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Identifying driver genes in cancer is a difficult task because of the heterogeneity of cancer as well as 
the complex interactions among genes. As sequencing data become more readily available, there is 
a growing need for detecting cancer driver genes based on statistical and mathematical modeling 
methods. Currently, plenty of driver gene identification algorithms have been published, but they 
fail to achieve consistent results. In order to obtain gene sets with high confidence, we present 
DriverDetector, an R package providing a convenient workflow for cancer driver genes detection 
and downstream analysis. We develop the background mutation rate calculating module based 
on the distance between genes in covariate space and binomial test, followed by the driver gene 
selection module which integrates 11 methods, including two already recognized approaches, a de 
novo method, and five variants of Fisher’s method which are applied to driver gene identification 
for the first time. Through verification on 12 TCGA datasets, each method is able to identify 
a set of confirmed driver genes while the number of resulting genes vary significantly across 
different methods. For robust driver genes detection, a voting strategy based on 10 of the statistical 
methods is further applied. Results show that the collective prediction based on the voting strategy 
demonstrates superiority in achieving the consistency of prediction while ensuring a reasonable 
number of predicted genes and confirmed drivers. By comparing the results of each cancer dataset, 
we also find that sample size has a huge impact on the number of predicted genes. For downstream 
analysis, DriverDetector automatically generates plenty of plots and tables to elaborate the results. 
We propose DriverDetector as a user-friendly tool promoting early diagnosis of cancer and the 
development of targeted drugs.

1. Introduction

Next generation sequencing (NGS) technologies are facilitating to achieve the human genomic data. Consequently, large-scale 
databases, like The Cancer Genome Atlas (TCGA) and International Cancer Genome Consortium (ICGC), occur to contribute cancer 
genomic data to worldwide researchers by the Mutation Annotation Format (MAF) files [1,2]. These advances ensure massive amounts 
of cancer genomics data for the investigation of cancer driver genes directly responsible for promoting tumorigenesis [3]. There are 
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generally two types of computing methods for searching driver gene sets based on somatic mutation data. The first type of methods 
identifies recurrent mutations whether at the same genes in different patients based on the background mutation rates of genes and 
statistical hypothesis tests [4–13]. The representative of this type of methods is MutsigCV [8], which uses the 2D-projection method 
to calculate the probability that the observed mutation frequency of a given gene is greater than the expectation obtained by the 
nonfunctional background mutation rate. Other ratio-metric approaches focus on the functional impact bias, clustering patterns or 
composition patterns of mutations [6,12]. The second type of methods based on somatic mutation data identifies a collection of genes 
in a batch based on high coverage and mutual exclusivity, which are combinatorial mutation patterns in signaling and regulatory 
pathways [14–17]. In addition, newly presented methods based on multi-omics data or machine learning are gradually becoming 
research hotspots [11,18–20]. The limitations of existing driver gene identifying methods mainly exist in two aspects. First, the total 
number of predicted genes cannot be effectively adjusted. According to [6], the number of driver genes predicted by 8 methods 
(q-value≤0.1) on the same pan-cancer dataset ranges from 158 to 2,600, indicating a huge variation exists across methods. A more 
recent research [18] tested 21 methods and reached the same conclusion. Since the main purpose is to explore potential driver genes, 
a gold standard is lacking for this task [6]. One approach to benchmark driver prediction is to measure the overlap with the Cancer 
Gene Census (CGC) [21], which is a list containing already confirmed and suspected driver genes. To ensure credibility, the ideal 
result should include enough confirmed driver genes as well as new potential drivers. The second limitation is the consistency of 
prediction, which is an important criterion for measuring robustness. Specifically, when the dataset is randomly divided by samples 
into two subsets, an ideal method would achieve the same gene set for each subset [6]. Therefore, the main goal is to find a balance 
among the predicted gene number, the overlap with known drivers, and the consistency of prediction. To our best knowledge, few 
methods have managed to fully achieve the balance of results [6,18,19,22]. Besides, as cancer datasets continue to expand, flexible 
and easy-to-use systematic frameworks are being increasingly required.

In this work, we present an R package called DriverDetector, which is a powerful toolbox for robust identification of cancer driver 
genes. The workflow is shown in (Fig. 1). Our research is mainly inspired by MuSiC [12], where we find different hypothesis tests 
using the same significance threshold lead to considerable differences in results. The main hypothesis is that it is hard for methods 
based on single hypothesis test or gene functionalities to fully distinguish driver genes from the complex background. To this end, we 
introduce a voting strategy based on 10 statistical methods, which can significantly increase the consistency of results and remove 
most unlikely genes. In addition, we incorporate a de novo method to identify gene sets with high coverage and mutual exclusivity. 
DriverDetector is a user-friendly toolbox, for which both MAF and binary mutation matrix can be the input. The mutation data 
first go through the preprocessing module which washes out trivial genes by using the maximum entropy method and assigning 
mutation effects and categories (Fig. 1a). Next, the background mutation rate for each gene is calculated based on its location in the 
covariate space. A B-score test is processed to obtain genes with high driving possibilities (Fig. 1b). Then, the candidate genes enter 
the voting system by multiple statistical methods which can be used separately as well (Fig. 1c). The significant genes identified by 
most methods are then go through the statistical analysis module, where the p-values by different methods and the distribution of 
mutation categories or chromosomes are further analyzed (Fig. 1d). We test DriverDetector on 12 type-specific cancer datasets from 
TCGA, results show that DriverDetector can not only identify a large number of known driver genes but also discover potential driver 
genes with high confidence. We further evaluate the CGC overlap and consistency for each statistical method, results show that by 
applying the voting strategy, the consistency of predicted genes is significantly improved. Finally, we compare DriverDetector with 
existing methods based on different principles on the BRCA dataset. It can be concluded that DriverDetector is an effective tool for 
driver genes identification. Our proposed software is available at https://github .com /FrancisWang96 /DriverDetector.

