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The transcriptional response to exogenously supplied nitric oxide in Saccharomyces cerevisiae was modeled using an
integrated framework of Bayesian network learning and experimental feedback. A Bayesian network learning algorithm was
used to generate network models of transcriptional output, followed by model verification and revision through
experimentation. Using this framework, we generated a network model of the yeast transcriptional response to nitric oxide
and a panel of other environmental signals. We discovered two environmental triggers, the diauxic shift and glucose
repression, that affected the observed transcriptional profile. The computational method predicted the transcriptional control
of yeast flavohemoglobin YHB1 by glucose repression, which was subsequently experimentally verified. A freely available
software application, ExpressionNet, was developed to derive Bayesian network models from a combination of gene
expression profile clusters, genetic information and experimental conditions.
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INTRODUCTION
Nitric oxide (NO?) is a critical mediator of the cell’s innate

immune response that defends against infection caused by a wide

range of pathogens including fungi, bacteria, protozoan parasites

and viruses [1–5]. Thus, a critical biological counter-measure

would include the ability to detoxify or limit the damage from

NO?. However, the mechanism by which pathogens defend

against nitric oxide is not well understood. Recently, genomic

surveys of NO? triggered transcriptional responses have been

carried out in several fungal organisms (S. cerevisiae, H. capsulatum,

and C. albicans) using microarrays [6–8]. In S. cerevisiae, five genes

were identified as the NO? detoxification gene cluster, which are

activated through the transcription factor Fzf1p when exposed to

exogenously supplied NO?. The five genes are the yeast

flavohemoglobin YHB1, whose E. coli homolog has been shown

to convert NO? to nitrate as a potential mechanism for NO?

detoxification, a putative sulfite pump SSU1, and three additional

uncharacterized open reading frames [8].

In addition to the detoxification gene cluster activated through

Fzf1p, the microarray data also revealed alterations of mRNA

abundance for many other genes during NO? treatment [8]

including genes involved in the yeast environmental stress response

[9]. The pattern of yeast expression profiles was further

compounded by the usage of a variety of genetic mutants and

conditions that led to a complex and overlapping series of cellular

responses. These include large variations in cell culture density,

carbon source, and genotypes. Although a preliminary analysis by

simple hierarchical clustering was sufficient to identify the NO?

detoxification cluster, we sought to leverage the complexity of the

dataset to further dissect additional regulatory mechanisms

operating in these experiments.

Bayesian belief networks, a form of graphical probabilistic

models encoding dependence relationships among interacting

variables as probability distributions, offer a promising computa-

tional strategy for elucidating hidden inputs into nitric oxide

regulation [10,11]. A Bayesian network uses nodes to model

variables of interest such as gene activation or environmental

perturbation. The relationship among variables, such as NO?

treatment-triggered gene activation, can be modeled as condition-

al probability distributions. Given a set of observed data such as

a microarray dataset, a probabilistic score can be assigned to each

network model. The best models can be derived automatically

from experimental data using a network learning procedure

[10,11], and the derived model can be viewed as an interpretation

for the biological dataset. Similar Bayesian network-driven

approaches have been successfully applied to model signaling

networks in primary human immune system cells, identify

regulatory modules and their condition-specific regulators in S.

cerevisiae, decode the combinatorial code underlying gene expres-

sion, and infer gene regulatory networks by using expression levels

of individual genes as network nodes [12–19].
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In addition to modeling multivariable systems, a Bayesian

network provides a natural platform for incorporating prior

biological knowledge. For example, the knowledge of stress-

inducible transcriptional responses can help to explain part of the

NO? triggered transcription profile. A Bayesian network can

incorporate such prior biological knowledge by encoding biological

variables such as the presence of stress as network nodes and known

biological relationships as probability distributions [20].

The goal of this work was to combine prior biological

knowledge, computational modeling, and experimental feedback

in an iterative cycle of hypothesis generation and testing to build

a network model to decode the relationship of NO?, the

transcription factor Fzf1p and other environmental signals using

the genome-wide transcriptional output as measured by micro-

arrays. Rather than simply recapitulate what was already known,

we sought to develop and use a Bayesian network-driven approach

to uncover previously unrecognized mechanisms of control

operating within this system. As a result, we discovered two

previously unappreciated environmental variables that affect

regulation of YHB1 (flavohemoglobin) mRNA abundance.

