11 μm/pixel. Focal drift was 

controlled by the Nikon Perfect Focus System. The timelapse imaging and automatic stage 

movements were controlled by Nikon NIS Elements software. We imaged cells in phase 

contrast and RFP channel. Images were taken every 15 minutes with 200ms exposure in 

order to reduce photobleaching and phototoxicity.

Image analysis pipeline:

Segmentation (FIJI).—After trying few segmentation approaches both using FIJI and 

Python, we opted for using FIJI macro in combination with manual selection of trenches. 

Individual lineages were first selected prior to segmentation, and we discarded trenches with 

double-loading (where cells loaded side-by-side in a growth trench and grow under stressful 

conditions and poor feeding) or which were out of focus. Of a total of 1494 starting 

trenches, 363 did present double loading, 44 trenches got unloaded, 7 mother cells did not 

wake up after the switch to acetate and 2 cells lysed after the switch, 114 cells were 

discarded for various reasons (out of focus, poor growth before the shift the acetate). The 

remaining 964 cells were segmented using the fluorescence channel (RFP) with a custom 

FIJI algorithm based on thresholding, morphological transformations and adjustable 

watershed, designed to work for cells with changing sizes (cells significantly change their 

morphology between glucose and acetate media and along the growth curve). We then 

proceeded to inspect each mask produced, in order to discard trenches with too many visible 

segmentation errors which might affect the single-cell lag time analysis. Of the 964 trenches 

segmented, we selected 685 with near-perfect segmentation.

Analysis (Matlab).—We focused solely on the cells at the top of the growth trenches 

(‘mother cell’), since we can follow these cells for the entire experiment, and we can extract 

single-cell traces for the full duration. The temporal information of the cell data (such as 

length and area) was then compiled into single-cell length traces. We identified cell divisions 

by using a findpeaks package by looking at sudden decreases in cell length but still filtering 

out fluctuations from segmentation mistakes.

From a total of 685 mother cells with near-perfect segmentation, we removed 3 cells that 

had missing measurements along the time trace or got unloaded from the microfluidic 

trench. We checked also for cells with no divisions during experiment or after the switch, for 

filamenting cells (>8μm in length) and cells not recovering after the switch. One cell 

exhibited filamentation and we proceeded with analysis of the remaining 681 cells.

We estimated that the media should flow through the microfluidic chip at around frame 47 

(11.75h from starting of imaging). In order to confirm this determination of the time of the 

switch to acetate medium in the Mother machine microfluidic chip, we used the single-cell 
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instantaneous growth rate. We observed that cells started to slow down growth at frame 47 

(11.75h) and they globally reached a minimum at frame 50 (12.50h). In the rest of the 

analysis, we used frame 47 as the switching time to acetate medium and frame 50 as starting 

time for the lag time computation.

In order to compute the lag time for each individual cell, we needed to compute the growth 

rate at single-cell level. We used the instantaneous growth rates of individual cells 

determined from changes in cell length between adjacent timepoints for each birth-to-

division event (see Extended Data Fig. 3c). The lag time for each individual cell could then 

be computed using the following formula:

Ti
lag t = t − 1

λiACE∫0
t
λi t dt,

where λi(t) is the instantaneous growth rate of cell i at time t, λi
ACE is the maximum growth 

rate that cell i attains in acetate medium. We used the time of minimum growth rate for the 

population (frame 50) as starting point for the computation of the lag time (time 0 in 

previous formula). The lag time from the equation above is a monotonically increasing 

function of time, and it reaches a plateau when the growth rate approaches λi
ACE. This 

plateau corresponds to the single-cell lag time and the resulting distribution is shown in 

Extended Data Fig. 3d (one of the cells was removed from the analysis since it did not wake 

up in acetate medium and the analysis was performed on a total of 680 cells).

Using the mother machine, we follow the initial population of cells loaded into the device. 

However, variability in growth of individual lineages must be considered when comparing 

results from mother machine data at population level with the batch culture, since cells in the 

mother machine are not subjected to the dilution effect as it happens in batch. Assuming that 

the progeny of each cell in the mother machine maintain the same growth characteristics as 

that progenitor cell, and assuming the same initial cell size, we can calculate the expected 

batch dynamics from the single cell data in the mother machine. If we denote with λi(t) the 

growth rate of cell i in the mother machine at time t and λb(t) is the instantaneous growth 

rate of the batch population, then the normalized batch OD600 is given by

ODb t /ODb 0 = exp ∫0
t
λb s ds = 1

N0 ∑i = 1
N0 exp ∫0

t
λi s ds ,

where N0 is the number of cells that we observe in the mother machine and time 0 is the 

time when population attained a minimum in growth rate (frame 50). This equation can be 

used to calculate the batch growth rate λb(t) from single-cell data and to derive the expected 

lag time for the batch culture Tb
lag t :

Tb
lag t = t − 1

λb
ACE log 1

N0 ∑i = 1
N0 exp ∫0

t
λi s ds ,
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where λb
ACE is the maximum of the expected batch growth rate λb(t) in acetate medium and 

the integral is performed to the timepoint where λb t = λb
ACE. When the growth rate reaches 

its steady-state, Tb
lag t  is invariant for different integration times t.