2. Materials and methods

2.1. Data input and preprocessing

DriverDetector is an easy-to-use R package which requires three materials as input. The first is the mutation data, which can either 
be MAF or a binary-valued mutation matrix. The second input is the coverage data, which contains universal coverage information for 
all cancer types by default. The covariate data covering genetic indicators, such as gene expression level, replication time, and chromo-

somal status, are also necessary for the calculation of background mutation rates. A reference genome list is optional for discovering 
mutation categories, which can either be a folder path or the BSgenome format [23]. Incorrect input may cause the program to fail or 
affect the results. DriverDetector automatically checks and unifies each input before further calculation. The preprocessing module 
first checks that all the required variables are present in each data. For mutation data, the columns should include Hugo_Symbol or 
gene, Tumor_Sample_Barcode, Chromosome, Start_Position, End_Position, Variant_Classification, and Tumor_Seq_Allele. For coverage 
data, the required columns are Hugo_Symbol or gene, effect, category, and coverage. The covariate data should include genes and the 
values of corresponding covariates. Next, the intersection of genes in all data is extracted, and the rows containing out-of-intersection 
genes are eliminated.

Mutation category discovery is a crucial preprocessing step to determine which mutation categories are most influential 
for searching driver genes. For each mutation, considering the triplex base group of the mutation site, there are a total of ((4
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categories and searching for driver genes by the number of mutations in these categories can we find genes that play a significant 
role in the development and progression of cancer. According to the value of the category_num parameter, which should be set to 
non-negative integers no greater than 6, the following method is applied. When category_num is set to 0, the program checks for a 
2

one-to-one correspondence between mutation categories in the input mutation data and those in the coverage data. If they match, 
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Fig. 1. Workflow of DriverDetector. (a) Preprocessing first ensures the data is available and gene names are appropriate. Then trivial genes are washed out using the 
maximum entropy method. Based on the reference genome file, the triplets of mutation sites are found in order to generate mutation effects and categories. (b) The 
background mutation rate is calculated by considering not only the gene itself, but its neighbors in the covariate space as well. (c) Using 11 methods, the significance 
of genes is determined by their q-values. (d) Statistical analysis for driver identification and multiple variables.

then these categories are directly accepted. Otherwise, the mutations are categorized into “Missense” and “null+indel” based on 
mutation effects. For coverage data, the corresponding “missense” and “null+indel” coverage numbers for each mutation effect are 
both equal to the sum of the coverage numbers for all mutation categories. When the parameters are set in the range of 1 to 6, the 
mutation categories are identified using a reference genome based on the following five steps.

Step 1: Count the number of triple base mutations in all coding regions in the coverage data. Since there are four types of bases 
(A,T,G,C), the total number of triplets is 4 (left site)×4 (mutation site)×4 (right site) =64. The number of noncoding mutations in 
each gene is then summed and divided by three due to the mutations in the middle of each triplet can mutate to three other bases.

Step 2: Count the number of all 64 triple base mutations in the mutation data. For each point mutation, the left and right adjacent 
sites are obtained according to the reference genome. Then the number of mutations of every triplet is calculated. (if the site bases 
before and after mutation are the same, the number of mutations is 0).

Step 3: Based on the mutation number and coverage number obtained above, the optimal mutation category is found by maxi-

mizing the mutation information entropy (negative entropy). The information entropy of a group of mutations, including 𝑛 members, 
is calculated as Eq. (1):

IE =
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𝑁𝑖

)))
(1)

where 𝑁tot is the coverage number of all categories, 𝑁𝑖 is the coverage number of category 𝑖, and 𝑛𝑖 is the mutation number of 
category 𝑖.

In order to search mutation categories, multiple groups of mutation categories are first randomly initialized according to a certain 
rule, then the mutation category information entropies of all groups are calculated respectively. The one with the largest information 
entropy should be selected as the optimal category.

Step 4: According to the results of step 3, each mutation is assigned to the corresponding categories. Furthermore, a “null+indel” 
category is appended, whose mutation number is determined by the count of mutations with the effect “null” in the mutation data. 
The “null+indel” coverage number is the sum of all point mutations in the categories determined by Step 1-3.

Step 5: Identify the category for each mutation in the coverage data based on the obtained categories from Step 1-4 (including 
3

the “null+indel” category).
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Fig. 2. Outputs of the background mutation rate calculation module run on the BRCA dataset. (a) Background mutation rates of candidate genes selected by 𝐵score . 
(b) Box plot of background mutation rates of each mutation category.

When the category searching finishes, the program outputs the preprocessed results as txt files, including the resulting categories, 
categorized mutation and coverage data, and the processed covariate data.

2.2. Calculation of background mutation rates

The background mutation rates are calculated using the preprocessed mutation and coverage data, as well as the gene covari-

ate data, which is used to calculate the expected mutation and coverage numbers for each gene, category, and patient. Using the 
neighborhood construction method based on gene covariates [8], a background mutation rate is calculated for each gene. The default 
covariates (including gene expression level, replication time and chromosome status) data are from the MutsigCV website and can 
also be customized by users. To accelerate the process, the default initial background mutation rate is set to 1.2e-6 [24] for all genes.

Binomial test is widely used in driver gene predicting methods [6,8–11] for evaluating whether the mutation rates are statistically 
significant higher than the background rates. In DriverDetector, the p-value of the binomial test, namely 𝐵score , is calculated for each 
gene by Eq. (2):

𝐵score =
𝑁∑

𝑘=𝑛+1

(
𝑁

𝑘

)
𝑝𝑘(1 − 𝑝)𝑁−𝑘 (2)

where 𝑝 is the mutation rate, 𝑘 is the number of observed mutation of a given type at a particular nucleotide, 𝑛 is the number of base 
pairs in the gene transcript, and 𝑁 is a total number of cancer samples in a cohort. The threshold of 𝐵score is set to 0.05 by default, 
and the genes which meet the threshold are selected as candidates for subsequent tests.

In this module, the output files include a text file of candidate genes with their background mutation rates, a plot showing the 
values of background mutation rates and the original mutation rate (Fig. 2a), and a box plot presenting the mutation rates of each 
mutation category (Fig. 2b).