Through additional experiments, we showed that flavohemoglobin

expression, the primary effector of nitric oxide detoxification, is

further regulated by glucose repression. Therefore, YHB1

transcription cannot be viewed as simply constitutive, or even

a switch solely controlled by nitric oxide exposure, but rather as

receiving a combinatorial input from many signals. As part of this

process, we have produced a freely available software package,

ExpressionNet, for exploring complex datasets using Bayesian

networks.

MATERIALS AND METHODS

Microarray experiments
E1: NO? perturbation Log phase (OD600 1.0) strains were

treated with NO? released from 1mM DPTA-NONOate

(DBY7283, BY4741 fzf1D) and NO? gas bubbling through the

media for 10 sec (DBY7283). mRNA isolated from treated

(DPTA-NONOate exposure for 10, 20, 40, 80, 120 min;

120 min after gas bubbling) or untreated culture (0 min) was

used to generate the Cy5 or Cy3 cDNA probes.

E2: Glucose to galactose I DBY7283 strains with plasmids

containing either GAL1p:LacZ or GAL1p:FZF1 were grown to

OD600 1.0 in SD-URA, washed by water, then transferred to

SGal-URA for continuing growth. mRNA isolated from treated (8,

12 hr after the transfer) or untreated culture (0 hr) was used to

generate the Cy5 or Cy3 cDNA probes.

E3: Glucose to galactose II Stationary phase (3-day-old

saturated glucose culture) DBY7283 and S288c fzf1D strains were

inoculated at OD600 0.5 in SCD, grown for 2 hr, washed by water,

then transferred to SCGal for continuing growth. Total RNA

isolated from treated (4, 8, 12 hr after the transfer) or untreated

cultures (0 hr) was used to generate the Cy5 or Cy3 cDNA probes.

E4: Raffinose to galactose DBY7283 and JZY100

(DBY7283, FZF1 deleted with KanMX) strains were grown to

early log phase in SC raffinose. Galactose was added into the

media to a final concentration of 2% for continuing growth. Since

galactose is the preferred substrate and raffinose is not known to

interfere with induction of the galactose pathway, there is no need

to remove the remaining raffinose. mRNA isolated from sample (0,

30, 60, 120, 240 min after adding galactose) or reference

(DBY7283; combined 0 and 240 min) culture was used to

generate the Cy5 or Cy3 cDNA probes.

Differentially labeled cDNA probes were hybridized to yeast

cDNA microarrays containing PCR probes of all yeast genes [22].

Microarray production, RNA isolation, cDNA synthesis, amino-

allyl dye coupling, hybridization and data collection were

performed as previously described [22]. Microarray data were

normalized using the NOMAD database (ucsf-nomad.sourcefor-

ge.net). Spots flagged by GenePixH Pro v3 (Axon Instruments)

were excluded from analysis. Additional spots excluded from the

analysis were both Cy3 and Cy5 signal intensities less than 2 times

the background (E1, E2) and with feature intensity less than the

background (E3, E4). The E4 dataset was transformed (i.e.

normalized) by its 0 min data point. Complete microarray data

are available at NCBI Gene expression omnibus database.

Data source and preprocessing for network learning
Initial model The microarray data included those from

experiments E1 or E2 (19 arrays) and the published dataset of

yeast treated with H2O2 or menadione over 0 to 160 min (21

arrays) [9]. A subset of 130 genes with greater than two fold

change in three or more data points in the E1 and E2 experiments

were selected. The genes were clustered using data from

experiments E1 and E2 [24]. Five major gene clusters were

identified using correlation cutoff 0.75 with subsequent manual

adjustment: Fzf1p early response, Fzf1p late response, ESR,

oxidative phosphorylation, and galactose response clusters

(Table 1). The manual adjustment consisted of combining

galactose up-regulation and down-regulation clusters to the

galactose response cluster and splitting the Fzf1p response

cluster into Fzf1p early and late response clusters based on their

initial response times (5–15 min vs. 15–45 min).

