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Radiotherapy and surgery are curative treatment options for localized prostate cancer
(PCa) with a 5-year survival rate of nearly 100%. Once PCa cells spread into distant
organs, such as bone, the overall survival rate of patients drops dramatically. The
metastatic cascade and organotropism of PCa cells are regulated by different cellular
subtypes, organ microenvironment, and their interactions. This cross-talk leads to pre-
metastatic niche formation that releases chemo-attractive factors enforcing the formation
of distant metastasis. Biological characteristics of PCa metastasis impacting on
metastatic sites, burden, and latency is of clinical relevance. Therefore, the
implementation of modern hybrid imaging technologies into clinical routine increased
the sensitivity to detect metastases at earlier stages. This enlarged the number of PCa
patients diagnosed with a limited number of metastases, summarized as oligometastatic
disease. These patients can be treated with androgen deprivation in combination with
local-ablative radiotherapy or radiopharmaceuticals directed to metastatic sites.
Unfortunately, the number of patients with disease recurrence is high due to the
enormous heterogeneity within the oligometastatic patient population and the lack of
available biomarkers with predictive potential for metastasis-directed radiotherapy.
Another, so far unmet clinical need is the diagnosis of minimal residual disease before
onset of clinical manifestation and/or early relapse after initial therapy. Here, monitoring of
circulating and disseminating tumor cells in PCa patients during the course of radiotherapy
may give us novel insight into how metastatic spread is influenced by radiotherapy and
vice versa. In summary, this review critically compares current clinical concepts for
metastatic PCa patients and discuss the implementation of recent preclinical findings
improving our understanding of metastatic dissemination and radiotherapy resistance into
standard of care.
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INTRODUCTION

Standard of care for metastatic prostate cancer (PCa) patients is
systemic therapy, e.g. androgen deprivation therapy (ADT) or
docetaxel-based chemotherapy. First-line therapy for non-
metastatic, castration resistant prostate cancer (CRPC) patients is
systemic ADT based on second-generation nonsteroidal
antiandrogens enzalutamide or apalutamide with a significant
benefit in metastasis free survival. At prostate-specific antigen
(PSA) recurrence after definitive local therapy, e.g. radical
prostatectomy, radiotherapy, or both, prostate-specific membrane
antigen-based imaging can identify local recurrence or oligo-
metastases (1). This increases the number of diagnosed patients
with asymptomatic metastasis and rising PSA level. High-dose
external beam radiotherapy can successfully control those lesions
in hormone-naïve and even in metastatic CRPC patients (2–4).
However, up to 70% of these patients will experience further
disease progression. Established methods for stratification of PCa
patients into prognostic subgroups are solely based on PSA kinetics
(e.g. PSA velocity, PSAdoubling time), but not on biological, disease-
related differences.Whether the observed differences in response are
related to specificbiologicalphenotypes isoftenhypothesized, butnot
clinically proven yet. Therefore, the characterization of cellular
signatures for radiotherapy response coming from the primary
tumor or distant metastasis, e.g. based on liquid biopsy analysis,
has the potential to detect underlying resistance and metastasis-
initiating mechanisms. Despite the increasing understanding of the
cellular and molecular processes underlying the metastatic cascade,
there are still key questions to answer: How do metastases differ
molecularly and phenotypically from the primary tumor? Is it
possible to predict metastatic spread from signatures within the
primary tumor? Can the cellular composition and degree of
heterogeneity in the metastases be used as signature for patient
stratification? How efficient can metastasis-directed therapy be
implemented into clinical routine and do PCa patients benefit? To
answer the raised questions, this review summarizes the current
knowledge about the metastatic cascade in PCa, introduces state-of-
the-art imaging modalities to visualize microscopic metastatic
lesions, and discusses novel developments in the field of metastasis-
directed therapies.Moreover, we introduce the concept of circulating
and disseminating tumor cells and discuss their prognostic potential
for patient stratification and therapy monitoring.
CHARACTERISTICS OF METASTATIC
SITES IN PROSTATE CANCER

Routes of Metastasis in Prostate Cancer
The invasion of tumor cells into the surrounding tissue and the
seeding of metastases remains a challenging issue, as it represents
the main cause of increased mortality among patients (5, 6).
During metastasis formation, tumor cells undergo a complex
multi-stage intra- and intercellular remodeling process. The
metastatic cascade can be described by five major steps:
1) invasion throughout the basement membrane and migration
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into the surrounding tissue; 2) intravasation into the vasculature
or lymphatic system; 3) survival within the circulation;
4) extravasation from the vasculature into the tissue; and
5) colonization and formation of metastatic lesions at
secondary sites (Figure 1) (5, 7). Each stage represents
enormous environmental pressure and energetically demanding
conditions for the cancer cells. The whole process is thought to be
extremely inefficient and less than 0.1% of the cancer cells that
detach from the primary tumor survive within 24 h (8, 9).
Moreover, different tumor entities display a different metastatic
pattern depending on cell-intrinsic and extrinsic regulatory
mechanisms. The so-called pre-metastatic niches support the
adaptation of cancer cells to their new environment and
increase the rate of metastases. Despite the circulation of tumor
cells is a random process, the metastasis formation follows
specific routes. This was already proposed within the seed-and-
soil theory by Sir Stephen Paget in 1889 who stated that distant
organs provide a specific environment as soil for cancer cells to
seed secondary tumors (10). The concept of metastatic
organotropism defines tumor entity-specific target organs.
Organotropism is regulated by circulation pattern, tumor cell-
intrinsic signaling, organ-specific niches, and the communication
between tumor cells and the host microenvironment (11). PCa
cells preferentially metastasize into bone and lung as secondary
site. Within a large autopsy study of 19,000 cancer patients
including 1,600 PCa patients, the bone was with 90% the most
frequent metastatic site in PCa (12). This was followed by
metastasis to the lungs (46%), liver (25%), pleura (21%), and
adrenals (13%). Within the bone, metastases were mostly detected
at the spine (90%), whereas ribs (18%), long bones (15%), and
skull (8%) were less frequently affected. Within the spine, the
lumbar spine is affected most (90%), followed by the thoracic
(66%) and cervical spine (38%), suggesting that PCa cells follow a
venous spread from the prostate to the spine. Besides the
hematogenic spread through the blood stream, cancer cells can
enter the lymphatic system. As such, PCa cells favor settlement
into the paraaortic, pelvic, and mediastinal lymph nodes (12). Of
note, there is a strong association between lymphatic and
hematogenous spread. Over 84% of the tumors with paraaortic
and pelvic lymphatic metastasis also displayed hematogenous
metastasis, whereas when paraaortic and pelvic metastasis were
absent, only 16% showed hematogenous spread. Finally, the nodal
status correlates strongly with the occurrence of distant
metastases, and both of them are associated with advanced
histological grade and tumor growth, highlighting the
importance of the detection of metastasis as a major prognostic
factor in PCa. The occurrence of lymph node metastasis in
patients with PCa indicates a poor prognosis (13–17) and it is
frequently associated with a poor response to radical
prostatectomy and radiation therapy. Thus, it is critical to
understand the mechanisms underlying lymph node metastasis
to improve the care of patients with PCa.

Characteristics of Lymph Node Metastasis
Lymph node metastasis positive PCa patients are at high risk for
further disease progression (13–17) and a poor response to
March 2021 | Volume 10 | Article 627379

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Klusa et al. Radioresponse of Metastatic Prostate Cancer
radical prostatectomy and radiation therapy. However, data from
randomized clinical studies demonstrated that local therapy in
combination with ADT can result in long-term disease control
(18, 19). Thus, it is critical to understand the mechanisms
underlying lymph node metastasis to improve the care of
patients with PCa. PCa cells form a pre-metastatic niche in
lymph nodes as tumor-adjacent lymph nodes display changes in
the architecture and immune function even before tumor cell
dissemination and lymph node colonization. The decreased
immune function is reflected by the reduced density of
paracortical antigen-presenting dendritic cells and T cells (20,
21), but also by the attraction of immune-suppressive cell types
such as myeloid-derived suppressor cells or tumor-associated
macrophages (22). This is a critical step to escape recognition
and elimination by immune cells in the lymph nodes. Several
means of bi-directional pre-metastatic niche communication have
been proposed, e.g. that the lymphatics produce factors that attract
PCa cells, but also that PCa cells or other cells present in the tumor
microenvironment, such as cancer-associated fibroblasts (CAFs),
produce growth factors and cytokines that promote lymph-
angiogenesis. Recently, the CC-chemokine ligand 21-CC
chemokine receptor 7 (CCL21-CCR7) axis has been implicated
in PCa migration into the lymph nodes (23). High expression of
CCL21 was detected in lymph node metastasis of PCa patients.
The tumor necrosis factor a (TNF-a) has been shown to induce
CCR7, the receptor for CCL21, and migration of PCa cells.
Moreover, the epithelial membrane protein 1 (EMP1) was
identified to be induced in PCa cells after contact with stroma
cells subsequently promoting cancer progression and metastasis
formation in the lymph nodes and lung via a Rac1-dependent
mechanism (24). These tumor-stroma interactions are facilitated
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by the glycoprotein podoplanin and the extracellular matrix
protein tenascin-C expressed by CAFs. A high podoplanin and
tenascin-C expression in the stroma of PCa biopsies strongly
correlates with tumor stage, lymph node metastasis, and poor
prognosis (25, 26). Lymph-angiogenesis studies identified the
vascular endothelial growth factor receptor 3 (VEGFR3) and its
ligands vascular endothelial growth factor (VEGF) -C and -D as
critical determinants of lymphatic endothelial cell proliferation
and sprouting of lymphatic vessels. In PCa, expression of VEGF-C
and VEGFR3 is highly correlated with regional lymph node
metastasis and associated with a poor prognosis (27–29). A
recent study showed that blocking VEGF-C or VEGFR3 with
antibodies or RNA interference reduced lymph node and distant
metastasis, while not interfering with the growth of the primary
tumor (30). This is in contrast to VEGFR2, whose inhibition
reduced metastasis mainly due to the reduction of primary tumor
growth by suppressed angiogenesis. Recently, phase I/II clinical
trials have been completed to test the safety of VEGFR3 or
VEGFR2 inhibition in patients with advanced solid tumors.
Despite good tolerability, VEGFR3 or VEGFR2 inhibition
showed no benefit in suppressing tumor growth or lymph node
metastasis. However, these studies show that VEFGR inhibition is
safe paving the way for potential combination therapies (31, 32)
(Figure 2A).