2.3. Collective identification of significant genes

In this module, we integrate 11 methods for driver genes identification and each of them can be used separately. By default, 
all methods are run on the mutation data after category assignment and background mutation rate calculation. In DriverDetector, 
a voting strategy is applied where the genes collectively predicted by multiple methods are selected. According to previous studies, 
the results vary hugely by different methods [6,18]. Therefore, collective prediction is able to enhance the robustness of the results. 
The specific methods are as follows. Based on the previous progress achieved by Fisher’s method in driver prediction [6,12], we first 
integrate Fisher’s method as an independent approach:

Fisher’s Method

According to [25], the test statistic of Fisher’s Method is calculated by Eq. (3)

𝜒𝑔 = −2 ⋅
𝑛𝑐∑
𝑖=1

log(𝑝𝑖
𝑔) (3)

where 𝑝𝑖
𝑔 is the p-value obtained by testing the binomial distribution hypothesis for the 𝑖th mutation category of gene 𝑔. 𝑛𝑐 is the 

number of mutation categories. 𝜒𝑔 follows a 𝜒2 distribution with degrees of freedom 2𝑛𝑐 . Therefore, the final p-value of gene 𝑔 is 
calculated by Eq. (4):

𝑝𝑔 = 1 −

𝜒𝑜𝑏𝑠
𝑔

𝜒2 (𝑡)𝑑𝑡 (4)
4

∫
0

2𝑛𝑐
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𝜒𝑜𝑏𝑠
𝑔 = −2 ⋅

𝑛𝑐∑
𝑖=1

log
⎛⎜⎜⎝1 −

𝑛𝑜𝑏𝑠𝑔,𝑐∑
𝑛=0

(
𝑁𝑔,𝑖

𝑛

)(
𝑥𝑔,𝑖∕𝑋𝑔,𝑖

)𝑛 (1 − 𝑥𝑔,𝑖∕𝑋𝑔,𝑖

)𝑁𝑔,𝑖−𝑛
⎞⎟⎟⎠

where 𝑛𝑐 is the total number of mutation categories, 𝑛𝑜𝑏𝑠
𝑔,𝑖

is the actual number of mutation in category 𝑖 of gene 𝑔, and 𝑁𝑔,𝑖 is the 
coverage number of category 𝑖 of gene 𝑔.

When facing large gene mutation data, Fisher’s method has some limitations such as ignoring the internal correlation of data 
and high computational complexity [26,27]. Such limitations may lead to a negative impact on the results. To this end, a group of 
extensions of Fisher’s method, namely, empirical Brown’s method, Kost’s method, harmonic mean p-value method, Cauchy’s method, 
and Stouffer’s method, are integrated in DriverDetector to improve the robustness of results:

Empirical Brown’s Method

As an extension to Fisher’s method, Brown’s method [28] uses a re-scaled 𝜒2 distribution as Eq. (5):

𝜒𝑔 ∼ 𝑐𝜒2
2𝑓 (5)

where 𝑐 is the scale factor and 𝑓 denotes a re-scaled number of degrees of freedom. Brown calculated these constants by Eq. (6):

𝑓 =
E[𝜒𝑔]2

var[𝜒𝑔]
and 𝑐 =

var[𝜒𝑔]
2E[𝜒𝑔]

=
𝑛𝑐

𝑓
(6)

Poole et al. [26] proposed an adaptation of Brown’s method using the empirical cumulative distribution function derived directly 
from the data which can efficiently be applied to large intra-correlated biological datasets. The method aims to calculate the covariance 
empirically base on Eq. (7):

var[𝜒𝑔] = 4𝑛𝑐 + 2
∑
𝑖<𝑗

cov
(
𝑤⃗𝑖, 𝑤⃗𝑗

)
(7)

where 𝑤⃗𝑖 and 𝑤⃗𝑗 denotes the right-sided empirical cumulative distribution function calculated from the sample 𝑥⃗𝑖 and 𝑥⃗𝑗 .

Kost’s Method

Considering Brown’s method calculates the expected value and variance of 𝜒𝑔 directly via numerical integration to obtain the 
covariance, for large datasets, due to computational complexity, numerical integration is not feasible. Kost and McDermott [27] fit a 
third-order polynomial to approximate this covariance by Eq. (8):

cov
(
−2 log𝑃𝑖,−2 log𝑃𝑗

)
≈ 3.263𝜌𝑖𝑗 + 0.710𝜌2𝑖𝑗 + 0.027𝜌3𝑖𝑗 (8)

where 𝑃𝑖 and 𝑃𝑗 denote the p-values, 𝜌𝑖𝑗 is the correlation between random variables 𝑋𝑖 and 𝑋𝑗 . The combined p-value is given by

Eq. (9):

𝑃combined = 1.0 −Φ2𝑓 (𝜓∕𝑐) (9)

where 𝜓 = −2 
∑𝑛𝑐

𝑖=1 log𝑃𝑖 and Φ2𝑓 is the cumulative distribution function of 𝜒2
2𝑓

Harmonic Mean p-value Method

The harmonic mean p-value (HMP) [29] is a statistical technique similar to Fisher’s method in certain aspects that they both test 
whether groups of p-values are statistically significant. However, unlike Fisher’s method, HMP avoids the restrictive assumption that 
the p-values are independent. The weighted harmonic mean of p-values 𝑝1, … , 𝑝𝐿 is defined as Eq. (10):

◦
𝑝=

∑𝑛𝑐
𝑖=1 𝑤𝑖∑𝑛𝑐

𝑖=1 𝑤𝑖∕𝑝𝑖

(10)

where 𝑤1, … , 𝑤𝑛𝑐
are weights that sum to one, i.e. 