Because the experimental setup includes high-frequency OD600 measurements (30 seconds 

interval) of the connected batch culture flask (see Extended Data Fig. 3e), we could use 

these data to compute the batch lag time and have a direct comparison between the batch 

culture and the single-cell data. Similarly to the previous formula, the lag time for the batch 

culture can be computed using the formula:

Tlag t = t − 1
λACE

log OD t
OD 0

where λACE corresponds to the maximum growth rate in acetate medium and we consider as 

t=0 the time at which the bulk culture halts growth after switch to acetate. The lag time of 

the batch corresponds to the value of Tlag(t) when the growth rate in the flask approaches 

λACE, which corresponds to a plateau for the function Tlag(t).

Batch microscopy

Experimental protocol: NCM3722 wildtype cells were grown in N+C+ glucose medium 

as described above. When the batch culture reached 0.2 OD600, cells were harvested by 

filtering and washed twice in N+C+ acetate medium (same as for all other medium shift 

experiments described above). After the washing step, cells were resuspended in N+C+ 

acetate medium to reach a final OD600 of 0.05. This culture was split in two identical 6 well 

glass bottom plate (cellvis, No 1.5), 5 ml culture in each well. One of the 6 well plate was 

centrifuged at 4800Xg for 3 min and bacterial cells were imaged on a Nikon Ti2 microscope 

(40X air phase contrast objective). The plate was kept stationary on the microscope in a 

37°C incubator. Phase contrast images were taken from multiple fields of views with a frame 

rate of 300 second. The other 6 well plate was taken to a shaker air incubator (kept at 37°C, 

with 220 rpm). This plate was considered as the batch culture control. We measured OD600 

from this plate and the batch lag time (295 min) was calculated from the recorded optical 

density measurements (see Extended Data Fig. 4).

Analysis of the microscopy data: After recording the microscopy data, we performed 

the image analysis using a custom analysis pipeline in Python. Briefly, each time series was 

first corrected for XY drift using the rigid body stack registration algorithm44. After drift 

correction, single cell time traces were segmented using Otsu thresholding. We stopped 

tracing a cell when the cell divided, or the field of view got obstructed by adjacent dividing 

cells, or the cell got dislodged from the glass surface. Cells that we managed to follow for 43 

or higher number of frames are considered for analysis. This threshold was chosen based on 

a systematic analysis of different values for this threshold. We want to establish an upper 

bound on the number of non-growing cells after the shift to acetate. We do not expect non-

growing cells to be overrepresented in transiently present cells that briefly settle on the glass 

bottom and then swim away. These transiently present cells become more important for low 
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values of this threshold. On the other hand, for high values of this threshold we are 

artificially enriching for non-growing cells. The intermediate value for the threshold that we 

chose establishes the most stringent upper bound for the fraction of non-growing cells in the 

population. We segmented 1761 cells, after which we set an arbitrary threshold of 10% 

increase in single cell area to identify cells that showed significant growth. In Extended Data 

Fig. 4, cell traces that crossed the chosen threshold of 10% increase in area are marked in 

blue and the single cell time traces that showed less than 10% increase in area are marked in 

red. Out of 1761 segmented single cell traces, 1500 cell traces crossed the chosen growth 

threshold of 10% increase in area and only 261 single cell traces showed less than 10% 

increase in area over the time frames that we managed to follow them. Our method sets an 

upper bound on the cell population, which did not grow more than 10% (in terms of area) 

within the time frame that we managed to follow them. Most likely, many of these cells 

would have showed significant growth at later time points, which we were unable to measure 

due to experimental limitations. This suggests that the actual population of cells that do not 

resume growth is in reality much smaller than the roughly 14.8% that we have measured. 

Our observation shows that most cells (1500 out of 1761, more than ~85.17%) show 

significant growth and only a small fraction (261 out of 1761, ~14.83%) grew less than 10% 

over the observable timeframe (see Extended Data Fig. 4).

Metabolite mass spectrometry

Sample collection and quenching: For metabolite measurements and 13C labeling 

experiments, an amount proportional to 1 mL*OD600 of the culture broth was transferred 

onto a 0.45 μm pore size Durapore filter (Millipore) and vacuum-filtered. For metabolite 

measurements, the filter with cells was immediately transferred after filtration into 4 mL of 

20°C acetonitrile/methanol/water (2:2:1) to quench metabolism and 200 μL of a uniformly 
13C labeled E. coli metabolite extract were added as internal standard45. 13C labeling 

experiments were performed immediately after vacuum-filtration on the filter, as described 

previously46. Specifically, cells on the filter were first washed with fresh, preheated (37°C) 

acetate M9 medium for 10 sec and 13C labeling was initiated by changing the washing 

solution to preheated (37°C) M9 medium containing uniformly 13C labeled acetate. After 

each labeling step, the filter was transferred into 4 mL of 20°C acetonitrile/methanol/water 

(2:2:1) for quenching. To extract metabolic intermediates, the filter was kept in this solution 

at -20°C for 1 h. Then, the cell debris was removed from the extracts by centrifugation (4°C, 

10,000 rpm, 10 min), the supernatants transferred into new tubes and dried to complete 

dryness.