Second model The microarray data included those in the

initial modeling plus array data generated from experiment E3

and a published dataset monitoring the transcriptional response of

the diauxic shift [22]. The 130 genes selected in the initial

modeling were re-clustered using all the above microarray data

[24]. Five major gene clusters were identified using cutoff 0.6 with

subsequent manual adjustments: ESR, Fzf1p response, YHB1,

galactose utilization and energy clusters (Table 2). The energy

cluster included genes in the previously designated oxidative

phosphorylation cluster and genes in the glucose utilization

pathway that were previously in the galactose response cluster.

After obtaining the new data of experiment E3, we realized the

crucial separation within the Fzf1p response cluster was that

between YHB1 and the rest of the cluster. Therefore, the Fzf1p

response clusters were not separated into early and late response

clusters as in the initial model. The manual adjustments consisted

of separating YHB1 from the Fzf1p response cluster and forming

a separate cluster containing only YHB1.

Third model The microarray data included those in the

second model as well as those generated from experiment E4.

Gene cluster nodes were identical to those defined in the second

model.

Node states and the learning datasets
The discrete states for network nodes in Table 1–3 were defined as

the following: Node states for ‘‘NO treatment’’ were defined as the

time intervals that best delineated the dynamics of the gene

expression response following the treatment. The intervals were as

follows: 0–5 minutes (very little transcriptional response), 5–

15 minutes (increased transcriptional response), 15–45 minutes

(sustained transcriptional changes), and .45 minutes (decreased

transcriptional response).

States for the gene expression nodes were defined as up-

regulation, down-regulation and unchanged expression, using a 2-

fold threshold to convert microarray readouts to discrete values.

Nitric Oxide Response Network
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Node states for ‘‘galactose’’ were defined as ‘‘utilized’’ and ‘‘not

utilized’’ depending on whether the substrate was introduced into

the media. Similar states were defined for the node ‘‘oxidative

agent’’.

Nodes for ‘‘diauxic shift’’ were defined with three states: aerobic

respiration, anaerobic growth and unchanged metabolism;

depending on the presence and direction of the shift. Similar

node states were defined for the node ‘‘glucose derepression’’.

Table 1. Network nodes defined in the initial nitric oxide response model.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

NODE TYPE NODE NAME NODE DEFINITION NODE STATES

gene cluster node Fzf1p early response change in transcriptional response up-regulation;

Fzf1p late response down-regulation;

ESR unchanged expression

oxidative phosphorylation

galactose response

experimental perturbation node nitric oxide duration of nitric oxide treatment 0–5 min;

5–15 min;

15–45 min;

.45 min

galactose galactose utilization utilized;

not utilized

oxidative agent exposure to common oxidative agents exposed;

not exposed

genotype node FZF1 genotype genotype of FZF1 wild type;

deletion;

over-expression

protein function node Fzf1p activity the activity of the transcription factor Fzf1p active;

inactive

doi:10.1371/journal.pone.0000094.t001..
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Table 2. Network nodes defined in the second nitric oxide response model.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

NODE TYPE NODE LABEL NODE DEFINITION NODE STATES

gene cluster node YHB1 change in transcriptional response up-regulation;

Fzf1p response down-regulation;

ESR unchanged expression

energy

galactose utilization

experimental perturbation node nitric oxide duration of nitric oxide treatment 0–5 min;

5–15 min;

15–45 min;

.45 min

galactose galactose utilization utilized;

not utilized

oxidative agent exposure to common oxidative agents exposed;

not exposed

diauxic shift change of metabolism between
anaerobic growth and aerobic respiration

aerobic respiration;

anaerobic growth;

unchanged metabolism

genotype node FZF1 genotype genotype of FZF1 wild type;

deletion;

over-expression

protein function node Fzf1p activity the activity of the transcription factor Fzf1p active;

inactive

doi:10.1371/journal.pone.0000094.t002..
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The learning datasets were compiled using 1) average gene

expression fold change of each gene cluster converted into discrete

values using a 2-fold threshold, and 2) manual annotation of the

remaining values (experimental perturbations, FZF1 genotype and

Fzf1p activity) based on the experimental conditions and strain

genotypes (missing values were allowed). The complete learning

datasets and gene membership of each cluster are available at

http://derisilab.ucsf.edu/network.