∑𝑛𝑐
𝑖=1 𝑤𝑖 = 1. Generalized central limit theorem shows that an asymptotically exact 

p-value 𝑝◦
𝑝

can be calculated using Eq. (11):

𝑝◦
𝑝
=

∞

∫
1∕

◦
𝑝

𝑓Landau

(
𝑥 ∣ log𝑛𝑐 + 0.874, 𝜋

2

)
d𝑥 (11)

where 𝑓Landau denotes the Landau distribution, whose density function can be written as Eq. (12):

𝑓Landau (𝑥 ∣ 𝜇,𝜎) = 1
𝜋𝜎

∞

∫
0

e−𝑡
(𝑥−𝜇)

𝜎
− 2

𝜋
𝑡 log 𝑡 sin(2𝑡)d𝑡 (12)

Cauchy’s Method

Cauchy’s method [30] is a variant of Fisher’s method which uses a tan transformation to obtain a test statistic whose tail is 
5

asymptotic to that of a Cauchy distribution under the null. The test statistic can be written as Eq. (13):
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𝜒𝑔 =
𝑛𝑐∑
𝑖=1

𝜔𝑖 tan
[(
0.5 − 𝑝𝑖

)
𝜋
]

(13)

where 𝑤1, … , 𝑤𝑛𝑐
are weights that sum to one. Under the null, 𝑝𝑖 are uniformly distributed, therefore tan

[(
0.5 − 𝑝𝑖

)
𝜋
]

are Cauchy 
distributed. Let 𝑊 denote a standard Cauchy random variable as Eq. (14):

lim
𝑡→∞

𝑃 [𝜒𝑔 > 𝑡]
𝑃 [𝑊 > 𝑡]

= 1 (14)

leads to a combined hypothesis test, in which 𝜒𝑔 is compared to the quantiles of the Cauchy distribution.

Stouffer’s Method

Stouffer’s method [31] serves as a compromise between Fisher’s method which is sensitive to the smallest p-value and Pearson’s 
method which is sensitive to the largest p-value. Letting 𝑝1, 𝑝2, … , 𝑝𝑛𝑐

denote the individual (one- or two-sided) p-values of the 𝑘
hypothesis tests to be combined, the test statistic is then computed with 𝑧 =

∑𝑛𝑐
𝑖=1 𝑧𝑖∕

√
𝑘 where 𝑧𝑖 =Φ−1(1 − 𝑝𝑖) and Φ−1(⋅) denotes 

the inverse of the cumulative distribution function of a standard normal distribution. Under the joint null hypothesis, the test statistic 
follows a standard normal distribution which is used to compute the combined p-value. Stouffer’s method assumes that the p-values 
to be combined are independent. If this is not the case, the method can either be conservative (not reject often enough) or liberal 
(reject too often), depending on the dependence structure among the tests. In this case, one can adjust the method to account for 
such dependence.

Next, we incorporate four methods from two influential articles [8] and [12] to increase confidence in the resulting gene set. 
Specifically, the beta binomial test, likelihood ratio test and convolution test are from MuSiC, while the 2D-projection method is 
ported from MutSigCV.

Beta Binomial Test

Assume the number of mutations of gene 𝑔 follows a beta binomial distribution with parameters 𝑁𝑔 , 𝑥𝑔 , 𝑥𝑔 . The p-value of 𝑔 is 
calculated as Eq. (15):

𝑝𝑔 = 1 −
𝑛𝑜𝑏𝑠𝑔∑
𝑘=0

𝑓
(
𝑘 ∣𝑁𝑔,𝑥𝑔 + 1,𝑋𝑔 + 1

)
(15)

= 1 −
𝑛𝑜𝑏𝑠𝑔∑
𝑘=0

Γ
(
𝑁𝑔 + 1

)
⋅ Γ

(
𝑘+ 𝑥𝑔 + 1

)
⋅ Γ

(
𝑁𝑔 − 𝑘+𝑋𝑔 − 𝑥𝑔 + 1

)
⋅ Γ

(
𝑥𝑔 + 2

)
Γ(𝑘+ 1)Γ

(
𝑁𝑔 − 𝑘+ 1

)
⋅ Γ

(
𝑁𝑔 +𝑋𝑔 + 2

)
⋅ Γ

(
𝑥𝑔 + 1

)
Γ
(
𝑥𝑔 − 𝑥𝑔 + 1

)
where 𝑛𝑜𝑏𝑠

𝑔 is the number of non-silent mutations actually observed of the gene, 𝑁𝑔 is the number of non-silent coverage of g, 𝑥𝑔 is 
the number of background mutations, 𝑥𝑔 is the number of background coverage. 𝑓

(
𝑘 ∣𝑁𝑔,𝑥𝑔 + 1,𝑋𝑔 + 1

)
is the standardized beta 

binomial probability density function with 
∑𝑛𝑁𝑔

𝑘=0 𝑓
(
𝑘 ∣𝑁𝑔,𝑥𝑔 + 1,𝑋𝑔 + 1

)
= 1, and Γ is the gamma function.

Likelihood Ratio Test

A likelihood ratio statistic is set up for each gene by Eq. (16):

𝜒𝑔 = −2
𝑛𝑐∑
𝑖=1

log
⎛⎜⎜⎜⎝
𝐿
(
𝑛𝑜𝑏𝑠
𝑔,𝑖

,𝑁𝑔,𝑖 ∣ 𝑥𝑔,𝑖∕𝑋𝑔,𝑖

)
𝐿
(
𝑛𝑜𝑏𝑠
𝑔,𝑖

,𝑁𝑔,𝑖 ∣ 𝑏𝑔,𝑖∕𝐵𝑔,𝑖

) ⎞⎟⎟⎟⎠ (16)

where 𝑛𝑜𝑏𝑠
𝑔,𝑖

is the actual mutation number of the 𝑖th mutation category of gene 𝑔 and 𝑁𝑔,𝑖 is the coverage number of category 𝑖 of gene 
𝑔. 𝑥𝑖

𝑔 is the number of background mutations in the 𝑖th mutation category of gene 𝑔 and 𝑋𝑖
𝑔 is the number of background coverage in 

the 𝑖th category of gene 𝑔. 𝑏𝑖𝑔 is the sum of the non-silent, noncoding and silent actual mutation number of the 𝑖th mutation category 
of gene 𝑔, and 𝐵𝑖

𝑔 is the sum of the non-silent, noncoding and silent coverage number of the 𝑖th category of gene 𝑔. 𝐿 is the probability 
density function of the binomial distribution. 𝜒𝑔 follows a chi-square distribution with degrees of freedom 𝑛𝑐 . Therefore, the final 
p-value of gene 𝑔 is calculated by Eq. (17):