Sample preparation: For LC/MS analysis, dried extracts were resuspended in 100 μL 

deionized water of which 10 μL were injected into a Waters Acquity UPLC (Waters 

Corporation, Milford, MA) with a Waters Acquity T3 column coupled to a Thermo TSQ 

Quantum Ultra triple quadrupole instrument (Thermo Fisher Scientific) with negative-mode 

electrospray ionization. Compound separation was achieved by a gradient of two mobile 

phases (A) 10 mM tributylamine, 15 mM acetic acid, and 5% (v/v) methanol and (B) 2-

propanol47. Acquisition of mass isotopomer distributions of carbon backbones was done as 

previously described48. Peak integration was performed by an in-house software (Begemann 

and Zamboni, unpublished).
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Kinetic flux estimation: Flux estimation closely followed Yuan et al.49, based on the 

kinetics of incorporation of a 13C acetate isotope. At multiple time points, after cells were 

rapidly switched from unlabeled to isotope-labeled acetate, LC/MS analysis was performed. 

Resulting plots of unlabeled compound versus time were fitted by an exponential decay and 

the flux was calculated as the decay rate multiplied by the intracellular metabolite 

concentration.

Proteomic mass spectrometry

Metabolic labeling with 15N50 provides relative quantitation of unlabeled proteins with 

respect to labeled proteins across growth conditions of interest. Each experimental sample in 

a series is mixed in equal amount with a known labeled standard sample as reference, and 

the relative change of protein expression in the experimental sample is obtained for each 

protein.

Sample collection: For each culture, 1.8 ml of cell culture at OD600=0.4~0.5 was 

collected by centrifugation. The cell pellet was re-suspended in 0.2 ml water and fast frozen 

on dry ice.

Sample preparation: A balanced mixture of the two 15N labeled cell samples (glycolytic 

and gluconeogenic growth conditions by growing cells on glucose and acetate respectively) 

was prepared as a universal reference. 100 μg of the labeled reference proteome was added 

to 100 μg of each experimental sample. This balanced preparation (equal amounts of total 

protein) enables the measurement of proteome mass fraction for each protein. Furthermore, 

the mixed reference is used to ensure the distribution of proteins in the reference is not 

strongly biased by a particular growth condition.

Proteins were precipitated by adding 100% (w/v) trichloroacetic acid (TCA) to 25% final 

concentration. Samples were left to stand on ice for a minimum of 1 hour. The protein 

precipitates were spun down by centrifugation at 13,200 g for 15 min at 4oC. The 

supernatant was removed, the pellets were washed with cold acetone, and dried in a Speed-

Vac concentrator.

The pellets were dissolved in 80 μl 100 mM NH4HCO3 with 5% acetonitrile (ACN). 8 μl of 

50 mM dithiothreitol (DTT) was added to reduce the disulfide bonds before the samples 

were incubated at 65oC for 10 min. Cysteine residues were modified by the addition of 8 μl 

of 100 mM iodoacetamide (IAA) followed by incubation at 30oC for 30 min in the dark. The 

proteolytic digestion was carried out by the addition of 8 μl of 0.1 μg/μl trypsin (Sigma-

Aldrich, St. Louis, MO) with incubation overnight at 37oC. The peptide solutions were 

cleaned by using the PepClean® C-18 spin columns (Pierce, Rockford, IL). After drying in a 

Speed-Vac concentrator, the peptides were dissolved into 10 μL sample buffer (5% ACN and 

0.1% formic acid).

Mass spectrometry: The peptide samples were analyzed on an AB SCIEX TripleTOF® 

5600 system (AB SCIEX, Framingham, MA) coupled to an Eksigent NanoLC Ultra® 

system (Eksigent, Dublin, CA). The samples (2 μL) were injected using an autosampler. The 

samples were first loaded onto a Nano cHiPLC Trap column 200μm × 0.5mm ChromXP 
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C18-CL 3μm 120Å (Eksigent) at a flow rate of 2 μL/min for 10 minutes. The peptides were 

then separated on a Nano cHiPLC column 75μm × 15cm ChromXP C18-CL 3μm 120Å 

(Eksigent) using a 120-min linear gradient of 5–35% ACN in 0.1% formic acid at a flow rate 

of 300 nL/min. MS1 settings: mass range of m/z 400–1250 and accumulation time 0.5 

seconds. MS2 settings: mass range of m/z 100–1800, accumulation time 0.05 seconds, high 

sensitivity mode, charge state 2 to 5, selecting anything over 100 cps, maximal number of 

candidate/cycle 50, and excluding former targets for 12 sec after each occurrence.

Protein identification: The raw mass spectrometry data files generated by the AB SCIEX 

TripleTOF® 5600 system were converted to centroided mzml files, which were searched 

using the X!Tandem search engine (thegpm.org) against the E. coli proteome database 

(Uniprot) to identify proteins. The following parameters were used in the X!Tandem 

searches: parent mass error 50 ppm, fragment mass error 100 ppm. Ions with charge 1, 5, 6, 

or 7 were ignored, as were peptides of less than six residues. Spectral libraries for each each 

condition were built and refined using Spectrast (ISB), only keeping peptides that were 

identified in three or more individual samples, and collapsing individual spectra into a 

consensus spectra for each peptide.

Relative protein quantitation: The raw mass spectrometry data files were converted to 

the .mzML format using conversion tools provided by AB Sciex, and the consensus libraries 

from Spectrast were used to quantify each of the (non-centroided) .mzML files using our in-

house quantification software8 (Massacre). Briefly, the intensity for each peptide is 

integrated over a patch in RT, m/z space that encloses the envelope for the light and heavy 

peaks. After collapsing data in the RT dimension, the light and heavy peaks are fit to a 

multinomial distribution (a function of the chemical formula of each peptide) using a least 

squares Fourier transform convolution routine9, which yields the relative intensity of the 

light and heavy species. The ratio of the non-labeled to labeled peak intensity is obtained for 

each peptide in each sample. A confidence measure for each fit is calculated from a Support 

Vector Machine trained on a large set of user scoring events.