Bayesian network learning and software

implementation
A software application, ExpressionNet, was developed to perform

Bayesian network learning. We used a Bayesian scoring function

to assign a probability score for a network model. The clique-tree

technique and the variable-elimination technique were implemen-

ted for efficient inference and learning [11,20,25]. The learning

process started with random edge combinations, gradually

improving the network topology using a greedy search strategy

until the score reached a local maximum. The greedy search was

iterated to generate a collection of high scoring networks. High

scoring networks were subjected to small topology changes by

single edge addition, deletion or reversion to expand the collection.

Learning was repeated using two different prior probability

distributions of the network parameters (priors), both set as

a Dirichlet distribution: Dir(1,1, …, 1) and Dir(P0?a, P0?a, … , P0?a
), where P0 is a uniform distribution over the probability space of

each CPD and a = 5. Networks scoring within a percentile cutoff

(15% for the initial and second models, 25% for the third model)

using both priors were used to construct average Bayesian network

models. We defined all environmental and genotype nodes as root

nodes and all gene cluster nodes as leaf nodes. Missing values were

handled using a Structural Expectation-Maximization algorithm

[26]. ExpressionNet is available at http://expressionnet.source-

forge.net/. The derived network models and probability param-

eters are available at http://derisilab.ucsf.edu/network.

Flow cytometry
The YHB1-GFP strain is a C-terminus fusion of GFP obtained

from a genome-wide tagged library [27]. The culture was grown to

early log phase in synthetic media with 2% glucose, raffinose or

galactose, washed with PBS, then transferred to synthetic medium

with 2% glucose (from raffinose or galactose), or raffinose or

galactose (from glucose). The cell fluorescence intensities were

measured on a Becton Dickinson LSR II flow cytometer at 0, 2,

4.5, 6, 8.25, and 12 hr after the sugar was changed. For each time

point, a minimum of 100,000 cells were measured to derive the

mean GFP intensity. TUP1 was deleted with KanMX in the

YHB1-GFP strain. Identical experiments were performed as

described earlier. Cell fluorescence intensities were measured at

0, 2, 4, 6, and 18 hr after the sugar was changed.

RESULTS

Algorithms
Our approach iterated through four steps: data collection and

preprocessing, hypothesis generation, model evaluation and

experimental feedback (Figure 1).

Table 3. Network nodes defined in the third nitric oxide response model.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

NODE TYPE NODE LABEL NODE DEFINITION NODE STATES

gene cluster node YHB1 change in transcriptional response up-regulation;

Fzf1p response down-regulation;

ESR unchanged expression

energy

galactose utilization

experimental perturbation node nitric oxide duration of nitric oxide treatment 0–5 min;

5–15 min;

15–45 min;

.45 min

galactose galactose utilization utilized;

not utilized

oxidative agent exposure to common oxidative agents exposed;

not exposed

diauxic shift change of metabolism between anaerobic
growth and aerobic respiration

aerobic respiration;

anaerobic growth;

unchanged metabolism

glucose derepression glucose repression or derepression effect glucose repression;

glucose derepression;

no change

genotype node FZF1 genotype genotype of FZF1 wild type;

deletion;

over-expression

protein function node Fzf1p activity the activity of the transcription factor Fzf1p active;

inactive

doi:10.1371/journal.pone.0000094.t003..
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In the data collection and preprocessing step, gene expression

clusters were identified from a microarray dataset and cluster

expression levels were converted to discrete values. Each array was

annotated with the strain genotypes, the experimental conditions,

and protein functions. The discrete values of cluster expression

and the annotated array attributes were combined to form the

learning dataset.