𝑝𝑔 = 1 −

𝜒𝑜𝑏𝑠
𝑔

∫
0

𝜒2
𝑛𝑐
(𝑡)𝑑𝑡 (17)

𝜒𝑜𝑏𝑠
𝑔 = −2 ⋅

𝑛𝑐∑
𝑖=1

log

⎛⎜⎜⎜⎜⎝

(
𝑁𝑔,𝑖

𝑛𝑜𝑏,𝑖
𝑔,𝑖

)(
𝑥𝑔,𝑖∕𝑋𝑔,𝑖

)𝑛𝑜𝑏𝑠
𝑔,𝑖

(
1 − 𝑥𝑔,𝑖∕𝑋𝑔,𝑖

)𝑁𝑔,𝑖−𝑛𝑜𝑏𝑠
𝑔,𝑖

(
𝑁𝑔,𝑖

𝑛𝑜𝑏
𝑔,𝑖

)(
𝑟𝑔,𝑖∕𝑅𝑔,𝑖

)𝑛𝑜𝑏𝑠
𝑔,𝑖

(
1 − 𝑟𝑔,𝑖∕𝑅𝑔,𝑖

)𝑁𝑔,𝑖−𝑛𝑜𝑏𝑠
𝑔,𝑖

⎞⎟⎟⎟⎟⎠
Convolution Test

Similar to Fisher’s Combined p-value Test and Likelihood Ratio Test, Convolution Test calculates the logarithm base 10 of the sum 
6

of the probability densities of the single-point binomial distribution for all mutation categories for each gene 𝑔 by Eq. (18):
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𝑆𝑔 = −
𝑛𝑐∑
𝑖=1

log
(
𝐿
(
𝑛𝑜𝑏𝑠
𝑔,𝑖 ,𝑁𝑔,𝑖 ∣ 𝑥𝑔,𝑖∕𝑋𝑔,𝑖

))
(18)

where 𝑛𝑐 , 𝑛𝑜𝑏𝑠
𝑔,𝑖

, 𝑁𝑔,𝑖, 𝑥𝑔,𝑖, and 𝑋𝑔,𝑖 are defined in the same way as above. The final p-value of each gene is calculated by Eq. (19):

𝑃

(
𝑠>𝑆𝑜𝑏𝑠

𝑔

)
𝑔 =

𝑆max
𝑏𝑖𝑛∑

𝑘=𝑆𝑜𝑏𝑠
𝑔

exp(hist(𝑘)) (19)

𝑆𝑜𝑏𝑠
𝑔 = −

𝑛𝑐∑
𝑖=1

log
((

𝑁𝑔,𝑖

𝑛𝑜𝑏𝑠
𝑔,𝑖

)(
𝑥𝑔,𝑖∕𝑋𝑔,𝑖

)𝑛𝑜𝑏𝑠
𝑔,𝑖

(
1 − 𝑥𝑔,𝑖∕𝑋𝑔,𝑖

)𝑁𝑔,𝑖−𝑛𝑜𝑏𝑠
𝑔,𝑖

)
where hist() is the histogram function constructed based on convolution [32].

2D-Projection Method

The 2D-projection method searches for driver genes by mapping each patient into a two-dimensional space, which is proposed 
by MutsigCV. First, the probability that the mutation of gene 𝑔 in mutation category 𝑐 and patient 𝑝 occurs only once is calculated 
based on the beta binomial distribution. According to the probability value, only the first two mutation categories with the highest 
priority (d1, d2) are considered. Then, an S-score is calculated by the mutation distribution of each gene and each patient according 
to d1 and d2. Furthermore, the background distribution and the observed value 𝑆𝑜𝑏𝑠

𝑔 of the S-score of each gene 𝑔 is calculated. The 
final p-value of gene 𝑔 is calculated by Eq. (20):

𝑝𝑔 = 1 −

𝑆𝑜𝑏𝑠
𝑔

∫
0

𝑃 (𝑆=𝑥)
𝑔 𝑑𝑥 (20)

We also include a method based on high coverage and mutual exclusivity for driver genes identification, which is called the de 
novo method.

De Novo Method

De novo method selects genes with mutation frequencies greater than the threshold and builds the mutation matrix which relies 
on a binary mutation matrix, of which the rows represent patients and the columns represent genes. In addition to taking a mutation 
matrix as input, it is also allowed to input a MAF file with a threshold for gene mutation frequency. The aim is to find a sub-matrix 
𝐺𝑀 of 𝑘 genes, which maximizes the following function Eq. (21):

𝑊𝜆

(
𝐺𝑀

) ≡ |||Γ(𝐺𝑀

)|||−𝜔(𝑀) = 2 |||Γ(𝐺𝑀

)|||− ∑
𝑔∈𝐺𝑀

|Γ(𝑔)| (21)

where 𝐺𝑀 denotes the mutation matrix composed of elements in the driver gene set. |||Γ(𝐺𝑀

)||| is the measure of coverage, Γ(𝐺𝑀 ) ≡
∪𝑔∈𝐺𝑀

Γ(𝑔) is the set of patients with mutations in the gene set corresponding to 𝑀 . 𝜔(𝑀) represents repeat coverages, whose 
opposite measures the exclusivity of the gene set. Γ(𝑔) ≡ {𝑖 ∶𝐴𝑖𝑔 = 1} refers to the set of patients with gene 𝑔 mutations.

In our previous research, an algorithm called AWRMP [15] was proposed which improves the above optimization model by adding 
different weights to each gene in the mutation matrix to obtain the following optimization objective function Eq. (22):

𝑊𝜆

(
𝐺𝑀

) ≡ |||Γ(𝐺𝑀

)|||−𝜔𝜆(𝑀)

=
𝑚∑
𝑖=1

𝐼𝑖
(
𝐺𝑀

)
−

(
𝑛∑

𝑗=1

(
𝜆𝑗 ⋅ 𝐼𝑀 (𝑗) ⋅

𝑚∑
𝑖=1

𝐴𝑖𝑗

)
−

𝑚∑
𝑖=1

𝐼𝑖
(
𝐺𝑀

))
(22)

= 2
𝑚∑
𝑖=1

𝐼𝑖
(
𝐺𝑀

)
−

(
𝑛∑

𝑗=1

(
𝜆𝑗 ⋅ 𝐼𝑀 (𝑗) ⋅

𝑚∑
𝑖=1

𝐴𝑖𝑗

))

s.t.