The relative protein level for each protein in each sample is obtained as a ratio by taking the 

weighted median (using the SVM score) of the ratios of all its corresponding peptides.

Uncertainty of individual measurements

Biological replicates show the following typical uncertainties in measured quantities: growth 

rate, ~5%; lag times,~15% for long lag times (>1h). Short lag times (<1h) show higher 

relative variabilities.

Extended Data
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Extended Data Fig. 1: Growth curves for shifts.
a, Shifts from different glycolytic carbons to acetate by filtration. Long lag phases can 

consist of several hours without detectable biomass production. There are large variations in 

the duration of lag phase in the shift to acetate between different preshift carbon sources. 

The duration of lag phase correlates with preshift growth rate. Fast growth before the shift 

results in very long lag times. b-d, Comparisons of lag times from filtration shifts and 

diauxie. b, 1.7mM glucose to 60mM acetate. c, 1.7 mM glucose to 30 mM succinate. d, 1.7 

mM glucose to 40 mM pyruvate. Lag times resulting from filtration shifts and from classical 

diauxie experiments are mostly comparable. In the case of pyruvate (panel c), the presence 

of pyruvate in the medium in addition to glucose adversely affected the growth rate resulting 

in a shorter lag time in the diauxie shift, consistent with our general observation of the 

growth rate dependence of lag times.
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Extended Data Fig. 2: Lag time growth rate relations.
a-f, Inverse of resulting lag times as a function of preshift growth rate in glycolytic 

conditions. Each panel summarizes shifts to a particular postshift medium: a, to acetate; b, 
to pyruvate; c, to succinate; d, to fumarate; e, to lactate; f, to malate. Preshift growth rate 

was modulated via different carbon sources (circles) and via lactose uptake titration 

(squares). Solid lines are non-linear least-squares fits (MATLAB lsqcurvefit function) of lag 

times as a function of preshift growth rates by the relation given by Eq. [1]. Most lag phases 

agree very well with Eq. [1] and only some shifts with short lag times (low growth rates) 

deviate somewhat from the relation given by Eq. [1]. This is partly the result of plotting 

inverse lag times, which amplifies relatively small experimental variations of lag times for 

short lag phases. These fits allow us to estimate 95% confidence intervals for model 

parameters (MATLAB nlparci function), most importantly for the critical growth rates λ0. 

Acetate: λC = (1.10±0.01)/hr, α =0.78±0.10, n =17; pyruvate: λC = (1.12±0.03)/hr, α 
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=0.33±0.07, n =17; succinate: λC = (1.13±0.04)/hr, α =0.33±0.09, n =14; fumarate: λC = 

(1.08±0.02)/hr, α =0.23±0.07, n =5; lactate: λC = (1.09±0.05)/hr, α =0.22±0.15, n =5; 

malate: λC = (1.17±0.09)/hr, α =0.22±0.11, n =5. g, Lag times as a function of steady-state 

growth rates in the postshift medium for different preshift media. Colored solid lines are 

linear regressions of the corresponding colored data points. Carbon source that allow a 

slower growth rates tend to result in longer lag phases, when they are the postshift carbon 

sources. This intuitive correlation has previously been characterized13.
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Extended Data Fig. 3: Single cell behavior during glucose to acetate shift in microfluidics.
a. Schematic of the microfluidic device (mother-machine) in which bacterial cells are grown. 

The cells are loaded in narrow trenches (inset), where they are diffusively fed from the 

media flowing through the feeding lane. As cells grow out of the trenches, they are washed 

away by the media flow. We focused solely on the cells at the bottom of each trench, also 

called ‘mother cells’, since they are kept for the entire duration of the experiment. b. 
Experiment schematic. Cells were recovered in the mother machine using glucose medium, 

and then connected to a flask with culture growing in the same medium28. Media switch was 

performed the same way as for the batch cultures, and the flow was then restarted towards 

the mother machine. We noticed that cells continued growing for a short time after filtration 

both in batch and in the Mother machine, presumably because of residual glucose in the 

system and therefore the experiment most resembles a diauxic shift. c. Instantaneous single-

cell growth rates determined from cell length. Individual cells length traces were used to 

compute instantaneous growth rates. The light blue points and shaded area around them 

represent the population average and standard deviation of the single-cell instantaneous 

growth rates. The orange trace is the instantaneous growth rate trace of an exemplary cell. d. 
Single-cell lag time distribution. Lag time is defined as the time delay in growth after the 

switch as compared to instantaneous growth at the maximum postshift growth rate. The 

instantaneous growth rate traces were used to compute single-cell lag times (see Materials 

and Methods section for details). The red dashed line is the mean of the lag time distribution 

of the tracked cells. Cells tracked in the Mother machine introduce a bias for long lag times, 

because growing cells are washed away instead of being amplified as happens in the batch 

culture. Therefore, we also calculated the expected batch lag time (2.69 h), when taking into 

account growth of cells as described in the Materials and Methods section (gray dashed 

line). e. Growth curve of the batch culture connected to the microfluidic after the shift was 