Taken together, the concept of the pre-metastatic niche also
holds true in prostate cancer lymph node metastasis. Identifying
key pathways of niche communication may have significant
implications for prognostic and therapeutic purposes in
prostate cancer, such as targeting the VEGR3-VEGF-C axis to
halt the progression of lymph node metastasis and improve the
patient´s prognosis.
FIGURE 1 | The metastatic cascade in prostate cancer and molecular effects of radiotherapy. During tumor invasion throughout the basement membrane and
further migration into surrounding normal tissue, prostate cancer (PCa) cells use epithelial-to-mesenchymal-transition (EMT) as biological program. Intravasation
allows tumor cells to enter the circulation including the lymphatic and/or vascular system. To extravasate into distant tissue prostate circulating tumor cells (CTCs)
have to attach to the inner vessel wall before leaving the blood system. Once the cells left the circulation they may settle down and colonize secondary organs e.g.
within bones as the main metastatic site for PCa patients.
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Characteristics of Bone Metastasis
The propensity of PCa cells to metastasize to the skeleton, and
further progression to other organs, is a principal cause of
morbidity and mortality among the male population. Although
bone metastases can be initially asymptomatic, their consequences
are often detrimental due to the occurrence of skeletal-related
events such as fractures, bone pain, and spinal cord compression
that markedly reduce the quality of life. While most of the solid
tumors, such as breast cancer and melanoma, tend to cause
osteolytic lesions with excessive bone resorption, bone lesions
resulting from PCa are primarily osteoblastic and associated with
uncontrolled low-quality bone formation (33).

Similar to lymph node metastasis, one of the crucial steps in
the establishment of bone metastases is the formation of the
metastatic niche (34). This process relies on the interactions
between prostate cancer cells and bone resident cells to create a
pro-tumorigenic environment in an otherwise non-permissive
site. During the initial phase of bone metastasis, prostate cancer
cells target the endosteal niches and compete with hematopoietic
stem cells in order to survive and thrive (35). Once in the niche,
disseminated prostate cancer cells invade the surrounding tissue
by acquiring a bone-like phenotype, also known as osteo-
mimicry. In fact, tumor cells modify their molecular signature
by releasing factors originally involved in bone formation and
maintenance, such as osteocalcin, alkaline phosphatase, and
bone morphogenetic proteins (36, 37). This leads to the
disruption of physiological bone remodeling and the onset of
pathological lesions.

Among all the molecules that actively participate in PCa
metastasis, bone-derived-chemokines have been shown to be
crucial for a successful colonization of the skeleton. One of the
most studied chemokines secreted by bone marrow stromal cells
and mature osteoblasts is the C-X-C motif chemokine ligand 12
(CXCL12). Experimental evidence revealed that secretion of
osteoblastic CXCL12 triggers dissemination of tumor cells
from the bloodstream to the target site by binding the receptor
C-X-C chemokine receptor type 4 (CXCR4) located on the
tumor cells (38, 39). Inhibition of CXCL12/CXCR4 axis using
a CXCR4 antagonist compromised tumor growth by altering the
interaction of cancer cells with osteoblast niches (40, 41).
However, this treatment failed to reduce already established
metastasis (41, 42), suggesting that CXCL12/CXCR4 axis is
relevant during the initial colonization phase, but not at the
late stage of the disease. In addition, it has been shown that the
binding of CXCL12 to its receptor enhances the expression of a5
and b3 integrins in PCa cells, two major glycoproteins involved
in tumor progression (43).

Other factors involved in tumor retention within the bone
marrow are the adhesion proteins. Huang et al. demonstrated
that the expression of cadherin-11 in PCa cells enhances the
metastatic spread to bone by providing a physical link to the
osteoblastic component (44). In accordance with that, clinical
specimens confirmed higher levels of cadherin-11 in metastasis
compared to the primary site (45). In addition, gene expression
analyses showed that cadherin-11 facilitates PCa migration and
invasion through upregulation of invasive-related genes, such as
Frontiers in Oncology | www.frontiersin.org 4
metalloproteinases (MMP) -7 and -15 (44). Results from studies
investigating the role of bone cells for prostate carcinogenesis
further revealed that osteoblasts redirect PCa cells toward the
endosteal niche by expressing annexin 2, an adhesion molecule
involved in osteoclast activation and mineralization (46, 47).
Interaction of tumor cells with osteoblasts activates gap junction
signaling with a subsequent impairment of the bone matrix
structure (48). For example, high expression of the gap
junction subunit connexin 43 has been reported to alter
osteoblast cytoskeletal organization and enhance migration of
tumor cells (49) (Figure 2B).

After colonization to the bone, PCa cells adapt to the foreign
microenvironment and escape immune surveillance by entering a
quiescent phase, also known as dormancy. Dormant tumor cells
exhibit a reversible cell cycle arrest in G0-G1 phase, in which they
remain viable but do not proliferate. Thus, quiescent cancer cells
represent a clinical challenge since they are commonly chemo-
resistant. Stroma-derived growth arrest-specific protein 6 (Gas6)
has been shown to induce dormancy in PCa cells by binding to the
receptor tyrosine kinases family member Tyro3, Axl, and Mer
(TAM) and downstream activation of multiple signaling
pathways, including MAPK and phosphoinositide 3-kinase
(PI3K)-Akt (50). The engagement of annexin 2 on PCa cells
stimulate Axl, which contributes to a dormant state and drug
resistance in metastatic cells (51). While Axl levels are significantly
high in quiescent cells, Tyro3 has been associated with rapid
tumor growth, suggesting that a balance between the expression of
Axl and Tyro3 might influence the switch of PCa cells from a
dormant to proliferative state and vice versa (52). Moreover, Kim
et al. found that the binding of PCa cells to osteoblasts in the
endosteal niche induces the expression of TANK-binding kinase 1
(TBK1) in tumor cells, which in turn inhibits mTOR signaling
pathway and induces cell cycle arrest (53). Finally, recent studies
showed that two members of the transforming growth factor beta
(TGF-b) superfamily, TGF-b2, and BMP-7, play a crucial role in
metastatic dormancy. Specifically, osteoblast-derived TGF-b2
activates TGF-bRIII signaling in PCa cells with a subsequent
phosphorylation of p38MAPK and interruption of the cell-cycle
in G1-phase through the increase of the cell cycle inhibitor
p27 (54). Similarly, stroma-derived BMP-7 suppresses the
proliferation of prostate cancer cells through an increased
expression of the mitotic inhibitors p21 and p27 (Figure 2C).
Even though dormancy ensures tumor cell survival within the
bone, the formation of detectable metastasis requires the exit of
PCa cells from the quiescent state. Reactivation can be achieved by
endosteal niche remodeling due to activation of osteoclastogenesis,
meaning the differentiation of bone-resorbing osteoclasts from
myeloid precursor cells (55). For instance, in vivo experiments
have shown that induced by castration bone resorption leads to
increased bone metastasis, a process that can be prevented using
osteoclastic inhibitors, such as bisphosphonates or receptor
activator of nuclear factor kappa-B ligand (RANKL) inhibitors
(56). Uncontrolled activation of osteoclasts promotes a vicious
cycle of growth factor signaling between bone resident cells
and cancer cells leading to a final outgrowth of the tumor.
From a clinical perspective, several trials have investigated the
March 2021 | Volume 10 | Article 627379
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FIGURE 2 | Prostate metastases within lymph nodes and bone. (A) Prostate cancer cells form a pre-metastatic niche in lymph nodes prior dissemination and
colonization to the lymph nodes. The decreased immune function is reflected by the reduced density of dendritic cells and T cells but also by the attraction of myeloid-
derived suppressor cells (MDSCs) or tumor-associated macrophages. PCa cells and surrounded cancer-associated fibroblasts release soluble factors such as tumor
necrosis factor a (TNF-a), CC-chemokine ligand 21 (CCL21), and interleukin-8 (IL-8) involved in pre-metastatic niche formation within lymph nodes. CCL21 induces
chemokine receptor 7 (CCR7) on PCa cells. Epithelial membrane protein 1 (EMP1) is induced in PCa cells after contact with prostate stromal cells and likely promotes
metastasis into the lymph nodes via a Rac1-dependent mechanism. Lymph-angiogenesis involves the outgrowth and remodeling of lymphatic vessels and is induced by
vascular endothelial growth factor C (VEGF-C) secreted from PCa cells and vascular endothelial growth factor receptor 3 (VEGFR3) on lymphatic vessels. (B) Beside
lymph nodes, the bone is a major metastatic site for PCa. The C-X-C motif chemokine ligand 12 C-X-C chemokine receptor type 4 (CXCL12-CXCR4) signaling guides
disseminating PCa cells into the bone where they colonize within already formed pre-metastatic endosteal niche close to osteoblasts. CXCL12/CXCR4 binding enhances
the expression of a5 and b3 integrins in PCa cells and reinforces their adhesion to the extracellular matrix (ECM). Prostate disseminated tumor cells (DTCs) target the
endosteal niches and compete with hematopoietic stem cells (HSCs) in order to survive. In the niche, DTCs release factors originally involved in bone formation and
maintenance, such as osteocalcin, alkaline phosphatase, and bone morphogenetic proteins (BMP). DTCs support osteoblastic activity through the release of fibroblast
growth factors (FGFs), insulin-like growth factors (IGFs), VEGFs, endothelin 1 (ET-1), Wnt pathway-related factors, and BMPs. Moreover, adhesion proteins facilitate the
metastatic spread to the bone, including cadherin-11 (Cdh11) upregulating metalloproteinases MMP-7 and MMP-15. Osteoblasts redirect prostate cancer cells toward
the endosteal niche by expressing Annexin2 (Anx2). PCa cells and other cells within the bone microenvironment subsequently are co-regulated throughout a vicious cycle
e.g., via receptor activator of nuclear factor kappa-B ligand (RANKL). (C) Tumor cells within a quiescent phase, also known as dormancy, exhibit a reversible cell cycle
arrest in G0 phase. Stroma-derived growth arrest-specific protein 6 (GAS-6) induces dormancy by binding the Tyro3, Axl, and Mer receptor tyrosine kinases. Dormancy is
also regulated by the expression of TANK-binding kinase 1 (TBK1) induced by osteoblast and PCa cell interactions inhibit mTOR signaling and induce G0 phase. Stroma-
derived BMP-7 suppress the proliferation of PCa cells through increased expression of the mitotic inhibitors p21 and p27. Additional regulators of dormancy are GDF10
and TGF-b which phosphorylates p38MAPK.
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efficacy of osteoprotective drugs in advanced PCa (57).
Administration of bisphosphonates, e.g., zoledronic acid, has
consistently shown protection against bone loss in patients
receiving endocrine therapy compared with placebo (58, 59).
Despite promising results obtained using animal models (56),
there is no clear evidence of survival improvement in humans (60,
61). Besides zoledronic acid, denosumab, a RANKL inhibitor has
been validated as an effective antiresorptive agent in the treatment
of bone metastasis in PCa patients. In a randomized phase III
study, denosumab significantly reduced skeletal-related events and
improved pain control compared to bisphosphonates (62).
However, more long-term follow-up studies are needed to
identify potential complications and define the time point for
treatment initiation (63, 64).

In summary, despite significant progress into mechanisms of
PCa, further analyses need to be addressed in order to unravel
the molecular basis of bone metastasis at both early and late
stages. This will help to reduce the rate of metastasis formation
and eventually develop new molecular targeting strategies for
PCa management.