⎧⎪⎪⎨⎪⎪⎩
𝐼𝑖
(
𝐺𝑀

) ≤(
𝑛∑

𝑗=1
𝐴𝑖𝑗 ⋅ 𝐼𝑀 (𝑗)

)
for 𝑖 = 1,⋯ ,𝑚; 𝑗 = 1,⋯ , 𝑛

𝑛∑
𝑗=1

𝐼𝑀 (𝑗) = 𝑘

where,

𝐼𝑀 (𝑗) ≡
{

1 𝑗 ∈𝐺𝑀

0 otherwise

( ) {
1 genes in 𝐺𝑀 mutate in patient 𝑖
7

𝐼𝑖 𝐺𝑀 ≡
0 otherwise
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𝜆𝑗 ≡
⎧⎪⎨⎪⎩

exp(−|Γ(𝑗)|)∑
𝑟∈𝐺𝑀

exp(−|Γ(𝑟)|) 𝑗 ∈𝐺𝑀

0 otherwise

An adaptive weight 𝜆𝑗 is introduced to balance the coverage and exclusivity of gene sets. For genes with high mutation frequency, 
the condition of exclusivity is not strictly required, making the result more natural. The introduction of 𝜆𝑗 changes the original binary 
linear programming model into a nonlinear model. Therefore, the objective function is optimized based on the genetic algorithm.

The robustness of the algorithm is guaranteed by adopting the leave-one-out sampling strategy, which assigns the driver gene set a 
high sampling rate corresponding to the input data. For an input matrix with 𝑚 patients and 𝑛 genes, the subsampling process runs the 
genetic algorithm 𝑚 times to search the driver gene set. First, 𝑚 sub matrices 𝐴𝑖−(𝑖 = 1, 2, ⋯ , 𝑚) are generated by the leave-one-out 
strategy, where 𝐴𝑖− is the sub matrix obtained by removing the 𝑖th row of input matrix 𝐴. Next, for each sub matrix, the genetic 
algorithm is operated to search the corresponding driver gene set, obtaining 𝑚 gene sets {𝐺𝑘|𝑘 = 1, 2, ⋯ , 𝑚}. Thus, the probability 
(subsampling rate) for a gene set 𝐺𝑘 to be selected as a driver gene set is defined as Eq. (23):

𝑆𝑆𝑅𝐺𝑘
≡ Pr

(
𝐺𝑘 is selected

)
=

𝑚𝑘

𝑚
(23)

where 𝑚𝑘 is the sum of times 𝐺𝑘 is selected after 𝑚 runs of the genetic algorithm. Similarly, the subsampling rate of each gene is 
defined as Eq. (24):

𝑆𝑆𝑅𝑔 ≡ 𝑃r (𝑔 is selected in the driver gene set) =

𝑚∑
𝑖=1

𝐼𝑖(𝑔)

𝑚
(24)

where,

𝐼𝑖(𝑔) ≡
{

1 gene 𝑔 is selected in the 𝑖th subsampling

0 otherwise

Based on the statistical results, the parsimonious gene set is obtained by Eq. (25):

Parsimonious set ≡ {𝑔|𝑆𝑆𝑅𝑔 = 1} (25)

For all hypothesis tests, a false discovery rate (q-value) for each gene is calculated by the Benjamini-Hochberg method. Compar-

ing to p-values, q-values are more effective in identifying important genes from numerous trivial ones [33,8,22]. The significance 
threshold for gene q-values is set to 0.1.

2.4. Statistical analysis based on searching results

In this module, the genes with highest possibilities to cause cancer are screened out followed by outputting a series of analysis 
figures. First, the significant genes with their and q-values obtained by each driver identifying method are output as csv files. In 
order to show more intuitively, a scatter plot for each result is generated, of which the horizontal axis represents gene names and the 
vertical axis represents the negative logarithm of the q-values (Fig. 4a). Next, the genes voted by most methods are further selected 
to increase robustness. In particular, all statistical methods except the de novo method are used for voting, since the number of genes 
in a set is chosen manually for the de novo method. Then, for resulting genes, a box plot showing the distribution of q-values for each 
gene (Fig. 4b) and a scatter plot showing the q-values of each method (Fig. 4c) are output to reveal the consistency of both gene 
significance and methods.

Then, based on the information in MAF, we construct a statistical function to analyze the distributions of drivers on certain 
variables. Specifically, the numbers of detected genes on each chromosome, variant class, variant type, and nucleotide mutation type 
are shown by bar plots (Fig. 4d-g).

2.5. Application and implementation

The DriverDetector R package runs on mainstream operating systems such as Windows, macOS, and Ubuntu. The input formats 
of MAF, coverage, covariate and mutation matrix can be txt or Rdata. The reference genome such as hg19 and hg38 can either be 
a folder path or the BSgenome format. The user guide is available in the package vignette. DriverDetector is available at https://

github .com /FrancisWang96 /DriverDetector.