Basan et al. Page 21

Nature. Author manuscript; available in PMC 2021 January 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



used to determine lag time of the connected batch culture (4.14 h). The quantitative 

agreement between the microfluidics and the batch is not perfect. Nevertheless, the single-

cell distribution of lag times establishes that the response of individual cells after the shift is 

unimodal and that the lag time is not governed by a small sub-population of cells that grows 

immediately on acetate as expected by Kotte et al.12. We see no reason why this population 

of cells should not be present in the microfluidics if it were present in the batch. Our data 

also showed no evidence for the prediction by Kotte et al.12 that most cells would never 

recover and grow after the shift. However, because the cells were grown in a microfluidic 

chip, this experiment cannot definitively rule out that the recovery of growth observed here 

is due to differences in the conditions. To determine if such a non-growing population exists 

in the batch culture, we performed another experiment as described in Extended Data Fig. 4.
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Extended Data Fig. 4: Single cell behavior during glucose to acetate shift via time-lapse 
microscopy of batch culture:
a, Schematic illustration of the experimental protocol (see Supplementary Materials and 

Methods, Batch microscopy). After the medium shift from glucose to acetate, the culture 

was split into two identical 6-well glass bottom plates. One was briefly centrifuged and 

placed into an incubator on a microscope for time-lapse microscopy. The other was placed in 

a shaker incubator as a control, and OD600 was monitored manually. b, Growth curves from 

two biological repeats (circles and squarters), obtained by monitoring OD600 from the 

control 6-well plate after the media switch. The calculated lag time is 295 min, virtually 

identical to the batch culture lag time that we characterized in the shift from glucose to 

acetate (Fig. 1), indicating that the environment of the 6-well plate is almost identical to that 

of the batch culture as far as the lag time is concerned. c, Normalized single-cell-area traces 

from two biological repeats taken with the microscope in the other plate (n=1761, total 

number of trace). We use cell area as a metric for biomass growth. Light blue traces indicate 

cells that crossed an arbitrary 10% area-increase threshold within the time of our observation 

(see Materials and Methods, Batch microscopy). Red traces indicate the cells that did not 

cross the 10% threshold. We observed 1500 cells crossing the threshold, while 261 did not 

cross it -- before they became unobservable, either because they detached from the glass or 

were flooded by other cells. d, Histogram showing the distribution of the time it takes for 

individual cells to increase its area by 10%. e, Plot showing the fractions of cells (y axis) that 

grew in cell area by at least the amount shown on the x axis, relative to their initial size. 

These data show that the vast majority of cells recovers after an initial lag phase, eventually 
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growing on acetate. Despite the relatively short observation window of 5–6 hours, roughly 

equal to the batch lag time (when cells are flooded by other faster growing cells and cannot 

be further observed by microscopy), the data establish that the vast majority of cells exhibits 

substantial growth (see panel e). For example a 10% increase in cell area is easily detectable 

and we observed that 85% of cells crossed this threshold. We note that cells that crossed this 

threshold grew continuously over the course of observation and exhibited a single-cell 

growth curve and lag time (seen panels c & d), similar to the batch lag time. This indicates 

that no more than 15% of cells were completely growth arrested after the shift to actetate, 

even during this very limited window of observation. This shows that in the lag phases that 

we study here, the dormant subpopulations proposed previously12 played a negligible role 

for determining lag times. (As an example, even if we assume the ~15% non-growing cells 

observed never ever recover growing again, they would only contribute ~21 minutes to the 

total lag time of 295 minutes).
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Extended Data Fig. 5: Absolute and relative concentrations of key metabolites in a shift from 
glucose to acetate.
a, Intracellular concentration of F6P the 3 biological repeats of the shift from glucose to 

acetate presented in Fig. 2 of the main text. The dashed line represents the steady state level 

of F6P for growth on acetate. The concentration of F6P is low compared to Michaelis 

constants of key enzymes Pgi and TktA, which catalyze the first reactions from F6P for the 

production of essential precursors for biomass production E4P and R5P. b, Intracellular 

concentration of PEP over the course of lag phase for a shift from glucose to acetate (red 

symbols) and a shift from mannose to acetate (green symbols). Steady-state concentrations 

on glucose and acetate are indicated by the dashed lines. PEP is a key repressor of glycolytic 

flux by inhibiting Pfk29. The concentration of PEP remained low throughout lag phase, even 

compared to the steady-state concentration on glucose (dotted line), where Pfk is very active. 

c, Time courses of FBP and PEP concentrations throughout lag phase in a shift from glucose 

to acetate. Concentrations of FBP and PEP were normalized by their steady-state 

concentration during exponential growth on acetate. FBP drops from its steady-state level 

for growth on glucose, which is more than 100-fold higher than the steady-state level on 

acetate (normalized to 1). PEP remains at very low concentrations and slowly builds up 

together with FBP 1.5 h after the shift. In the framework of our model, we attribute this 

phase to the slow increase in gluconeogenic enzymes from protein synthesis.
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Extended Data Fig. 6: Proteomics characterization of lag phase dynamics.
a-f, Gluconeogenic enzymes. Relative levels of gluconeogenic enzymes at different times 

during lag phase from glucose to acetate (ace t0: immediately after the shift, ace t6: exiting 

lag phase, 6 hours after the shift) and glucose to pyruvate (pyr t0: immediately after the shift, 

pyr t1: exiting lag phase, 1 hour after the shift) and in different steady state conditions 

glucose (glu), pyruvate (pyr), acetate (ace). a, isocitrate lyase (AceA); b, malate synthase 

(AceB); c, fructose-1,6-bisphosphatase (Fbp); d, malate dehydrogenase (MaeB); e, 
phosphoenolpyruvate carboxykinase (Pck); f, PEP synthase (Pps). g-j, Glycolytic enzymes. 