Molecular Characteristics of Metastasis in
Comparison to Primary Tumor
The complex metastatic cascade is accompanied by a multitude of
molecular and phenotypic changes within tumor cells to enable
metastasis formation. When cancer cells leave the primary tumor,
cell-autonomous characteristics that promote survival in the
circulation and within target organs are extremely important (7).
Genetic and epigenetic alterations within the primary tumor and
acquired at the metastatic site contribute to phenotypic changes
and corresponding host interactions (65). A genetic relationship
between the primary tumor and the metastases is rather seen as
linear progression whereas genetic divergence is interpreted as
parallel development (66). Within a published study in 2009, Li
et al. examined copy number variations (CNVs) of multiple
metastases within 24 patients and found that a majority of
samples had the same CNVs in primary tumor and metastases
pointing to a linear progression model with monoclonal origin for
metastatic PCa (66, 67). A 17-year longitudinal sampling of lethal
PCa cases with subsequent comprehensive genomic and
pathologic analysis supported this finding. Haffner et al. traced
the lethal metastatic clone back to the specific lesion of origin (68).
Surprisingly, the lethal clone, defined by the presence of
phosphatase and tensin homolog (PTEN), tumor protein P53
(TP53), and speckle-type POZ protein (SPOP) mutations arose
from a tumor region with pathological characteristics of a low-risk
area and low Gleason score (68, 69). Primary PCa displays an
enormous heterogeneity, which is reflected by distinct molecular
subtypes and a wide variety of clinical outcomes (70). A
comprehensive molecular analysis of 333 primary PCa samples
from The Cancer Genome Atlas (TCGA) defined seven subtypes
based on erythroblast transformation specific transcription factors
(ETS) fusions or mutations in SPOP, forkhead box A1 (FOXA1),
and isocitrate dehydrogenase 1 (IDH1), but demonstrated a
substantial epigenetic heterogeneity within the subgroups (70).
When comparing sequencing data from primary PCa and
Frontiers in Oncology | www.frontiersin.org 6
metastatic CRPC, it becomes clear that metastases carry
significantly more mutations and copy number alterations than
primary tumors (65, 71). In particular, metastases show frequent
alterations of the androgen receptor (AR), TP53, retinoblastoma-
associated protein (RB1), lysine N-methyltransferase KMT2C and
KMT2D, DNA repair genes, andmembers of the phosphoinositide
3-kinases (PI3K) signaling pathway (71). A hallmark of PCa is the
dependency on AR signaling pathways for tumor progression
illustrated by the increased abundance of AR amplification.
Prospective AR diagnostics impact on the clinical choice for
AR-specific targeting therapies (71). In a multicenter study, a
significantly higher incidence of germline mutations was found in
metastatic PCa patients (11.8%) compared to 4.6% in men with
localized PCa (72). Mutations were found in 16 genes, including
key regulators of DNA-repair such as BRCA2, ATM, CHEK2,
BRCA1, RAD51D, and PALB2. These defects in DNA repair may
contribute to a further increase of mutational burden. Moreover,
they can be accounted as metastasis driver mutations impacting
clonal expansion while passenger mutations have no effect on the
cancer cell (73). Within the primary tumor, specific genes are
selectively mutated at early or later stages during tumor
progression enforcing clonal evolution (74).

Clonal Evolution During
Metastatic Cascade
Major determinants for metastasis formation are tumor cell
adaptability and plasticity to its changing microenvironment
during disease progression and therapeutic intervention (75).
Early metastatic features are already selected within the primary
tumor under immune pressure, within hypoxic areas or at the
invasive front (7). In PCa, it appears that individual clones within
the primary tumor acquired pro-metastatic properties and the
most potent clones are responsible for metastasis formation or
re-seeding of the primary tumor-bed e.g., after surgical removal
(7, 76). Therefore, PCa cells undergo an epithelial-to-
mesenchymal transition (EMT) in response to TGF-b secreted
by surrounding stromal cells. EMT is a reversible phenotypic
switch where epithelial cancer cells lose their intercellular
adhesion and polarization in order to gain motility and
invasiveness (77).

Clonal evolution analysis in metastatic PCa patients based on
a deep sequencing technique revealed a branching phylogenetic
architecture from primary tumor to distant metastasis with
stage-specific mutational signatures (76). Interestingly, Hong
et al. detected clones from various tumor stages within the
blood implying multiple, temporally separated waves of tumor
cell dissemination from the primary tumor. This parallel model
of prostate metastasis assumes that metastasis-initiating clones
may occur already before clinical diagnosis of the primary tumor
(65). Another study found that an initial hormone-naïve
metastasis clone contained two sub-populations after
treatment. One subclone derived from the original clone and
the other origined from distant sacral metastasis. This points to
the requirement of specific genetic alterations for metastatic
colonization that may evolve outside of the primary tumor and
describes, for the first time, a pre-requisite for the parallel
March 2021 | Volume 10 | Article 627379

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Klusa et al. Radioresponse of Metastatic Prostate Cancer
progression model (65, 76). For example, the acquisition of TP53
missense mutations in low-frequency sub-clones inside the
primary tumor and their subsequent accumulation in
metastasis samples may indicate that TP53 mutations increase
the metastatic potential of tumor clones and are key drivers for
PCa metastasis (74, 76). In ten patients with metastatic CRPC,
Gundem et al. found evidence for the existence of polyclonal
seeding at distant sites. They found that metastases frequently
spread from metastasis to metastasis, either by de-novo
monoclonal seeding of daughter metastases or through the
transfer of multiple tumor clones (5/10 patients, 50%). Within
those lesions, they found mutations in tumor suppressor genes
occurring as a single event in distinct clones, whereas mutations
in AR signaling were detected simultaneously in multiple
metastatic clones (78). Additional studies validated this
polyclonal seeding based on the genomics analysis (65, 78),
which indicates that subclones may cooperate or compete at all
steps during metastatic cascade (78). Another study published by
Gundem et al. investigated the polyclonal seeding under
therapeutical pressure and identified oncogenic alterations
associated with ADT resistance such as MYC amplification or
CTNNB1 mutation. The authors hypothesize that polyclonal
expansion may be driven by distinct resistance mechanisms
(78, 79). They also found that multiple metastases were more
closely related to each other than to the primary tumor.
Phylogenetic trees illustrate the acquisition of mutations in
PCa metastases either linear, parallel, or branched (78). It
seems that metastatic PCa cells share a common genetic
fingerprint and thus may share a common heritage.

To sum up the molecular part, ETS fusion and mutations in
FOXA1, FLI1, SPOP, and IDH1 are tumorigenic drivers and the
basis for PCa heterogeneity (70). Missense mutations of TP53
and PTEN occur before or at early stages during metastatic
cascade (68, 76) determining them as metastasis drivers. One
interesting finding is that AR expression, which is altered in
>60% of metastatic prostate cancer (80), changes after the
occurrence of metastases. Currently, it is unclear whether rare
subclones originate from the primary tumor or early metastases
harbor AR alterations and promote ADT resistance. It may be
also possible that such alterations occur after metastasis
formation and ADT (81). Finally, it has been demonstrated
that metastatic spread is not unidirectional and metastatic
clones may re-seed the original tumor bed (76, 78). This
impacts the clinical characteristics of metastatic PCa and
therapeutic options.
DIAGNOSTIC IMAGING OF PROSTATE
CANCER PATIENTS WITH
DISSEMINATED DISEASE

Imaging of Metastasis Status in Prostate
Cancer Patients
The screening for PSA level in the serum of patients was
introduced in the late 1980s (82) and enabled a dramatic
Frontiers in Oncology | www.frontiersin.org
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increase in early PCa detection (83). On the other hand, PSA is
not solely a PCa-specific biomarker and, as such, leads to
overdiagnosis and overtreatment of clinically insignificant
cases, representing a significant burden for patients (84).
Moreover, absolute PSA level does not always correlate with
prognosis (85). Therefore, more specific and sensitive PSA-based
values like PSA density (PSAD) (86), PSA velocity (PSAV) (87),
free-to-total PSA (F/T PSA) (88), and PSA doubling time
(PSADT) (89) are seen as options with stronger predictive
value. For example, PSADT is defined as the length of time for
two-fold PSA level increase. A PSADT <6 months is strongly
associated with metastatic disease, increased PCa mortality (90),
and relapse (91). Nonetheless, the reported benefit of PSADT in
PCa management did not enter clinical routine and some studies
even reported discrepant results indicating that further studies
are required to determine the reliability of PSADT and other
available biomarkers (92–94).

Recommended diagnostics for men at risk of extra-prostatic
cancer spread include computer tomography (CT), skeletal
scintigraphy and positron emission tomography (PET) as well as
combined imaging modalities like single photon emission
computed tomography (SPECT)/CT, PET/CT, and PET/
magnetic resonance imaging (MRI). The most promising
strategy is represented by radiotracer-based PET imaging which
mainly employs changed metabolic activity or specifically
overexpressed receptors (95). The choice of a respective
radiotracer has to be considered carefully as one single
radiotracer is usually not suitable to visualize all clinical stages
of PCa. Moreover, its utilization is strongly dependent on the level
of malignant tissue, tumor heterogeneity (96), and previously
applied treatments (97). The 2-deoxy-2-18F-fluoro-D-glucose
(18F-FDG) is the most commonly used radiotracer in clinical
PET imaging worldwide. It is seen as limited with rather low
overall sensitivity for PCa compared to other malignancies with
a higher glycolytic rate (98). In contrast, patients with discordant
18F-FDG-avid metastatic CRPC are usually identified with a poor
prognosis and short overall survival (99). Thus, 18F-FDG-PET
imaging represents a relevant prognostic indicator correlating with
enhanced glucose transporter 1 expression in high-risk PCa
patients (100). The androgen receptor (AR) represents a key
molecular target for AR-binding 16b-18F-fluoro-5a-
dihydrotestosterone (18F-FDHT). 18F-FDHT-PET enables
detection of metastatic CRPC with overexpressed AR and
indicates a low pharmacological efficacy of ADT (101). Another
commonly applied strategy is represented by the utilization of
multiple radiolabeled choline derivatives such as 11C-methyl-
choline and 18F-fluorocholine (102). Choline is phosphorylated
by the choline kinase overexpressed in PCa and necessary for
malignant transformation (103). 11C- and 18F-choline-PET
demonstrated clinical benefit for the detection of bone and
lymph node metastases. However, in the latter case, the
sensitivity is strongly dependent on PSA level as demonstrated
by detection rates of less than 50% for PCa patients with serum
PSA level <2 ng/ml (104). Moreover, anti-1-amino-3-18F-
fluorocyclobutane-1-carboxylic acid (18F-FACBC, Axumin®,
Blue Earth Diagnostics) was proven to be superior to 11C-
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methyl-choline in PET imaging for PCa patients with biochemical
relapse after radical prostatectomy (105). Finally, 18F-sodium
fluoride (Na18F) is a hydroxyapatite-affine bone-seeker which is
incorporated at sites of active bone remodeling adjacent to
metastatic foci analogically to 99m-technetium medronic acid
(99mTc-MDP) used for skeletal scintigraphy (106). However,
18F-NaF-PET was shown to have a higher sensitivity and
specificity for the detection of osseous metastatic disease
compared to scintigraphy (107).