In the subsequent hypothesis generation step, expression

clusters, environmental signals and genotypes were defined as

network nodes. An automatic learning procedure was used to find

network connections that best fit the learning data set, measured

by a probability score. Networks with the highest scores were

collected. The derived model (Bayesian average network) was the

average over all the high scoring networks found by the learning

process (Materials and Methods). In the derived Bayesian average

network model, each edge was associated with a confidence score

(c), calculated as the percentage of its presence in the high scoring

collection [18,21]. As part of the learning process, the conditional

probability distribution (CPD) for each node was also automati-

cally inferred.

In the third step, the derived model was compared to the

current biological hypotheses and new predictions were then tested

experimentally. In the last experimental feedback step, the new

experimental data were compared to the data underlying the

previous model. If the new data was inconsistent with the previous

model, new network nodes such as a new environmental variable

or an alternate gene clustering was proposed to attempt to explain

the discrepancy. Experiments could also show the new predictions

to be incorrect. In either case, we initiated a new iteration of the

process to derive a better model, likely with a revised set of

network nodes to 1) explain the conflict in the data, 2) predict the

role of the new environmental variables on gene expression, and 3)

eliminate any incorrect prediction.

In the following sections, we describe three iterations of the

algorithm applied to a microarray dataset measuring the nitric

oxide transcriptional response, generating increasingly improved

transcription network models.

The initial nitric oxide response network
In order to measure the S. cerevisiae transcriptional response to NO?

and reactive nitrogen intermediates, and to examine the role of the

transcription factor Fzf1p, we exposed wild type and fzf1D strains

to chemically generated NO? (experiment E1, Materials and

Methods). To determine whether Fzf1p over-expression could

mimic the NO? inducible response, we performed similar

experiments with wild type and GAL1p:FZF1 strains on galactose.

We then measured global mRNA levels over time using DNA

microarrays (experiment E2, Materials and Methods). These data

were combined with a published dataset from a perturbation

experiment of yeast treated with common oxidative agents to

model the oxidative or environmental stress response (ESR) [9].

A subset of 130 genes with significant expression changes in the

combined dataset was selected (Materials and Methods). We

defined five major gene clusters: the previously identified de-

toxification gene clusters [8] were divided into Fzf1p early and late

response clusters (which were up-regulated by NO? in an Fzf1p

dependent manner, but differed in their initial response time), the

ESR cluster, the oxidative phosphorylation cluster, and the

galactose response cluster.

We subsequently defined ten network nodes and their discrete

states to model the transcriptional response microarray data,

which included five gene cluster nodes, three experimental

perturbation nodes, one genotype node, and one protein function

node, to model the genome-wide transcriptional response to nitric

oxide (Table 1).

Given those defined nodes, the learning dataset was compiled

by combining discrete values of average cluster expression and

manual annotation of experimental attributes for each array.

Among them, the values of Fzf1p activity in the learning dataset

were inferred based on FZF1 genotype and the experimental

conditions. For example, if the strain was fzf1D, the value was

assigned to ‘‘inactive’’. Any value that could not be inferred or

obtained directly was set as missing values (empty data entries) in

the learning dataset.

The initial derived model (10 edges with c.0.9) is shown in

Figure 2a. According to this model, exposure to NO? generated

two transcription signatures. The core NO? specific response

(Fzf1p early and late response clusters), unlike other transcriptional

responses, was controlled through the activation of the transcrip-

tion factor Fzf1p. NO? also triggered a general environmental

stress response, which was shared by exposing to oxidative agents.

Figure 1. Illustration of the iterative network learning and experimental
feedback algorithm.
doi:10.1371/journal.pone.0000094.g001

Nitric Oxide Response Network
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Those predictions were consistent with the current understanding

of the transcriptional response to NO? [8].

The edge confidence scores (c) displayed a bimodal distribution

in the confidence score histogram (Figure 2b). Since the

confidence score was a measurement of the data support for an

edge, this distribution showed a clear separation of relationships

that were highly supported (c.0.9) or unsupported (c = 0) by the

data. This bimodal distribution was significantly different

(Kolmogorov-Smirnov normality test; P,0.001) from the normal

distribution generated from networks with the randomly assigned

network connections (Kolmogorov-Smirnov normality test;

P = 0.35), in which all edges showed a low level of support from

the data (c = 0.39560.105).