3. Results

3.1. Analysis of predicted genes by DriverDetector on TCGA datasets

To evaluate the effectiveness of our proposed R package, we run DriverDetector on MAF files of multiple cancers from TCGA, 
namely, breast cancer (BRCA), cervical cancer (CESC), esophageal cancer (ESCA), glioblastoma (GBM), kidney clear cell carcinoma 
8

(KIRC), liver cancer (LIHC), lung adenocarcinoma (LUAD), lung squamous cell carcinoma (LUSC), pancreatic cancer (PAAD), rectal 

https://github.com/FrancisWang96/DriverDetector
https://github.com/FrancisWang96/DriverDetector
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cancer (READ), stomach cancer (STAD), and uterine carcinosarcoma (UCS). We first examine the number of predicted genes and the 
overlap with CGC genes (Fig. S1,S2). According to Table S2 and S3, the number of genes derived from 10 individual methods (q≤0.1) 
ranges from 1 to 1384 across all datasets, and the overlap with CGC genes ranges from 0.08 to 1, which illustrates the significant 
differences in results of different methods. By applying the voting mechanism based on 10 methods, we find that the number of genes 
and the CGC overlap can both be well controlled. In Table S4 and S5, the number of genes collectively identified by at least 1 to 
10 methods and the CGC overlaps are shown. As the votes start increasing, the number of predicted genes immediately decreases to 
a reasonable level (<1000), while the overlap with CGC gradually increases (Fig. 3a). We also find that the CGC overlap slightly 
decreases for BRCA, CESC, and LUSC when the required number of votes is 8. Thus, we recommend to set the minimum number of 
votes to 7, which can lead to more resulting genes while ensuring prediction confidence. The genes predicted by at least 7 methods for 
12 cancers are shown in Table S1, it can be seen that the number of predicted genes is less than 100 for all datasets, and an average 
CGC overlap of 0.67 is achieved. To further illustrate the effectiveness of DriverDetector, the genes predicted by at least 7 methods on 
the BRCA dataset are shown as an example. The resulting genes are CASP8, CBFB, CDH1, CTCF, KMT2C, MAP3K1, PIK3CA, RUNX1, 
TBX3, TP53, ARID1A, NCOR1, NF1, and ZFHX4. All of them except ZFHX4 are known drivers in CGC. Although ZFHX4 has not been 
formally certified as a cancer driver, there are biological evidences showing that ZFHX4 has a potential oncogenic function [34,35]. 
Taking the CESC results as another example, according to Table S1, the newly identified drivers for CESC are FLG, ADGRV and HLA-B. 
Clinical results show evidence that the mutations of FLG and HLA-B are risk factors of cancer [36–38]. The oncogenic mechanism of 
ADGRV needs to be further confirmed through clinical studies.

3.2. Consistency evaluation for statistical methods

To evaluate the consistency of each method, we implement five trials for each dataset. In each trial, the dataset is randomly 
divided into two subsets by samples, and the predicted genes based on each half are compared. The consistency is calculated by 2×
(number of intersection)/(sum of number of predicted genes by each method). The average consistencies of five trials are shown in
Table S6. In Table S7, the rank of the consistency on each dataset is calculated for each method, along with the average consistency 
rank and the average CGC overlap rank. According to (Fig. 3b), the method achieving the highest consistency rank is the harmonic 
mean p-value method, followed by Kost’s method, Brown’s method, and Stouffer’s method, indicating that the group of variants of 
Fisher’s method are outstanding in consistency. On the other hand, the highest CGC overlap rank is achieved by the 2D-projection 
method from MutsigCV, followed by the harmonic mean p-value method, Stouffer’s method, Kost’s method, and Cauchy’s method. 
The overall highest rank in consistency and CGC overlap is achieved by the harmonic mean p-value method. For convolution and 
likelihood ratio tests from MuSiC, the main reason of their low consistency and CGC overlap is that the numbers of resulting genes 
are too large (Table S3). However, according to Fig. S1 and S2, among all CGC genes identified by 10 methods, most of them are 
covered by methods from MuSiC, indicating that the rest of genes are also worth investigating. From Fig. S2 and Fig. 3b, it can 
also be seen that Brown’s method identifies a number of CGC genes that are not predicted by other methods while maintaining a 
decent consistency. Thus, the reflection of Brown’s method on genetic mechanisms deserves to be further evaluated. We also test the 
consistency of genes collectively predicted by 7 methods. According to Fig. 3c and Table S6, the overall consistency by applying the 
voting strategy is the highest.

Furthermore, we compared the difference in prediction performance among DriverDetector and several representative methods 
based on different principles. Specifically, a method based on multi-omics data called Rdriver [18], a method based on machine 
learning called DriverML [19], a method based on joint prediction called DriverGenePathway [13], along with MutSigCV [8] and 
MuSiC [12] are used for comparisons. The minimal required votes for DriverDetector are set from 6 to 10. All methods are tested 
on the BRCA dataset, which contains the most samples among all 12 datasets. The measures include the number of predicted genes, 
the overlap with CGC, if new genes outside the CGC list are found, and consistency. The results are summarized in Table 1, where 
the methods are ranked by their consistency. It needs to emphasized that based on the purpose of driver gene prediction methods, 
new genes outside the CGC list are expected to be found. According to Table 1, by setting the minimal required votes to 6,7, and 
8, DriverDetector achieves a high consistency and CGC overlap while predicting new genes. Among all methods that predict new 
genes, MutSigCV achieves the highest overlap with CGC. However, the consistency of MutSigCV is quite low. On the other hand, 
by applying joint prediction, DriverGenePathway also predicts genes with high consistency. However, since all predicted genes are 
already known drivers, its practicality is highly reduced. Overall, we find that DriverDetector is a more effective method for driver 
genes identification.

3.3. Evaluation of the impact of sample size on results

According to Table S2 and S3, huge differences exist in the number of genes identified for different cancers. Specifically, the 
predicted gene number based on the LUAD dataset is far more than the others. Considering that the LUAD dataset contains 567 
samples, which is the second highest among all cancer sets. Therefore, we assess whether sample size has an impact on the results. In
Table S8, the sample size of each dataset, along with the number of predicted genes by at least one method and the overlap with CGC 
is listed. Based on the ranks of sample size, predicted genes, CGC overlap gene number, and CGC overlap percentage, 6 plots in Fig. S3

are generated to show their relationship. Fig. S3 (a-c) show that with the increase of sample size, the number of predicted genes and 
the ones in CGC both increases, while the CGC overlap percentage drops. This indicates that it is hard to achieve a balance between 
9

the number of genes and the overlap percentage of CGC, which is shown more clearly in Fig. S3 (e). Our solution in DriverDetector 
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Fig. 3. Performance evaluation of statistical methods. (a) Overlap of predicted genes by at least 1 to 10 methods with CGC driver list on 12 cancer datasets. (b) Rank 
of 10 methods based on CGC overlap percent and consistency. (c) Consistency comparison among genes predicted by at least 7 methods and each individual method.