Radiopharmaceutical Options
Among all previously mentioned radiotracers for PCa imaging,
particular attention is given to radiotracers targeting the
peptidase prostate-specific membrane antigen (PSMA) (108).
PSMA expression reflects the progression of the disease, with
the highest expression level in the late stage of metastatic CRPC,
and enables monitoring of disease recurrence (109). Diverse
PSMA-directed antibodies, antibody-derivatives, peptides,
peptidomimetics, small molecules, and nanoparticles have been
designed as capable diagnostic, therapeutic, and/or theranostic
constructs for the management of PCa (110–113). As reported by
Zippel et al., more than 100 clinical trials utilize PSMA-specific
diagnostics or therapeutics currently (114). Until now, it has
been shown that 68Ga-PSMA-PET outperforms all standard-of-
care imaging within sensitivity and specificity for PCa detection
(115). In the randomized proPSMA trial for primary staging of
localized high risk prostate cancer, PSMA-based PET imaging
showed superior sensitivity and specificity over conventional
imaging for accurate diagnosis of nodal and distant metastases
{27% (95% CI 23–31) vs. 65% [60–69]; p<0·0001}. Further, 18F-
PSMA-PET has a significant impact on PCa patient management
as shown by a prospective clinical study (116). The most
prominent diagnostic radioligand for the imaging of PSMA-
positive PCa is 68Ga-PSMA-11 (117). Comprehensive meta-
analysis by Perera et al. demonstrated high PCa detection rates
for 68Ga-PSMA-PET with 59% for patients with low PSA levels
of 0.5–0.99 ng/ml, 75% for 1–1.99 ng/ml and 95% for PSA values
>2 ng/ml (118). In parallel, 18F-labeled PSMA ligands like 18F-
DCFPyL (119) and 18F-PSMA-1007 (120) may gain even more
clinical importance. For example, 18F-PSMA-PET/CT was able
to visualize metastatic lesions in >70% of CRPC patients that
were not previously detected (121) and in >67% patients with
biochemical recurrence whose conventional imaging has also
failed (122). On the other hand, 5%–10% of patients with
primary PCa are PSMA-negative and PSMA-targeted diagnosis
is not applicable in those patients (123). Additionally, patients
who receive long-term ADT demonstrate a significant reduction
in PSMA expression (97). In this scenario, other targets such as
gastrin-releasing peptide receptor (124), fibroblast activation
protein (125), and somatostatin receptor (126) demonstrated
clinical potential (Table 1).
Imaging and Theranostic of
Skeletal Metastasis
The skeletal compartment is the most frequent site of metastases
in PCa patients (127). Bone metastases occupy a nutrient-rich
Frontiers in Oncology | www.frontiersin.org 8
niche that enhances the treatment-resistance of disseminated
PCa (128). Approved agents for palliative therapy of PCa
patients with bone metastasis include beta-emitting particles
such as strontium chloride (89Sr-chloride) (129) and
samarium-153-ethylene-diamine-tetra-methylene-phosphonate
(153Sm-EDTMP) (130). However, both options did not improve
overall survival and demonstrated limited tolerability due to side
effects on the bone marrow and hematopoietic system. On the
other hand, alpha-emitting particles including agents such as
radium-223 dichloride (223RaCl2, Xofigo®, Bayer Healthcare)
revealed overall survival benefit and reduced symptomatic
skeletal events (131). The ALSYMPCA trial reported that the
application of 223RaCl2 increases median overall survival from
11.3 to 14.9 months and time to develop skeletal-related events
from 9.8 to 15.6 months (132).

The novel concept of theranostic approaches combines
diagnostics with therapy. Due to the increased availability of
potent PSMA-directed agents, several PSMA-labelled
radiopharmaceuticals are used in the late stage of PCa.
Meanwhile, beta-particle-emitting 177Lu-PSMA-617 (133–136)
and alpha-particle-emitting 225Ac-PSMA-617 (137–139) became
the main candidates for PSMA-targeted radioligand therapy of
patients with metastatic CRPC. A retrospective multicenter phase
I study with 145 patients demonstrated safety and efficacy of
177Lu-PSMA-617. The clinical benefit exceeded those of other
third-line systemic therapies and prolonged the overall survival in
patients without any other treatment option (134, 140–142). A
prospective single center phase II trial validated the high response
rate, low toxicity, and improved quality-of-life in additional 50
patients for the 177Lu-PSMA-617-based theranostic (143). The
long-term follow-up of this study including re-treatment upon
progression demonstrated higher response rates than other third-
line therapies, as far as such comparison between different studies
is valid (144). A systematic review from von Eyben et al. concluded
that 177Lu-PSMA-targeted radioligand therapy decreased PSA
level in patients twice as often as chemotherapy (145). Another
agent, the 225Ac-PSMA-617, revealed an even higher radiological
and biochemical response rate in patients with poor prognosis.
However, those patients experienced an increased rate of severe
side-effects like irreversible xerostomia (139). The current focus is
given to the prospective international multicenter phase-III trial
called VISION (NCT03511664) which evaluates 177Lu-PSMA-617
for the treatment of 750 patients with progressive PSMA-positive
metastatic CRPC (146). The outcome of this clinical trial might
clarify the role and clinical potential of 177Lu-PSMA-targeted
radioligand therapy for the management of metastatic CRPC as
second-line therapy in the future.
RADIOTHERAPY FOR PATIENTS WITH
METASTATIC PROSTATE CANCER

Clinical Potential of Radiotherapy for
Metastatic Prostate Cancer Patients
The current standard-of-care for patients with metastatic PCa
includes systemic androgen-deprivation therapy with or without
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TABLE 1 | Clinical trials applying radiopharmaceutical in PCa patients, including patient characteristics, therapeutics, outcome, study ID.

Compound Characteristics
& number of
participants

Patient characteristics Primary outcome measures Completion
date

Study ID &
short name

[68Ga]Ga-PSMA-11
compared to
histopathology

Diagnostic
Phase I/II

173

Patients with newly diagnosed PCa and a
high risk for metastasis, scheduled for
radical prostatectomy (RP) with extended
pelvic lymph node dissection (EPLND).

True positive fraction (TPF) and false
positive fraction (FPF) of identified tumor
tissue in soft tissue, analyzed separately for
prostate gland and pelvic lymph nodes,
using histopathology as standard of truth.
Frequency of occurrence and severity of
abnormal findings in safety investigations.

Jul 2020 NCT03362359

[68Ga]Ga-PSMA-11
compared with pathology
reports and/or routine
imaging

Diagnostic
Phase n.d.

1574

Subjects with high risk PCa at initial
presentation, with biochemical persistence
of PCa following radical prostatectomy,
with biochemical recurrence of PCa
following initial curative treatment with
radical prostatectomy or radiation therapy,
with biochemical recurrence of PCa
following radical prostatectomy

Sensitivity of [68Ga]Ga-PSMA-11 PET/CT
imaging in the assessment of high risk and
recurrent PCa. Determination of sensitivity
when compared with pathology reports (if
available) and routine imaging (CT, MRI,
bone scan) if available.

Sep 2028 NCT04484701

[18F]DCFPyL
compared to
histopathology

Diagnostic
Phase II/III

385

Patients with at least high risk PCa who
are planned for radical prostatectomy with
lymphadenectomy (Cohort A) or patients
with locally recurrent or metastatic disease
willing to undergo biopsy (Cohort B).

Sensitivity and specificity of [18F]DCFPyL
PET/CT imaging to detect metastatic PCa
within the pelvic lymph nodes relative to
histopathology.

Jul 2018 NCT02981368
“OSPREY”

[18F]DCFPyL
followed by biopsy/
surgery, conventional
imaging or locoregional
RT

Diagnostic
Phase III
208

Patients with suspected recurrence of PCa
who have negative or equivocal findings on
conventional imaging.

Correct localization rate, defined as % of
subjects with a one-to-one
correspondence between localization of at
least one lesion identified on [18F]DCFPyL
PET/CT imaging and the composite truth
standard.

Aug 2019 NCT03739684
“CONDOR”

[18F]PSMA-1007
vs. [18F]fluorocholine

Diagnostic
Phase III
200

Patients with suspected biochemical
recurrence of PCa after previous definitive
treatment for localized PCa.

Comparison of detection rate of metastatic
PCa lesions for [18F]PSMA-1007 versus
[18F]fluorocholine.

Sep 2020 NCT04102553

[177Lu]Lu-PSMA-617
vs. cabazitaxel

Therapy
Phase II
201

Patients with mCRPC who have
progressed despite hormonal therapy and
chemotherapy.

PSA RR defined as the proportion of
participants in each group with a PSA
reduction of ≥50% from baseline.

Jan 2021 NCT03392428
“TheraP”

[177Lu]Lu-PSMA-617
vs. best supportive/
standard care

Therapy
Phase III
750

Patients with progressive PSMA-positive
mCRPC who received at least one novel
androgen axis drug and were previously
treated with one to two taxane regimens.

OS in patients with progressive PSMA-
positive mCRPC who receive [177Lu]Lu-
PSMA-617 in addition to best supportive
and/or standard of care.

Sep 2021 NCT03511664
“VISION”

[177Lu]Lu-PSMA I&T
vs. standard care

Therapy
Phase II

58

Patients with hormone-sensitive oligo-
metastatic PCa.

To compare the fraction of patients that
have disease progression and meet EOT 1
criteria in a group of patients that are
treated with [177Lu]Lu-PSMA I&T and a
control group.

Jan 2024 NCT04443062
“Bullseye”

[225Ac]Ac-PSMA-617
pilot trial for therapy

Therapy
Early phase I

20

Patients with mCRPC who were incapable
of 2nd ADT or chemotherapy.

Serum PSA level. Dec 2021 NCT04225910

[225Ac]Ac-J591
dose escalation

Therapy
Phase I

42

Patients with documented progressive
mCRPC.

Change in the number of subjects with
dose limiting toxicities. Estimation of
maximum tolerated dose.

Jul 2024 NCT03276572

[225Ac]Ac-J591
dose escalation

Therapy
Phase I/II

105

Patients with progressive mCRPC. Change in the number of subjects with
dose limiting toxicities. Estimation of
cumulative maximum tolerated dose.
Assessing the recommended phase II dose
(RP2D) of [225Ac]Ac-J591 in fractionated
dose and multiple dose regimens (phase I).

Jun 2027 NCT04506567

[131I]-MIP-1095
with or without
enzalutamide

Therapy
Phase II
175

Patients PSMA-avid mCRPC who have
progressed on abiraterone and are
planned for treatment with enzalutamide.
Patients must be chemotherapy-naive and
must be ineligible or refuse to receive
taxane-based chemotherapy at time of
study entry.

The proportion of patients with PSA
response according to PCWG3 criteria
defined as the first occurrence of a 50% or
more decline in PSA from baseline,
confirmed by a second measurement at
least 3 weeks later.