Relative levels of irreversible glycolytic enzymes at different times during lag phase from 

glucose to acetate (ace t0: immediately after the shift, ace t6: exiting lag phase, 6 hours after 

the shift) and glucose to pyruvate (pyr t0: immediately after the shift, pyr t1: exiting lag 

phase, 1 hour after the shift) and in different steady state conditions glucose (glu), pyruvate 

(pyr), acetate (ace). g, 6-phosphofructokinase I (PfkA); h, 6-phosphofructokinase II (PfkB); 
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i, PEP carboxylase (Ppc); j, pyruvate kinase I (PykF). The black dots indicate the weighted 

median value, derived from multiple measurements, calculated by using as weights the 

confidence of a sample’s quality, as derived by a support vector model, which was set up to 

classify samples into “high quality” or “low quality”, using a training set of several thousand 

samples that were classified by hand15. The weights’ range is [0,1] and can be found as a 

separate attribute (named svmPred) for each sample in the accompanying source file. The 

grey dots indicate individual measurements and the size of the dot indicates the confidence 

for this particular measurement (the larger the dot the higher the confidence that this 

measurement is of high quality). The size of the dot was defined using the “MarkerSize” 

attribute of the “plot” function in Matlab. In particular, the dot size was calculated as the 

confidence value of the measurement (svmPred attribute in the accompanying file) times 11 

(this number was used to allow clearer plotting of the dots and enhancement of the visual 

inspection capabilities). If the product of this multiplication for a certain measurement was 

below a certain minimum value (in our case, 1.8), the size of the dot was set to be this 

minimum, as below that value the dot was not visible with the naked eye.
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Extended Data Fig. 7: Illustration of sequential flux limitation model and tradeoff between 
growth and lag.
a, Intuitively, in our model, lag phases emerge because the gluconeogenic flux JGNG (blue 

arrow) limits protein synthesis (green arrow), which includes the synthesis of gluconeogenic 

enzymes. Therefore, the production rate of limiting gluconeogenesis is proportional to the 

gluconeogenic flux

d
dtϕGNG, lower ∝ JGNG . [a]

The gluconeogenic flux JGNG, in turn, depends on limiting metabolite concentrations. b, To 

understand the dynamic scaling of these metabolite concentrations, based on the 

biochemistry of the pathway, we describe gluconeogenesis by a coarse-grained model 

comprising two irreversible steps (upper and lower gluconeogenesis), connected by 
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reversible reactions. Upper gluconeogenesis does not appear to be limited by its enzyme 

(Fbp), whose abundance changed only moderately throughout the lag phase and across 

growth conditions (see Extended Data Fig. 6 & proteomics data from Hui et al3). We thus 

assume the flux through upper gluconeogenesis (top blue arrows) to be limited by the 

concentration of its substrate, FBP, i,e, JGNG ∝ [FBP]. The latter is connected to the output 

of lower gluconeogenesis, PEP, by the realtion [FBP] ∝ [PEP]2 due to the stoichiometry of 

the reversible reactions (grey arrows). The enzymes of lower gluconeogenesis do appear to 

be limiting based on previously measured proteomics data3 (Fig. 3a, Extended Data Fig. 6). 

We assume that lag phase is dominated by a quasi-stationary phase, where transcriptional 

regulation can be considered constant and therefore the abundances of gluconeogenic 

enzymes change throughout the lag phase in proportion to each other, characterized by 

ϕGNG, lower. We assume that the abundances of gluconeogenic enzymes change in proportion 

to each other throughout the lag phase, characterized by ϕGNG, lower. This assumption is 

quite plausible as the expression of gluconeogenic enzymes is primarily controlled by a 

common transcription factor Cra. In support of this assumption, we note that for different 

preshift (steady-state) conditions, the abundances of different gluconeogenic enzymes are 

also proportional to each other as they show the same linear growth-rate dependence (Fig. 

3a). The flux through lower gluconeogenesis (bottom blue arrow), which is proportional to 

[PEP], then is governed by ϕGNG, lower. Thus,[PEP] ∝ ϕGNG, lower, resulting in

JGNG ∝ ϕGNG, lower
2 . [b]

c, At fast glycolytic growth (top), glycolytic enzymes are highly abundant (thick red arrows), 

whereas gluconeogenic enzymes are low (thin green arrows). Enzyme composition therefore 

strongly favors glycolysis, which result in severe depletion of metabolites in 

gluconeogenesis after the shift to gluconeogenic conditions and a long lag phase. On the 

other hand, for slow glycolytic growth (bottom), the ratio of glycolytic and gluconeogenic 

enzymes is much more balanced (red and green arrows of similar thickness), resulting in an 

improved carbon supply to gluconeogenesis after shift and hence a shorter lag.
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Extended Data Fig. 8: Preshift overexpression of glycolytic enzymes.
Lag times from glucose to a, acetate, b, pyruvate, c, malate, d, succinate, with preshift 

overexpression of glycolytic enzymes PykF (strain NQ1543) or Pfk (strain NQ1544), 

compared to the preshift overexpression of a control enzyme ArgA (strain NQ1545), with 

the overexpressed protein all harbored on the same plasmid (pNT3) from the tac promoter. 