Table 1

Performance of cancer driver gene prediction methods on the BRCA dataset.

Method No. genes CGC overlap Consistency New genes identified

DriverDetector_atleast8 7 0.86 0.8 ✓

DriverDetector_atleast6 16 0.81 0.79 ✓

DriverDetector_atleast7 14 0.93 0.72 ✓

Rdriver 30 0.43 0.4 ✓

DriverML 168 0.21 0.32 ✓

MuSiC 36 0.67 0.14 ✓

MutSigCV 23 0.91 0.1 ✓

DriverDetector_all10 2 1 1 ✗

DriverGenePathway 11 1 0.83 ✗

DriverDetector_atleast9 2 1 0.67 ✗

is to control the number of genes and the overlap percent with CGC by adjusting the minimum number of votes, which is a more 
suitable and flexible way considering the impact of sample size.

3.4. Interpretation of the charts generated by DriverDetector

To illustrate the statistical analysis module, the results collectively predicted by all methods on the BRCA dataset are shown in
Fig. 4 as an example. The resulting genes are ARID1A, CBFB, CTCF, KMT2C, RUNX1, TP53, and ZFHX4. As shown in Fig. 4b, the 
10

confidence levels of these genes are slightly different, where ARID1A, CBFB, CTCF, KMT2C, RUNX1, and TP53 are identified with 
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Fig. 4. Results for the BRCA dataset. (a) The q-values after taking the negative logarithms of significant genes identified by the beta-binomial method. (b) A box plot 
of q-values of the result gene set identified by different methods. (c) The q-values of each method. (d) Number of all result genes on each chromosome. (e) Number 
of all result genes on each variant class. (f) Number of all result genes on each variant type. (g) Number of all result genes on each nucleotide mutation type.

high confidence, while ZFHX4 has a relatively lower confidence level than the other genes. Fig. 4c shows more details of the q-values 
obtained by each method, from which we can find that CBFB, KMT2C, RUNX1, and TP53 are the most consistent genes. In bar plots

Fig. 4d-g, we calculate the distribution of all genes below the q-value threshold on major variables, which gives further information 
for analysis. The plots show that the factors such as chr 12, missense mutation, and single-nucleotide polymorphism contain more 
resulting genes than others. Except for searching gene individuals, DriverDetector also has the potential to reveal signaling pathways 
based on the de novo method. By setting the number of genes in each set to 3, the results for 12 cancer datasets are summarized 
11

in Table S9. Here we take the result of LUAD as an example, where a gene set {KRAS, TTN, EGFR} is found. According to the 
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KEGG (Kyoto Encyclopedia of Genes and Genomes) database [39], the gene set is a subset of the Proteoglycans in cancer pathway. 
Proteoglycans are key molecular effectors of cell surface and pericellular micro-environments, which perform multiple functions in 
cancer and angiogenesis by virtue of their polyhedric nature and their ability to interact with both ligands and receptors that regulate 
neoplastic growth and neovascularization [40,41]. Therefore, it can be concluded that DriverDetector is able to effectively identify 
potential driver genes as well as gene sets of high coverage and exclusivity.

4. Discussion

Heterogeneity is a major factor that makes the early diagnosis of cancer difficult. For most cancers, the cause lies in the mutations 
of a group of genes. Therefore, identifying driver genes based on genomic data is an important way to accelerate the research on 
the pathological mechanisms of cancer. However, compared with the huge number of genes, the insufficient number of samples 
greatly increases the probability of random errors. As the application of genomics analyses in biology and biomedicine continues to 
increase, several computational analysis strategies have been developed, while few methods manage to maintain the balance among 
the predicted gene number, the overlap with known drivers, and the consistency of prediction. In the result section, we evaluate the 
results of several representative methods based on different principles. Although methods based on multi-omics data and machine 
learning have become a research hotspot, we believe that when the samples are not sufficient, including more mutational features or 
multi-omics data will further deepen the data imbalance and thus affect the consistency of the results. Similarly, the performance of 
machine learning is strongly affected by sample size, which easily leads to overfitting or insufficient training.

To address existing problems, we develop the DriverDetector R package for robust prediction of cancer driver genes and down-

stream analysis. DriverDetector integrates two widely influential driver gene identification methods (MutSigCV and MuSiC), five 
variants of Fisher’s method, and a de novo method. By running DriverDetector on multiple cancer datasets, we first verify the limi-

tations of individual methods in achieving consistent results. Then, we prove that by applying the voting strategy, the consistency of 
predicted genes is significantly improved, and the circumstances of obtaining too many genes or too low overlap with known drivers 
can be avoided at the same time. We further assess the impact of sample size on results and provide recommendations on the usage 
of DriverDetector. The main highlight of DriverDetector is the collective prediction based on multiple statistical methods, which has 
been verified to be a promising strategy for robust and consistent prediction of cancer driver genes. By adjusting the minimal required 
votes and applying individual methods, DriverDetector is also able to guarantee certain flexibility for various datasets. In addition, 
the extensions of Fisher’s methods demonstrate superiority in achieving consistent results. As sequencing data of various cancers 
increases, DriverDetector can be used to identify new driver genes with robustness, which assists in early diagnosis of cancer and 
development of targeted drugs.

However, DriverDetector also has some shortcomings. First of all, DriverDetector is not applicable to all mutation types, such 
as copy number variations (CNV) and chromosomal structural variations (CSV). Secondly, certain driver genes predicted by a few 
methods could be discarded as a cost for pursuing robustness and consistency. Lastly, some parameters need to be adjusted manually 
based on experience. In future work, other mutation types such as CNV and CSV need to be considered. Automatic parameter selection 
will also be the direction of efforts. In addition, more technics and methods can be combined to uncover the mechanism of cancer. 
We implement DriverDetector as an open-source R package for researchers to study and utilize.
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