Dec 2022 NCT03939689
“ARROW”
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docetaxel-based chemotherapy. The effects of local radiotherapy for
men with metastatic PCa as well as the optimal combination with
systemic therapies are currently under debate. In particular, the
heterogeneity within PCa patients in terms of tumor volume,
metastatic distribution, tumor properties, and clinical symptoms
impact tumor progression and therapeutic outcome and need to be
further investigated. Several ongoing prospective randomized trials
aim to clarify the impact of local radiotherapy in patients with
metastatic PCa (NCT01957436, NCT03678025, NCT01751438).
The randomized phase 3 trial STAMPEDE compared standard-of-
care with external-beam radiotherapy to the prostate in metastatic
patients and showed no improved overall survival in the whole
cohort (HR 0.92, 0.80–1.06; p=0.266). However, in a pre-specified
subgroup analysis of patients with low metastatic burden, the trial
demonstrated an improved 3-year overall survival in patients with
low metastatic burden (819 of 2061 randomized patients)
compared with standard-of- care (81% vs. 73%; HR 0.68, 95% CI
0.52–0.90; p=0.007) (147). Within this study, high-volume
metastatic disease was defined as presence of visceral metastases
and/or more than four bone metastases with at least one outside of
the vertebral column and pelvis. These results are in line with the
data obtained within the HORRAD trial, the only published
randomized-controlled trial so far that has found a survival
benefit in men with low metastatic burden applying local
radiotherapy in combination with androgen-deprivation therapy
for PCa patients with primary bone metastasis (148). This indicates
that patients with few metastases could potentially benefit from
local prostate radiotherapy. In both trials, only conventional
staging such as bone scan or CT was used. As modern PSMA-
PET would be able to detect even smaller metastatic lesions, the
method has the potential to precisely define low-volume disease.
Furthermore, more patients would be staged as high-volume
disease. Therefore, the definition of high-volume disease and the
question which of those patients would benefit from local
radiotherapy has to be addressed in randomized controlled trials
in the future. However, there is an urgent need to clarify the benefit
of local radiotherapy on metastatic spread not only from the
clinical point of view but also from a better understanding of the
underlying molecular and cellular mechanisms.

Clinical Features of Oligometastatic
Prostate Cancer Patients
The term oligometastatic cancer refers to a wide range of patients
with a low number of metastatic lesions. The occurrence of one
to five metastases in those patients leads to a distinct clinical
prognosis compared to patients with widespread metastatic
disease (149, 150). Oligometastatic patients benefit from local
ablative treatment to all visible lesions in terms of a significant
clinical benefit for overall survival, time to initiation of systemic
therapy, or time to progression (151–156). In general, the
prognosis of patients differs when addressing the timepoint of
metastatic onset e.g. in patients with oligo-recurrence after initial
local therapy, appearance of metastases after local therapy
without a local recurrence, or detection of additional metastatic
lesions in patients with metastatic disease. It is hypothesized that
those differences may be due to primary location and histology,
previous treatments, metastasis activity (synchronous metastases
Frontiers in Oncology | www.frontiersin.org 10
vs. metachronous metastases), and metastasis status (lymph
node vs. other sites) at first diagnosis (157). Until now, no
clinical data are available evaluating the prognostic differences in
PCa patients with oligometastatic disease, underlining an urgent
clinical need for the development of biomarkers to stratify this
heterogeneous group of oligometastatic PCa patients. Another
assumption currently under discussion is whether treating all
metastatic lesions with ablative intent using e.g. high dose
radiotherapy, surgery, thermal ablation or laser resection may
lead to complete tumor response, high cure rates, or long-term
disease control in a subgroup of oligometastatic PCa patients. This
is supported by clinical trials showing a significant benefit in
prolonging time to initiation of androgen-deprivation therapy (13
vs. 21 months) or tumor progression after metastasis-directed
therapy (MDT) in comparison to standard of care (158).

Due to the development of novel imaging techniques for PCa
patients, as already introduced previously, the detection of
metastases is possible even at low PSA serum levels (1–2 ng/
ml) (159). PSMA-PET-based staging entered successfully the
clinical routine for primary diagnosis in high-risk PCa patients
and influenced significantly the choice of treatment (160).
Moreover, it is applied for staging of patients with biochemical
recurrence after prostatectomy or progression after radiotherapy
(161). Detected metastases are typically small and asymptomatic
in the lymph node or bone. High precision conformal
radiotherapy techniques such as stereotactic body radiotherapy
is able to control those lesions without significant normal tissue
toxicity (162).

PCa with recurrent disease is usually not accompanied by fast
progression into symptomatic stages. Patients with recurrence
develop symptomatic metastases within a median time of 8
years and a mean overall survival rate of 5 years upon onset.
Only a small subgroup of patients characterized with an initial
Gleason score of 8 to 10, biochemical recurrence within 2 years,
and a PSA doubling time <10 months show a faster metastatic
progression (163). In summary, the prognosis of oligometastatic
PCa is heterogeneous as those lesions appear at different disease
stages at primary diagnosis and upon different pre-treatment
regimens. Stratifying those heterogeneous patient population
into several subgroups solely based on PSA level is currently
under investigation. Unfortunately, no prognostic biomarker for
those patients is available so far. Moreover, the development of
predictive biomarkers for metastasis-directed therapy would help
to answer the clinical questions, if PCa patients would benefit in all
stages of the disease (164).

Metastasis-Directed Radiotherapy
In incurable disease stages, palliative radiotherapy in few fractions
is frequently applied to alleviated symptoms including pain,
bleeding, or urinary tract problems. The gained improvement of
these clinical symptoms, however, does not affect overall survival
and metastatic progression at other sites (165). Novel imaging
techniques enable the detection of single or few PCa metastases
even in patients with low PSA-level and the treatment of those
lesions with local ablative radiotherapy (162). Therefore, a growing
number of patients are treated with the so-called metastases-
directed therapy, including all forms of local treatments (e.g.,
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lymph node dissection, thermal ablation, surgery, or high-dose
radiotherapy) with the aim of long-term tumor control. Improved
radiotherapy planning systems and precise delivery techniques
allow metastasis-directed, local ablative radiotherapy with a few
high-conformal fractions as stereotactic body radiation therapy
(SBRT). Due to the non-invasive nature of SBRT, the treatment
can be done without serious side effects. Most retrospective case
series [summary in (150)] focus on a local control and disease
progression and demonstrated clinical benefit with local control
rates of >90% within the first year. However, further biochemical
or metastatic progression after 1 year is observed in ~50% of the
treated patients. All published data are not comparable, because
those cohorts differ within risk group stratification, primary
treatment, concurrent medication, diagnostics, and fractionation
scheme. To date, only two randomized trials, the STOMP, and
ORIOLE study investigated the clinical benefit of metastasis-
directed radiotherapy in comparison to observation as standard-
of-care in castration-sensitive PCa patients. Within the STOMP
study, 5 out of 31 patients received pelvic lymph node resection
and showed a significant improvement of androgen deprivation
therapy-free survival (21 vs. 13 months). Within the ORIOLE
study, SBRT was applied with a fractionation schedule depending
on the metastatic site and included 3 to 5 fractions with a total
dose of 19.5–48 Gy. The primary clinical endpoint was
progression at 6 months from randomization and proofed safety
and efficacy of SBRT to all metastases. The results demonstrated in
19% vs. 61% of the patients a metastatic progression favoring the
SBRT arm. However, in both trials, a high number of patients
showed biochemical or metastatic progression within 2 years upon
locally applied metastasis-directed therapy (166, 167). Due to the
rapid progression in the majority of the analyzed patients, the
impact of other clinically relevant endpoints, e.g., overall survival,
time to castration-resistance, or time to symptomatic progression,
remains unclear (168, 169) and should be evaluated in future trials.
Moreover, there are still several open clinical questions regarding
the treatment of patients with hormone-sensitive, metastatic PCa:

1. What is the optimal radiotherapy volume, as retrospective
data indicate fewer nodal recurrences with larger pelvic
irradiation fields compared to small node fields (170)?

2. What is the clinical effect and duration of concurrent
androgen-deprivation therapy since retrospective data
demonstrate a benefit in terms of time to biochemical
progression (171)?

3. Can “omics” (e.g., based on tissue or imaging) or other
biomarkers guide individualized treatment decisions?

Up to now, the clinical utility of metastasis-directed radiotherapy
in patients with oligometastatic CRPC was only demonstrated in
retrospective studies. These promising results illustrate that PSMA-
based imaging can identify oligometastatic disease in up to 75% of
patients when applied at low PSA values (172). Moreover, it was
shown that local radiotherapy is able to control or induce regression
of the detected metastatic lesions (173–176). The clinical aims of
metastasis-directed radiotherapy in terms of long-term curation,
regression, or time prolongation of symptomatic disease are
currently a matter of debate. However, prospective and
Frontiers in Oncology | www.frontiersin.org 11
randomized clinical data are necessary to demonstrate the clinical
benefit of metastasis-directed radiotherapy including clinical
endpoints such as velocity of progression, progression of
asymptomatic to symptomatic metastases, and overall survival.
Nonetheless, the sensitivity and clinical applicability of novel
imaging modalities are limited and combination with molecular
diagnostics would be necessary in the future for therapy monitoring
and early detection of metastatic spread.
CIRCULATING TUMOR CELLS IN
PROSTATE CANCER

Biology of Circulating Tumor Cells
Circulating tumor cells (CTCs) are malignant epithelial cells
within the blood of cancer patients and origin either from the
primary tumor or from distant metastasis (177, 178). They were
first described in 1869 by the Australian physician Thomas
Ashworth (179). The initiation of tumor cell dissemination
from the primary tumor is promoted either actively or
passively due to tumor cell shedding into surrounding blood
vessels during biopsy, surgery, or brachytherapy. Active
dissemination is induced through TGF-b, Wnt, or IL-6
stimulation leading to induction of a partial EMT phenotype
(180, 181). Upon leaving the primary tumor, migratory cancer
cells can intravasate into the blood stream passively through
disorganized and leaky vessels in fast growing tumors, which are
formed rapidly upon VEGF-induced neovascularization (182–
184). In addition, trans-endothelial migration along a
chemoattractant gradient consisting of VEGF-C, VEGF-D, and
CCL21 regulates active intravasation. In addition, upon adhesion
of cancer cells to endothelial cells they secrete cytokines and
growth factors, such as VEGF, angiopoietin 2 (Angpt2), and
angiopoietin-like 4 (Angptl4), leading to hyperpermeability of
the endothelial wall (185). In prostate CTCs, the G-protein
coupled receptor CD97 was identified as key promotor for
trans-endothelial migration through platelet activation, ATP
release, and lysophosphatidic acid signaling (186). Moreover,
these platelet coating shields the major histocompatibility
complex class I (MHC I) signal and protects CTCs from T and
NK cell-mediated immunity. Other groups could demonstrate
that CTCs express programmed death-ligand 1 (PD-L1), a
member of the B7/CD28 co-stimulatory receptor family, that
mediate immune tolerance upon binding to PD-1 on T cells
(187). Even nuclear PD-L1 expression in prostate CTCs was
found to be associated with poor overall survival of patients (7).
Within the circulation, CTCs travel either alone, as cluster, or
covered with platelets, megakaryocytes, or neutrophils. In breast
cancer, it was shown that CTCs form clusters through the cell
junction component plakoglobin or the glycoprotein CD44. Such
oligoclonal CTC clusters are better protected from reactive
oxygen species (ROS) and exhibit a significantly increased
metastatic potential (188). Most of the CTCs entering the
circulation die within 24 h either via anoikis or immune attack
(8). The mean CTC frequency is assumed to be approximately
1 CTC per 1 billion red blood cells with a determined half-life of
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2.5 h for breast CTCs (189). The ExPeCT (Exercise, Prostate
Cancer, and Circulating Tumor Cells, NCT02453139) trial
analyzed the impact of a structured exercise on metastasis
progression in PCa patients including analysis of CTCs, CTC
clusters, and platelet-CTC cloaking. So far, there are no study
results published, but preliminary analysis demonstrated no
relationship between physical exercise and CTC count.
However, first indications point to a significant influence of
immune crosstalk on metastasis cascade (190). In breast cancer
patients, Szczerba et al. analyzed CTC-associated white blood
cells and found a connection with neutrophils. CTCs within
cluster, together with neutrophils, display differently regulated
genes involved in cell cycle progression, cell-cell junction, and
cytokine receptor expression, survive better in the blood stream,
and exhibit elevated metastatic potential compared to single
CTCs (191). Active CTC extravasation is induced by rolling of
CTCs along the endothelium mediated by interaction with CD44
and integrin avb3 (192). In addition, hemodynamic forces
facilitate adhesion of CTCs to the blood vessel wall and induce
endothelial remodeling (193). Upon stabilization of CTC-
endothelium interaction, CTCs induce extravasation through
binding of sialofucosylated proteins, such as podocalyxin or
glycosphingolipids with C-type lectin binding, e.g., E-selectin
(CD62E), on endothelial cells (194). Besides the above described,
TGF-b induced hematogenous dissemination and lymphatic
spreading was described for several tumor entities including
colorectal cancer (180, 195) (Figure 3A). A recently published
study demonstrated protective metabolic priming of melanoma
cells within the lymph node and increased metastatic potential.
The metabolic rewiring is mediated by oleic acid within the
lymph node and reduces oxidative stress, lipid oxidation, and
ferroptosis when the cancer cells travel through the blood stream
(196). It is not known whether this protective metabolic
mechanism is also involved during lymphatic spread of PCa.