Lines and error bars indicate mean and standard deviation (n=4). Lag times more than 

doubled from preshift overexpression of Pfk or PykF. These results indicate that residual 

activity of glycolytic enzymes plays an important role in lag phase despite the existence of 

allosteric regulation of these glycolytic enzymes. Consistent with this picture, the 

concentration of PEP, a key regulatory metabolite and repressor of glycolytic flux, remained 

low throughout lag phase, even compared to steady-state levels on glycolytic carbons (see 

Extended Data Fig. 5).
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Extended Data Fig. 9: Improved growth of Cra knockout and tradeoff for other microbes.
a, Growth rates of Cra knockout on glycoltic carbon sources. Growth rates on several slow 

glycolytic carbon sources are significantly improved in the Cra knockout as compared to 

WT. The Cra knockout expresses very low levels of most gluconeogenic enzymes and 

glycolytic enzymes are derepressed. As a consequence, a Cra knockout strain cannot grow 

on most gluconeogenic carbon sources. b-d, Growth-adaptation tradeoff in wildtype yeast 

strains and B. subtilis. We grew two different wildtype yeast strains (YPS163 and YPS128), 

as well as a B. subtilis strain at different preshift growth rates, before shifting them to acetate 

(panel b, c) and fumarate (panel d) minimal medium respectively. After the shift, culture 

density OD600 was monitored as a function of time. Data points indicate the mean and error 

bars are the standard deviation from 3 biological replicates (n=3). The lag time of the growth 

curves increases with increasing preshift growth rate (given in the legend), suggesting a 

tradeoff similar to that characterized for E. coli (main text, Fig. 1). e, Growth comparison 

between E. coli and B. thetaiotaomicron, an obligatory anaerobe. The growth rate of E. coli 
NCM3722 on a number of common carbon substrates from the ‘top’ (i.e., glycolysis and 
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pentosephosphate pathways) exhibit a range of values from 0.9/h down to 0.5/h (blue bars). 

The growth rates of B. thetaiotaomicron on the same substrates in anaerobic condition (red 

bars) are all within 10% of each other. For comparison, we also show the growth rates of 

NCM3722 on the same substrates in anaerobic condition (green bars). They are largely 

correlated with their aerobic growth rates, with the fast ones comparable to that of B. 
thetaiotaomicron (~0.6/h) and the slow ones at about 1/5 of the fast ones. Saturating amounts 

of substrates were used, 15mM in all cases except for E. coli on mannose where 40mM was 

used.
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Extended Data Fig. 10: Optimal growth rate as a function of expected abundance of the 
substrate in the environment.
a, Cell initially grow by a factor N (reflecting the expected carbon abundance) for time 

Tgrowth at the growth rate λ. When carbon runs out the cells enter lag phase, chartacterized 

by the lag time Tlag. After the lag time, cells again grow exponentially, e.g. on a 

fermentation product, acetate, at growth rate λace. b, The optimal strategy for the cell 

minimizes the total time before postshift exponential growth (resulting in the same cell 

number, but starting growth first). The total time before postshift growth resumes is the sum 

of the growth time Tgrowth =log(N)/λ and the lag time, given by Eq. [1] of the main text, 

Tlag=1/[α(λ0−λ)], both of which are influenced by the growth rate λ. The optimal growth 

rate λ* minimizes this total time and the expression for λ* is given by

λ* = λ0
α ln N

1 + α ln N .

c, For the strain NCM3722, the expression for the optimal growth rate λ* given Eq. [6] of 

the main text is plotted versus the expected carbon abundance, given by N. The value of α 
was determined from the fit in Fig. 1d, to the majority of glycolytic carbon sources (black 

line). Interestingly, for realistic carbon abundances, the range of optimal growth rates spans 
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precisely the relatively narrow range of growth rates on naturally occurring carbon sources, 

observed for the wild-type E. coli strain NCM37222, e.g. glucose (0.95/hr), mannitol (0.90/

hr), maltose (0.79/hr), glycerol (0.70/hr), galactose (0.59/hr), mannose (0.49/hr). The 

optimal growth rate only substantially drops below 0.5/hr, when the expected preshift carbon 

abundance allows for less than a single doubling N < 2, and only surpasses 1.0/hr at 

enormous, unrealistically high carbon abundances N > 1012, explaining the absence of 

naturally occurring carbon sources that result in such growth rates.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1: Phenomenological characterization of lag phase. a,
Schematic illustration of a typical growth curve. Lag time is defined as the time lost in the 

transition as compared to an instantaneous switch to final steady-state growth. b, Illustration 

of the medium transfer protocol. c, Lag times after shifts from different glycolytic carbon 

sources (circles) and different lactose uptake rates (strain NQ381 with titrable lactose uptake 

system, squares) to acetate minimal medium. The preshift glycolytic carbon sources from 

fast growth rates to slow growth rates are glucose 6-P, glucose, mannitol, maltose, glycerol, 

galactose, mannose, which are all readily metabolized by wildtype E. coli, yet result in very 

different growth rates. The solid line represents the empirical relation given by Eq. [1]. d, 
Inverse lag times for shifts from different glycolytic to gluconeogenic carbon sources, 

plotted against preshift growth rates. Colors indicates shift to the postshift carbon sources 

given in the insets; different circles of the same color indicate different preshift carbon 

sources, while squares indicate the use of titrable lactose uptake in preshift. Lines are non-

linear least-mean squares fits of Eq. [1] to data of lag time as a function of preshift growth 

rate for the shifts to acetate (magenta line), succinate and pyruvate (black line) from our 

batch culture experiments (Table S2), assuming λC ≈1.1/hr. For the shift to malate, we 

performed an additional fit, again assuming λC ≈1.1/hr (green line). Non-linear least-mean 

squares fits of Eq. [1] to individual shifts are presented in Extended Data Fig. 2 and the 

resulting 95%-confidence intervals of paramters are as follows: Acetate: λC =(1.10±0.01)∕hr, 