As part of the network learning process, conditional probability

distributions (CPDs) were also computed from the data (supple-

mental data). This included a CPD of the node ‘‘Fzf1p activity’’,

which had 80% missing values in the learning dataset. The derived

CPD of ‘‘Fzf1p activity’’ (the chance of Fzf1p activity in either

‘‘active’’ or ‘‘inactive’’ state given the FZF1 genotype and the

duration of NO? treatment) predicted that Fzf1p activity was

transiently activated by NO? treatment (Figure 2a CPD table).

The prediction was consistent with the biological hypothesis that

NO? or NO? derivatives activates Fzf1p leading to transcriptional

induction of a discrete set of target genes that function to protect

the cell from NO-mediated stress [8].

Two highly supported edges (c.0.9) in the model were

unexpected. One was directed from ‘‘galactose’’ to ‘‘Fzf1p early

response’’ and the other from ‘‘galactose’’ to ‘‘oxidative phos-

phorylation’’ (Figure 2a, red edges). The connection from

galactose to Fzf1p early response node predicted that the

expression of this cluster (containing YHB1 and SSU1) would be

up-regulated in response to galactose (as predicted in the

probability distribution for the early response node), suggesting

another input signal to some of the NO? detoxification genes

bypassing the transcription factor Fzf1p. Further examination of

the microarray data showed that YHB1 was up-regulated by

galactose in the absence of Fzf1p over-expression (Figure 3a).

FZF1 levels in wild type yeast were not affected by growth in

galactose media. Although our model predicted an Fzf1p-

independent up-regulation of the YHB1 by galactose, it remained

a formal possibility that galactose was acting through endogenous

Fzf1p to up-regulate YHB1.

Experimental feedback and a second nitric oxide

response network
To verify the unexpected YHB1 induction in response to galactose

and the independence of this relationship on Fzf1p, additional

microarray experiments were performed to monitor the change of

mRNA level upon galactose induction in wild type and fzf1D
strains (experiment E3). Indeed, the expression of YHB1 was

increased by 2–4 fold upon switching to a galactose-containing

medium (Figure 3b). This confirmed the prediction that galactose

affects YHB1 expression independently of Fzf1p.

However, we detected an inconsistency in the dataset. The two

galactose induction experiments (experiment E2 vs. E3) were

conducted in an experimentally similar way, yet many genes which

were up-regulated in one experiment were down-regulated in the

other and vice versa (supplemental data). For example, the genes

in the Fzf1p response cluster (except YHB1) were up-regulated in

E2 and down-regulated in E3 (Figure 3a wt vs. 3b wt). In contrast,

many galactose utilization genes such as GAL2, GAL3, GAL7 and

GAL10 showed consistent up-regulation in all the galactose

induction experiments (Figure 3a & 3b). Most of the genes with

between-experiment disagreement function to utilize glucose, such

as all four subunits of succinate dehydrogenase tetramer SDH,

acetyl-coA synthetase ACS1, and the key gluconeogenic enzymes

FBP1 and PCK1. The opposing expression change (E2 vs. E3, wild

type) in these glycolysis and gluconeogenesis components were also

highly correlated with their transcription profiles during the

diauxic shift, the switch from anaerobic growth to aerobic

respiration upon depletion of glucose [9,22]. An examination of

the pre-experimental growth conditions, the cell densities during

the experiment, and the duration of the experiment (12 hr)

indicated that the diauxic shift could have occurred in the two

galactose induction experiments (E2, E3).

Taking advantage of the above prior biological knowledge on

the yeast diauxic shift, we added another environmental

perturbation node (‘‘diauxic shift’’). In addition, we improved

the gene clustering by 1) combining the previous oxidative

phosphorylation cluster and the galactose response cluster to form

the energy cluster; 2) re-grouping the five NO? detoxification genes

into YHB1 and the Fzf1p response cluster that included the rest of

the detoxification genes; and 3) separating out the galactose

utilization genes to form the galactose utilization cluster (Table 2).