Within local PCa tumor heterogeneity and cellular plasticity
are key regulators for progression, therapy resistance, and
metastatic spread (197–199). A population with a high degree
of heterogeneity has a higher chance to survive evolutionarily
(200, 201). Recent findings indicate that the prostate CTC
population is heterogeneous in terms of their genomic
alterations, gene expression profile, and cell surface marker
expression (202–204). Lack of datasets correlating the impact
of CTC heterogeneity and plasticity for metastatic spread and
therapy response in PCa patients is a consequence of low CTC
number and limited availability of molecular approaches with
high sensitivity and specificity (205). This obstacle was tackled by
the group of Johann de Bono which isolated prostate CTCs from
patients with lethal disease based on apheresis technique.
Therapeutic apheresis removes patient’s blood followed by the
separation of cells-of-interest from other blood cells, e.g., in the
mentioned study of EpCAM+ CTCs, and reinfusion of the blood.
With the application of this method, the group was able to isolate
app. 12,500 CTCs per patient within 59.5 ml blood. 185 single
CTCs from 14 patients underwent genomic analysis via array-
based comparative genomic hybridization upon whole genome
amplification. The individual copy number alteration
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demonstrated complex intra- and interpatient heterogeneity
(202). However, all published results analyzing prostate CTCs
are not experimentally homogenized according to the isolation
procedure and biomarker analysis (206). Therefore, the
European cancerID consortium (2014–2019) was aiming to
establish clinical utility of liquid biopsy analysis (207, 208).
The study by Massard et al. impressively demonstrated how
isolation methods affect CTC count and characterization. This
group compared two CTC isolation techniques, CellSearch with
isolation by size of epithelial tumor cells (ISET) filtration, and
found that the CellSearch system is biased to identify CTCs with
epithelial phenotype while missing mesenchymal CTCs and CTC
cluster. However, detection rate of AR amplification based on
downstream fluorescence in situ hybridization analysis was
higher in CellSearch enriched CTCs compared to ISET (209).
Another study published by Scher et al. investigated the
heterogeneity of prostate CTCs in 179 patients with metastatic
disease and how the degree of CTC heterogeneity can be
clinically applied to support decision making either for AR
inhibitor-based therapy or taxane-based chemotherapy. They
hypothesized that the degree of pre-therapeutic CTC
heterogeneity inversely correlates with overall survival upon
ADT but not with chemotherapy. Therefore, they analyzed
cells within the blood upon red blood cell lysis using
automated immunofluorescent analysis for nuclear DAPI,
leukocyte marker CD45, epithelial marker cytokeratin (CK),
and prostate-specific AR. Upon digital pathology, the Shannon
diversity index describes the occurrence of individual CTC
clones within the whole CTC population defined as
DAPI+CD45-. Heterogeneity was evaluated based on
densitometric, morphometric, and texture patterns of nuclear
DAPI, CK, and AR signal. The results validated the relationship
between the degree of CTC heterogeneity and overall survival for
ADT, but not for taxanes. In addition, genomic profiling of 10
CTCs in 17 patients identified unique driver subclones for ADT
resistance (210). Further studies validated the clinical utility of
molecular CTC features for clinical decisions. For example, the
expression of the AR splice variant 7 (ARv7) status in CTCs of
metastatic CRPC patients is able to predict the efficacy of ADT
(211–213). So far, no published study correlated CTC
heterogeneity and dynamics with predictive value for
radiotherapy response and metastatic progression in
PCa patients.

Clonal Evolution and Dynamics Within
Prostate Circulating Tumor Cells
That tumors follow the Darwin’s theory of evolution was already
proposed by Peter Nowell in 1976. This can be seen in slow
growing PCa which is characterized by extensive intra-tumoral
heterogeneity and sub-clonal diversity (74, 214). This clonal
diversity has a significant impact on therapy response. For
example, Beltran et al. analyzed 114 biopsies from 81 patients
with metastatic CRPC including specimens with adenocarcinoma
(Adeno) or neuroendocrine (NE) features. The differentiation into
neuroendocrine morphology includes the downregulation of AR
and explains the ADT escape. The genome-wide expression and
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DNA methylation data of this study demonstrated a high level of
clonality, but overall similarity of genomic alterations while
epigenetic adaptations were able to distinguish CRPC-Adeno
from CRPC-NE subset. Key mechanisms important for the
induction and maintenance of the ADT-resistant state base on
cell-cell adhesion, EMT and histone methyltransferase EZH2
signaling. These findings support the independent emergence of
an AR-insensitive cell state through clonal evolution as major
ADT resistance mechanism (214). Several studies demonstrated
that this clonal heterogeneity and genomic alteration known from
stepwise prostate tumorigenesis could be recapitulated within the
CTC population including the detection of tumor suppressor gene
loss, e.g. PTEN, RB1, and TP53 (215, 216) (Figure 3B). Moreover,
Mahili et al. determined copy-number alteration in 257 isolated
CTCs from 47 patients with aggressive PCa treated with
cabazitaxel- and carboplatin-based chemotherapy and found
a higher frequency of detectable chromosomal alteration in
CTCs compared to match-paired cell-free tumor DNA (73.7%
vs. 42.1%). The observed genomic instability in CTCs is
independent of the CTC count and associated with
chromosomal gains in regions containing the PTK2, MYC, and
NCOA2 gene increased AR expression, and BRCA2 loss (217).
This opens new preclinical and clinical questions:

1. Does molecular analysis of CTCs have the potential to predict
sites and degree of metastatic spread?
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2. How does the genetic profile of CTCs overlap with metastases
and are CTCs the origin of polyclonal metastatic lesions?

3. Do CTC-based analysis outcompete routine diagnostics such
as PSA plasma level, Gleason score or imaging modalities to
predict and monitor therapy response in PCa patients, in
particular for local or systemic metastasis-directed therapies?

To demonstrate the clinical importance of CTCs for the
diagnosis of metastasis, Faugeroux et al. performed whole-
exome sequencing analysis from 179 isolated CTCs and
matched metastasis biopsies from 11 PCa patients. They found
that app. 30%–50% of the mutations are shared between the
metastasis and epithelial CTCs. In addition, a CTC exclusive
mutation pattern was found in epithelial and non-epithelial
CTCs containing known cancer-driver genes and genes
involved in cytoskeleton and DNA repair. Based on these data,
the group hypothesized that the phenotypically distinct CTC
populations found in the patient’s blood resemble a phylogenetic
relationship rather than offspring from different precursors
(218). Another study was able to distinguish three
morphologically distinct CTC populations based on nuclear
size measurements. Upon analysis of 148 blood samples from
57 PCa patients, they were able to identify patients with visceral
metastasis based on the amount of very small nuclear CTCs
(219). However, further experimental studies and prospective
clinical trials are needed to prove clinical utility of CTC
A

B

FIGURE 3 | Circulating tumor cells in prostate cancer patients. (A) Early metastatic features within PCa cells can be induced under stress conditions e.g. hypoxia,
immune attack, or therapeutic pressure. In response to TGF-b, Wnt or IL-6 PCa cells undergo EMT to gain motility and invasiveness. PCa cells intravasate into blood
vessels either passively throughout leaky vessel walls or actively via trans-endothelial migration. (B) Prostate CTCs circulate either as single cells, CTC cluster, or coated
with platelets, neutrophils or macrophages shielding immune attack and reducing shear stress. CD45-EpCAM+ CTCs are a heterogeneous population differing in, e.g. the
expression of androgen receptor splice variants, TMPRSS2-ERG status or loss of tumor suppressors PTEN, RB1, and TP53 recapitulating local tumor heterogeneity,
influencing metastatic capacity and indicating therapy response.
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diagnostics and answer upcoming clinical questions e.g. in terms
of decision-making for metastasis-directed therapy, in particular
for oligometastatic PCa patients with ablative radiotherapy. Cell-
extrinsic pressures, such as environmental forces, immune
attack, or lack of nutrients are key drivers for clonal evolution
and cellular plasticity influencing the degree of tumor
heterogeneity. Therapeutic pressure is another driver for clonal
selection and induction of cellular escape mechanisms
influencing geno- and phenotype of CTCs. Novel findings
indicate that different CTC populations may have different
metastatic potential in terms of frequency and site-specificity.