α =0.78±0.10, n =17; pyruvate:λC =(1.12±0.03)∕hr, α =0.33±0.07, n =17; succinate: λC 

=(1.13±0.04)∕hr, α =0.33±0.09 , n =14; fumarate: λC =(1.08±0.02)∕hr, α =0.23±0.07, n =5; 

lactate: λC =(1.09±0.05)∕hr, α =0.22±0.15, n =5; malate: λC =(1.17±0.09)∕hr, α =0.22±0.11 , 

n =5. The mean critical growth rate and standard deviation resulting from the individual fits 

are given by λC =(1.11±0.03)∕hr.
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Fig. 2: Metabolic characterization of lag phase during shifts to acetate. a,
Normalized cell density during lag phase of the three shifts from glucose to acetate used for 

metabolite measurements (triangles) and flux measurements (squares, circles). b, Temporal 

profiles of metabolites, glucose 6-P (G6P), fructose-1–6-bisP (FBP), malate, citrate, 

throughout lag phase from glucose to acetate normalized by their respective values in 

postshift medium during exponential steady-state growth (dashed line). Steady-state 

metabolite concentrations during exponential growth were measured in seperate experiments 

by taking three metabolite measurements throughout the exponential growth curve for two 

biological repeats. The metabolite concentrations during the lag phase were then normalized 

by these steady-state concentrations. Time zero values are measured preshift levels. For FBP 

this value falls outside the scale (approximately 157). c, Fluxes to different metabolites (see 

panel b) at three time points during the lag phase from glucose to acetate, as a percentage of 

the steady-state flux during growth on acetate (measured in separate steady-state 
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experiments for two biological repeats). Error bars are standard deviations from biological 

repeats. d, Schematic illustration of glycolysis / gluconeogenesis. The large fading blue 

arrow indicates the directionality of gluconeogenesis and illustrates the decrease in 

normalized fluxes and metabolite pools. Green arrows indicate irreversible gluconeogenic 

reactions catalyzed by gluconeogenic enzymes and red arrows indicate the residual activity 

of glycolytic enzymes acting in the opposite direction. Erythrose-4-P (E4P) and ribose-5-P 

(R5P) fructose 6-P (F6P) are derived from fructose 6-P (F6P)/G6P and are required for the 

biosynthesis of specific amino acids and nucleotides. e, The addition of three non-

degradable amino acids, Tyrosine (Tyr), Tryptophan (Trp), Phenylalanine (Phe), derived 

from upper glycolysis to the postshift growth medium substantially reduces lag times in 

shifts to acetate that we tested from preshift growth on glucose and on glucose 6-P.
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Fig. 3: Tests of model predictions.
a, Relative abundance of gluconeogenic enzymes at different growth rates during steady-

state exponential growth in glycolytic conditions; data from Hui et al.3. Enzymes are 

isocitrate lyase (AceA), malate synthase A (AceB), phosphoenolpyruvate synthetase (PpsA), 

malate dehydrogenase (maeB), and phosphoenolpyruvate carboxykinase (PckA). The lines 

are linear fits assuming a characteristic growth rate λC at which lower gluconeogenic 

enzymes are not expressed anymore, given by λC≈1.1∕hr, identical to the critical growth rate 

at which lag times diverge λ0≈1.1/hr, determined in Fig. 1c. b, Lag times during shifts from 

various carbon sources to gluconeogenic carbon sources. Magenta lines and symbols 

represent shifts to acetate for WT cells; data shown in Fig. 1c &1d. Bold red symbols 

represent reduced lag time for shifts to acetate by a strain with preshift expression of 

enzymes of the glyoxylate shunt, AceBA. The data fall on the black line, which is the 

trendline of lag time for shifts by the WT to other gluconeogenic carbon sources shown in 

Fig. 1d. As an example, the black symbols represent shifts to succinate. c, Inverse lag times 

for shifts from glucose to pyruvate, plotted against different preshift induction levels of 
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phosphoenolpyruvate synthetase (PpsA), for a strain harboring titratable PpsA expression. d, 
Growth of strain NQ898 harboring the glycerol uptake mutant glpK22 (red)17 is faster than 

the wildtype strain NCM3722 in preshift glycerol medium (0.82/hr vs 0.68/hr), but the lag 

time (as defined in Fig. 1b) upon abrupt shift to acetate at time t = 0 is substantially longer 

(5.1hr vs. 1.9hr). For comparison, the transition of wildtype strain grown in preshift glucose 

medium (0.87/hr) to acetate is shown in grey. The dashed lines indicate the steady state 

growth rates of the two strains in acetate, both about 0.45/hr.
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