The second Bayesian network model was expanded to take into

account the transcriptional response to the diauxic shift (Figure 2c).

The new model maintained the sub-network of the NO?-specific

response mediated by Fzf1p and the relationship directed

from galactose to YHB1. In addition, it revealed the previously

hidden connection between the diauxic shift and the energy

cluster.

Glucose derepression regulating YHB1 and the third

nitric oxide response network
In order to avoid complications due to the diauxic shift in the

galactose induction experiments (12 hr), the galactose induction

experiments using wild type and fzf1D strains (experiment E3)

were repeated using raffinose as the initial sugar source

(experiment E4). This allowed a much faster induction and

a shorter time course (4 hr). The results showed that the galactose

utilization genes such as GAL7 and GAL10 were up-regulated;

however, YHB1 induction was not observed (Figure 3c). This result

was unexpected since the previous galactose induction experi-

ments had shown that YHB1 was induced by 2–4 fold (Figure 3a

wt, 3b). The difference could not be explained by the diauxic shift

or other variables considered thus far.

Growth in glucose-rich media represses the transcription of

a large number of genes such as enzymes in the TCA cycle, the

respiratory chain, sporulation genes and genes needed for the

utilization of less efficient sugar sources such as galactose [23]. To

address the possibility that YHB1 is partially controlled by glucose

repression, a node ‘‘glucose repression’’ was added to account for

this effect in a third model (Figure 2e, Table 3). The subsequently

derived third model strongly supported the relationship between

glucose derepression and YHB1 gene expression; at the same time

the overall network structure including the Fzf1p mediated NO?-

specific response sub-network was maintained. The CPD of node

‘‘YHB1’’ predicted that YHB1 gene expression was up-regulated

by either glucose derepression or Fzf1p, but not by galactose.

To verify the prediction of glucose derepression for YHB1, the

protein expression levels of GFP tagged Yhb1p were monitored

under glucose repression and derepression conditions using flow

cytometry. The repression results showed that Yhb1p levels

decreased immediately after the sugar source was changed from

either raffinose or galactose to glucose, and continued to decrease

up to 2–3 fold after 12 hours. This result was confirmed by the

Nitric Oxide Response Network
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Figure 2. The Bayesian average network representation of the models. (a, b) initial model. (c, d) second model. (e, f) third model. (a, c, e) network
graphic representation. The green nodes represent gene expression clusters. Representative genes of each cluster are shown in the box below each
node. ESR: environmental stress response cluster. energy: glucose metabolism cluster. oxidative stress: the application of H2O2 or menadione. Nitric
oxide: the duration of NO? exposure. galactose: galactose utilization. diauxic shift: shift between anaerobic growth and aerobic respiration. Nodes
with missing values are colored in gray. The CPD table shows the conditional probability distribution of Fzf1p activity. The red edges represent novel
predictions from the first network model. (b, d, f) edge confidence score histogram. The dot-filled columns represent edges excluded from a model
by structural constraints.
doi:10.1371/journal.pone.0000094.g002
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reciprocal experiment of glucose derepression by changing the

sugar source from glucose to galactose or raffinose, in which

Yhb1p levels increased by 2–4 fold after 12 hours (Figure 4a). The

ratio and kinetics of the YHB1 derepression measured by protein

level were consistent with the microarray measurements (Figure 3a,

3b). Glucose repression of YHB1 was not observed in a tup1D
strain, indicating that the effect of sugar on YHB1 expression

occurred through the canonical glucose repression pathway

(Figure 4b).