Clinical Application of Circulating Tumor
Cell-Based Diagnostics
The detection of ≥5 CTCs per 7.5 ml blood in PCa patients with
metastatic disease has a relevant prognostic value and correlates
significantly with reduced progression-free survival and overall
survival compared to patients with <5 CTCs (220–222). This
data led to the approval of CTC-based diagnostics via CellSearch
system by the United States Food and Drug Administration
(FDA) in 2008 and the implementation into recommendations
by international trial groups like Prostate Cancer Working
Group (PCWG), Southwest Oncology Group (SWOG by
National Cancer Institute) and European Organization for
Research and Treatment of Cancer (EORTC). Most of the
published studies applied the CellSearch system with
a phenotypic definition for prostate CTCs as leukocyte marker
CD45-negative and epithelial cell adhesion molecule (EpCAM)-
positive. Despite the presence of CTCs in PCa patients can be
correlated with prognosis and metastatic status, the predictive
value is still under debate. Lowes et al. assessed the presence of
prostate CTCs at baseline and several time points after
radiotherapy (6, 12, and 24 months) (31). They found no
correlation between PSA-level and CTC count. However, the
presence of extracapsular extension or seminal vesicle invasion
combined with CTC-positive status at baseline was predictive for
poor response to radiotherapy. Therefore, determining the
number of CTCs during radiotherapy may have the potential
to stratify patients that need additional systemic therapy from
those with high therapeutic efficacy from local radiotherapy
alone. Moreover, neither of the standard parameters such as
time to biochemical recurrence, PSA doubling time, and
pathological features (e.g. Gleason score or margin status) nor
available imaging technologies can provide information about
the precise location of upcoming recurrences (223). First clinical
indications point to the potential of CTCs to predict metastatic
spread even upon therapy and the ability to discriminate
different sites of metastasis. Besides promising results for CTC-
based diagnostics in PCa patients with metastatic disease (222,
224), the prognostic value of CTC count in localized stages is
currently not clear due to low detection rates. Most studies
analyzing CTCs in locally-advanced PCa patients applied
a reduced cut-off value from five to one CTC per 7.5 ml blood
or increased analyzed blood volume. However, the data are
controversial and the prognostic values of CTC count within
this PCa patient group could not be demonstrated yet (225).
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A recently published study analyzed CTCs in treatment-naïve
patients with locally advanced high-risk PCa (NCT01800058,
n=66) (226). The authors found that the baseline CTC count was
associated with conversion into stage T3 and N1, but not with
overall survival. Initially, CTC-negative patients became CTC-
positive directly upon androgen-deprivation therapy or
radiotherapy followed by a consecutive drop in CTC count
within 6–12 months. The authors hypothesize that passive
mechanisms due to tumor destruction are responsible for the
observed increase in CTC count directly upon therapy. Another,
still recruiting, phase III trial (SABR-COMET 10, NCT03721341,
n=159) aimed to analyze the clinical benefit of stereotactic
ablative radiotherapy for oligometastatic PCa patients (227).
Besides the primary endpoint analyzing overall survival, it is
planned to evaluate translational endpoints, such as CTC count
or immune cell composition (228). All in all, these data
demonstrate that CTC count can be applied as prognostic
marker in metastatic PCa patients, but it is still controversial
whether it is an independent predictor for overall survival. In
combination with other prognostic markers such as albumin,
alkaline phosphatase, hemoglobin, lactate dehydrogenase (LDH),
and PSA the CTC count was able to discriminate PCa patients
independent ly on the ir t reatment (NCT00638690 ;
NCT01193244) (229). These findings were validated in another
study that analyzed CTC count in combination with LDH
measurements. Based on both parameters PCa patients could
be stratified into a low-risk (<5 CTCs, LDH independent),
intermediate (≥5 CTCs, LDH ≤ 250U/L), and high-risk group
(≥5 CTCs, LDH>250U/L) (230).

While EpCAM-based CTC enumeration methods may miss
CTC subpopulation with low EpCAM expression, there are
attempts to apply additional markers for CTC detection to
increase sensitivity and specificity or apply label-free methods
such as microfiltration, density gradient centrifugation or
dielectrophoretic techniques (231, 232). Putative prostate CTC
markers include e.g. EMT phenotype (NCT02025413), the
tyrosine kinase cMET (NCT02080650), the immune checkpoint
marker PD-L1 (NCT02456571), telomerase activity (SWOG Trial
S042) (233, 234) and the TMPRSS2-ERG translocation
(NCT00485303, NCT00474383) (235). The applicable additional
marker would enable the monitoring of therapy resistance in real-
time and may recapitulate tumor heterogeneity within the blood.
Another putative prostate CTC marker is the human epidermal
growth factor receptor 2 (HER-2/neu), but detection level was
demonstrated to be higher inmetastatic patients compared to local
disease (236). Promising results were also obtained with the
cytological ISET test in combination with prostate-specific
marker PSA and prostein (P501S). Within this observational
study, 20 men with diagnosed PCa were analyzed with a mean
CTC count of 6.5 CTCs per 7.5 ml blood (237). Interestingly, in
patients without previously diagnosed PCa ISET-CTC-based
screening demonstrated a predictive value of 99% compared to
25% with the standard PSA-based test method within patients
receiving PSMA-PET-imaging later on.

Another important clinical question is the predictive potential
of CTCs and the possibility to monitor acquired therapy resistance
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in real-time. As already mentioned above, clinical data for
radiotherapy are limited so far. However, the expression of the
androgen receptor splice variant 7 (ARv7) in CTCs of patients
with metastatic CRPC is able to predict the therapeutic potential of
ADT (213, 238, 239). In addition, the predictive value of other AR
splice variant transcripts, e.g., AR-V1, AR-V3, AR-V7, and AR-V9,
was investigated in comparison to the canonical full-length version
in CTCs of metastatic CRPC patients under cabazitaxel treatment
(n=118) (CABARESC trial). Although all AR variants were
similarly co-expressed at baseline and post-treatment, patients
carrying AR-V9-positive CTCs display decreased CTC counts
below the threshold. In turn, AR-V1-positive CTCs after
cabazitaxel treatment, but not at baseline, was an independent
prognostic factor for reduced overall survival (240). The
TAXYNERGY trial found an association of AR-V7- and AR-
V567-negativity in metastatic CRPC patients before taxane
therapy with PSA response and progression-free survival.
Within those analyses, the authors compared the sensitivity of
digital droplet PCR (ddPCR) in comparison to quantitative PCR-
based method and found an increased detection rate of AR-V7
variant with ddPCR (19% to 55%) (241). This method was also
applied for prostate CTC detection by Miyamoto et al. and
demonstrated that CTC-specific HOXB13 gene expression may
identify patients with altered AR-signaling and disease progression
under abiraterone therapy (n=27) in patients with localized PCa
(n=34) (242). Approximately 50 ongoing clinical studies (20
terminated, 13 with results) worldwide aim to validate the
clinical utility of CTC count for PCa patients undergoing radical
prostatectomy (16 studies), androgen-deprivation therapy (16
studies) or radiotherapy (28 studies) and implemented CTC-
based diagnostics as secondary endpoint (Table 2, www.
clinicaltrial.gov). In the upcoming years, the results from the
running clinical trials may prove the potential of CTC-based
diagnostics for patient stratification and therapeutical decision
making. Furthermore, CTCs may help to identify patients with
a high risk to develop metastasis even at the early stage of the
disease and maybe predict the site of metastases occurrence before
they are detectable with imaging.
DISSEMINATING TUMOR CELLS AND
MINIMAL RESIDUAL DISEASE IN
PROSTATE CANCER

Early Prostate Cancer Cell Dissemination
and Dormancy
Approximately 35% of PCa patients with local disease will
develop a recurrence within 10 years and around 10% of those
patients present already bone involvement at the time of
diagnosis (127, 243–245). This clinical observation indicates
that tumor cell dissemination happens at early phases during
tumorigenesis without clinical symptoms for decades. However,
it is unknown how often and to what extent early dissemination
happens upon cellular transformation and tumor initiation. The
vast majority of malignant cells leaving the primary tumor are
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eliminated within the surrounding tissue, the blood stream, or
the lymph vessels by immune cells (246, 247). It is hypothesized
that <0.01% of metastasis-initiating cells survive in the blood
stream with inherent properties to initiate distant metastasis.
Therefore, disseminated tumor cells (DTCs) have to switch their
phenotype and function from mesenchymal state back to
epithelial features, the so-called mesenchymal-to-epithelial
transition. In addition, they require a supportive niche
including activated stroma and immune suppressive
environment (4). The phenotype of prostate DTC is not fully
identified yet and might be different within different patient
subgroups and upon therapeutic pressure. DTC detection
methods apply negative markers to exclude immune cells (e.g.,
CD45, CD34, CD61) and positive selection for the epithelial cell
adhesion molecule (EpCAM). Despite the DTC frequency is low
and in most of the analyzed patients below detection level, the
prognostic value of prostate DTC is of high clinical relevance to
identify patients with increased risk for bone progression and the
need for therapeutic adaptation. To address this, Morgen et al.
analyzed bone marrow aspirates of 569 PCa patient’s prior
radical prostatectomy and compared the DTC count with
biochemical recurrence. Therefore, 10 ml bone marrow from
the iliac crest was separated using Ficoll-Isopaque-based density
gradient centrifugation followed by exclusion of immune cells via
CD45/CD61-dependent magnetic-associated cell separation and
EpCAM-based evaluation with immunofluorescence microscopy.
The threshold for DTC positivity was set to ≥1 CD45-CD61-

EpCAM+ cell. In 72% of the analyzed patients DTCs were detected
already prior to surgery, but without correlation to pathological
stage, Gleason score, or PSA level. However, in 98 patients with no
evidence of disease after radical prostatectomy, DTC occurrence
had a significant predictive value for biochemical recurrence
indicating the importance of dynamic diagnostic sampling (248).
For independent validation of the clinical findings, it would be
critical to develop uniform and standardized prostate DTC
detection methods and nomenclature. Besides the established
phenotype combining negative markers to exclude
hematopoietic lineages and positive marker for epithelial cells,
several studies applied also prostate-specific markers to increase
specificity and sensitivity. For example, Chalfin et al. analyzed
bone marrow aspirates from 208 PCa patients with local disease
and compared different DTC detection methods, including
antibody-based enrichment with epithelial (e.g., EpCAM) and
prostate-specific (e.g. NKX3.1, AR, PSA) markers and found
that epithelial markers are not applicable due to unspecific
binding (249). A recently published study analyzed the
transcriptome of single EpCAM+CD45- bone DTCs from
prostate cancer patients (77 cells in 10 patients) and
distinguished DTCs according to their gene signatures into no
evidence of disease (NED) and advanced disease origin. Prostate
specificity was validated by prostate-specific markers including
AR, CD63, FOLH1, HOXB13, ID1, NKX3-1, RELB, and XAGE1A
and the exclusion of erythroid lineage marker. Unsupervised
cluster analysis identified p38 stress response pathway regulating
dormancy in NED-associated DTCs, which was not found in
DTCs of patients with advanced disease. In addition, the authors
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validated the upregulation of dormancy genes in NED DTCs
including ABI1, CDC25B, CDK7, CELF1, and COX7B2 (250).
Another study published by Cackowski et al. used fluorescence-
activated cell sorting to isolated CD45-CD235a-AP-CD34-

EpCAM+ DTCs and found in 17% of PCa patients (10 out of
58) with local and in 50% with metastatic disease (4 out of 8) >5
DTCs per 106 bone cells. Whole exome sequencing, RNA
sequencing, and gene expression analysis identified characteristic
single nucleotide polymorphism and gene variants for PCa, but
found also a B-lineage-like signature in prostate DTCs indicative
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of niche adaptations (251). Several previously published studies
demonstrated already that prostate DTCs hijack the hematopoietic
stem cell niche within the bone marrow to survive quiescence over
decades (252). This was elegantly shown by the group of Russel
Taichman using an experimental model based on subcutaneous
transplantation of human PCa cell lines PC3 and C4-2B in
CD45.1-expressing immunocompromised NOD/SCID mice.
Upon surgical removal of the subcutaneous xenograft tumor,
transplantation of bone marrow cells origin from CD45.2 mice
was performed. The authors found that hematopoietic stem cell
TABLE 2 | Summary of completed clinical trials applying enumeration of circulating tumor cells (CTCs) in PCa patients either as primary or secondary endpoint.