DISCUSSION
We have developed a framework to formally couple Bayesian

network learning and experimental feedback to model a specific

biological response in yeast. We were able to use this integrative

approach to achieve two goals. First, we discovered an additional

layer of regulation acting upon YHB1 transcription, a key mediator

of nitric oxide defense. Secondly, our approach dissected out

specific versus nonspecific responses to NO? and reactive nitrogen

intermediate exposure. The core structure of the Fzf1p-dependent

NO?-specific response sub-network (nitric oxide, FZF1 genotype

Fzf1p activity, and Fzf1p response clusters) was predicted and

maintained throughout the three models. The transcriptional

responses to other environmental factors were gradually elucidated

by additional iterations of the process.

Previous studies have suggested that YHB1 is important for the

survival of yeast under oxidative and nitrosative stress [28,29].

Our results show YHB1 is transcriptionally regulated by both NO?

exposure mediated through Fzf1p and glucose repression medi-

ated by Tup1p. Taken together, these data indicate that YHB1 is

regulated by many environmental signals, highlighting the

combinatorial control of this gene. While glucose derepression

caused a 2 to 3-fold increase in Yhb1p protein levels, studies have

shown a 10-fold increase by NO? treatment, suggesting a more

prominent role of Yhb1p in NO? detoxification [8].

Within the context of our Bayesian model, we were able to

utilize available biological knowledge to systematically explore the

response to nitric oxide by the refinement of the random variables

used. Clearly, incorporation of prior biological knowledge has the

effect that our results will be biased towards our current

understanding of the problem. While this fact represents a caveat,

all models make assumptions; and the biological knowledge in this

case was extremely useful to uncover the underlying relationships.

Indeed, prior knowledge in this case can be considered to be

a critical property of the process, since proper definition of the

random variables used to model the dataset was essential to arrive

at a biologically meaningful conclusion.

A common practice in statistical learning is to select one single

model that best fits the data. But in many situations, other models

also score very well although not necessarily the best. Using a single

highest scoring model to derive a biological conclusion is

potentially risky. To circumvent this problem, we used the average

of all the high scoring networks found by the searching procedure

[21]. An added benefit of this approach is that it yields a confidence

score associated with each edge connection [18]. The confidence

score is especially useful for filtering out low-confidence connec-

tions from a complex network, thus simplifying what might

otherwise be a confusing network.

Since Bayesian network edges represent statistical instead of

causal relationships, it is possible that a derived edge does not

represent a direct biological connection. For example, two gene

clusters sharing high mutual information would likely be

connected. One method to eliminate such connections is to merge

those highly correlated clusters into a single node. Additionally,

structural constraints may be used to define gene expression nodes

as leaf nodes and the environmental variable nodes as root nodes.

Gene clusters were defined through an automatic hierarchical

clustering algorithm with manual interventions. Although it is not

purely automatic, this step was where we incorporated prior

biological knowledge to interpret the gene expression dataset.

Therefore it is critical for ensuring the defined gene cluster nodes

that truly represent the underlying gene expression profiles.

Figure 3. The change of gene expression in Fzf1p response clusters,
FZF1 and galactose utilization genes in response to galactose. (a) Wild
type and gal promoter driven FZF1 over-expression strains in response
to the change from glucose to galactose (experiment E2). (b) Wild type
and fzf1D strains in response to the change from glucose to galactose
(experiment E3). (c) Wild type and fzf1D strains in response to the
change from raffinose to galactose (experiment E4). Color unit is fold
change of gene expression. Gene expression too low to be detected is
colored in blue.
doi:10.1371/journal.pone.0000094.g003

Figure 4. Glucose repression and derepression of Yhb1p-GFP measured
by flow cytometry. (a) wild type strain. (b) tup1 deletion strain. To
calculate a mean GFP intensity, a minimum 100,000 cells were
measured for each time point.
doi:10.1371/journal.pone.0000094.g004
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The computational framework and experimental approach

presented here essentially represents a supervised data exploration

system. The overall methodology is a straightforward hypothesis-

generation, testing, and refinement cycle. However, complex

datasets with large numbers of measurements become increasingly

difficult to represent and score with regard to a given hypothesis.

The creation and use of Bayesian networks, incorporating prior

knowledge, allows for systematic scoring of a given hypothesis, and

furthermore, provides an opportunity for automatic learning,

which in turn can facilitate the discovery of new relationships

within the data.
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