Treatment CTC detection
method

Study type &
number of
participants

Patient characteristics CTC-specific endpoint Completion
date

Study ID &
short name

Cryosurgery with or
without dendritic cells
and cytokine-induced
killers

Flow cytometry,
RT-PCR

Observational
(n=60)

PCa patients with stages II, III, IV CTC count within 6 months Dec 2015 NCT02450435

– Filtration system Observational
(n=14

Breast cancer, PCa, colorectal
cancer patients and healthy

volunteers

CTC count Jan 2014 NCT01943500

ADT, RT CellSearch Observational
(n=68)

High-risk PCa CTC count (before treatment, post
ADT, 1–3 months post-RT, 6–12

months post-RT)

Dec 2018 NCT01800058

Sipuleucel-T
(Provenge), ADT

CellSearch Observational
(n=38)

mCRPC patients with visceral or
high-risk disease, metastatic

castration sensitive PCa patients
with high tumor volume

Expression of immune checkpoint
marker PD-L1, PD-L2, B7-H3, and
CTLA-4 on CTCs (baseline, 12

weeks, 14 months)

Jun 2019 NCT02456571

– Ferrofluid EMT-
Based Capture
Method
(CTC-EMT)

Interventional
(n=46)

mCRPC, neuroendocrine prostate
cancer (NEPC), metastatic breast

cancer

CTC detection using mesenchymal-
marker N-cadherin or O-cadherin

Dec 2015 NCT02025413

– Ferrofluid c-
MET-Based
Capture Method
(CTC-MET)

Interventional
(n=62)

Progressive metastatic cancer
patients

CTC detection using mesenchymal-
marker c-MET

Jul 2016 NCT02080650

Docetaxel/
Cabazitaxel with
prednisone

GEDI
ddPCR

Interventional
Phase II
(n=63)

mCRPC Reduction of nuclear AR from
baseline

Aug 2015 NCT01718353
“TAXYNERGY”

Docetaxel,
Prednisone
Atrasentan

*Parylene-C slot
microfilter,
qPCR-TRAP

Observational,
Phase III
(n=263)

mCRPC Telomerase expression in CTCs Jan 2010 SWOG Trial
S0421

Abiraterone acetate,
prednisone

CellSearch Interventional
Phase III
(n=1195)

Docetaxel-refractory mCRPC CTC count in combination with
albumin, LDH PSA, hemoglobin, ALK

Oct 2012 NCT00638690

Orteronel, prednisone CellSearch Interventional
Phase III
(n=1560)

Progressive, therapy-naive mCRPC CTC count in combination with
albumin, LDH PSA, hemoglobin, ALK

Apr 2016 NCT01193244

Cabazitaxel, ADT Gene
expression

Interventional
Phase II
(n=140)

Docetaxel refractory PCa patients
without SCPC or NEPC

CTC count 9–12 weeks after start of
treatment

Sep 2019 NCT03050866

Doxorubicin-GnRH
agonist conjugate
AEZS-108

IF Interventional
Phase I/II

108

PCa patients AEZS-108 internalization and LHRH
expression

Feb 2017 NCT01240629

Cabazitaxel,
Prednisone,
Ciprofloxacin, G-CSF

unknown Interventional
Phase IV
(n=45)

Docetaxel-refractory CRPC grade IV CTC count (days 42, 84, 126, and
post-treatment)

Jan 2014 NCT01649635
“PROSPECTA”

Cabazitaxel,
budesonide

CellSearch,
RT-PCR

Interventional
Phase II
(n=118)

mCRPC Predictive value of AR-V3 and AR-V7
vs. AR-FL expression in CTCs

(baseline, post-treatment)

Oct 2015 2011-003346-
40

“CABARESC”
March 2021
 | Volume 10 |
ADT, androgen deprivation therapy; ddPCR, digital droplet PCR; GEDI, geometrically enhanced differential immunocapture; G-CSF, granulocyte colony-stimulating factor; IF,
immunofluorescence; nd, non-defined; NEPC, neuroendocrine prostate cancer; NSCLC, non- small cell lung cancer; RT, radiotherapy; RT-PCR, reverse transcriptase polymerase
chain reaction; SCPC, small cell prostate cancer; TRAP, Telomeric repeat amplification protocol.
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engraftment was decreased in tumor-bearing mice compared to
control and that PCa cells occupy the endosteal niche close to
Runx2-expressing osteoblasts (253). Once within the niche, tumor
cell dormancy is dictated by the environmental niche factors as
well as by tumor cell intrinsic features. For example, Yu-Lee et al.
demonstrated cellular quiescence of bone-tropic PCa cell line C4-
2B upon culture with conditioned media originated from
differentiated and undifferentiated osteoblast cultures. Moreover,
Axelrod et al. validated in AXL-null and overexpressing prostate
cancer cell lines dormancy induction in vivo (254, 255). However,
they did not find AXL expression in primary or metastatic prostate
tissue and it is questionable if AXL is expressed in DTCs. Beside
this described cell-extrinsic cues, cell‐intrinsic features may impact
the dormant state of PCa cells. Within a recently published study,
Owen et al. demonstrate that type I interferon (IFN) signaling
regulates PCa dormancy and metastatic outgrowth in the bone.
Therefore, they injected intracardially murine PCa cell line RM1
labeled with the red‐fluorescent dye PKH26 into C57BL/6 mice
and isolated red-labeled cells from the bones using fluorescence
activated cell sorting. They found that cell intrinsic expression of
type I IFN was dynamically regulated on the epigenetic level via
a histone deacetylase-dependent mechanism. Moreover, they
speculate that the observed loss of IFN signaling within the
tumor and the suppressed tumor immunogenicity in bone
metastases may be an explanation of why current
immunotherapeutic strategies fail in patients with metastatic
PCa (256). However, certain studies postulate that bone niche
and dormancy signaling may be putative therapeutic targets to
prevent bone metastasis in PCa patients. These agents include
bone homeostasis targeting compounds affecting osteoclast-
osteoblast equilibrium e.g., bisphosphonates, the anti-RANKL
antibody denosumab, or radiopharmaceuticals such as radium-
223. Inhibition of signals within the microenvironment, e.g. via
ET1 receptor inhibitor, SCR inhibitor (e.g. dasatinib), thalidomide,
cabozantinib, or androgen-directed agents demonstrated already
clinical benefit in patients with metastatic PCa. However,
androgen-deprivation therapy is often associated with bone loss
and has a negative impact on the incidence of bone metastases
(257). Another possibility to turn dormant DTCs sensitive to
chemotherapeutics and to reduce late recurrences would be the re-
activation and induction of proliferation. Several studies
investigated the underlying molecular mechanisms as putative
therapeutic targets. For example, Decker et al. found that the
sympathetic nervous system and the neurotransmitter
norepinephrine stimulated PCa cell proliferation in the bone
niche via b2-adrenergic receptors and decreased the secretion of
growth arrest specific-6 (Gas6) by osteoblasts (258). However, this
strategy is critically discussed due to the risk of further metastasis
initiation. Another newly discovered process that might foster
tumor growth and metastasis is the so-called tumor self-seeding,
a phenomenon where CTCs or re-activated DTCs return to the
site of tumor of origin (259, 260). For example, it has been shown
that self-seeding CTCs in human osteosarcoma was mediated by
interleukin 8-CXCR1/2 axis, resulting in an increased metastatic
potential (261). In metastatic PCa, translational and retrospective
studies indicate that local treatment to the primary tumor affects
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metastatic spread and patient outcome. However, the data are
controversial, and supportive prospective trials are needed before
the implementation of this concept into clinical routine
recommendations (262). Data from the STAMPEDE trial shows
that radiotherapy to the primary tumors in M1 disease stage
improves overall survival of low burden PCa patients by 8% after
3 years [hazard ratio: 0.68, p-value 0.007 (armH)] (263). However,
biomarker research is urgently needed to discriminate metastatic
PCa patients profiting from those local therapies. In parallel,
experimental and translational studies are necessary to improve
our understanding of the underlying molecular and cellular
mechanisms regulating early dissemination, metastatic spread,
and colonization.

Liquid Biopsy-Based Methods for
Detection of Minimal Residual Disease
Besides early dissemination, another clinical obstacle is the
monitoring and treatment of PCa patients with minimal residual
disease (MRD). This concept describes remaining tumor cells after
initial therapy and complete remission. These few malignant cells
and/or micro-metastasis cannot be detected by routine diagnostics,
e.g. plasma PSA level or PET imaging. It is hypothesized that they
persist locally as cancer stem cells (CSC), in the circulation as CTCs,
or at distant organs such as the bone marrow as DTCs. The
National Cancer Institute defines MDR as one cancer cell among
one million normal tissue cells. First evidence for MDR in PCa was
published by Murray et al. as prospective data analysis of 321
patients 10 years after initial radical prostatectomy including CTC
and DTC count 1 month after therapy. Based on CTC and DTC
positivity, the patients could be stratified into 4 subgroups with
significant differences in overall survival. The authors found that
CTC positivity correlates with early relapse while DTC positivity is
associated with late failure. Therefore, they propose the existence of
two forms of MRD representing different clinical characteristics
(264, 265). This leads to the hypothesis that the dynamics of MRD
determines therapy response and patient outcome. MRD can be
analyzed through detection of tumor-specific antigens, genetic and
epigenetic changes in bone marrow aspirates and/or peripheral
blood with highly sensitive multiparameter flow cytometry, digital
droplet PCR, or next generation sequencing (NGS)-based methods.
Despite the sensitivity and specificity of molecular genetic methods
to detect prostate specific gene fusions, transcript variants, or point
mutations in cell-free tumor DNA (cfDNA) is higher (1 cell in 106

cells) compared to antibody-based detection methods determining
DTC/CTC count (1 cell in 104 cells), it is cost-intensive and
therefore only available for a small subset of patients. Moreover,
the mutational load in PCa is compared to other tumor entities
relatively low with a somatic mutation rate between 1x10-6 and
2x10-6. For example, in primary PCa app. 50% of the patients
harbor a TMPRSS2-ERG gene fusion (70, 266, 267). In metastatic
CRPC the mutational burden is app. 3.8-fold higher compared to
the earlier disease stages including an increased frequency of driver
mutations such as AR (5%–30%), TP53 (3%–47%), and/or PTEN
(20%–60%) (268). Wyatt et al. compared the mutational pattern of
cfDNA with the primary tumor in 45 patients with metastatic PCa
and found 88.9% concordance. 75% of the tested patients showed
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a fraction of circulating tumor DNA (ctDNA) >2% of the total
cfDNA. In 64.7% of those patients an AR amplification and in 8.8%
a SPOPmutations were detected (269). Based on these findings, the
authors propose that cfDNA assays are sufficient to identify all
driver mutations and may guide clinical decision making for
metastatic CRPC in the future. Currently, there is no approved
clinically test for prostate MRD available. However, the prognostic
potential of those assays is demonstrated by the FDA approval of
the NGS-based method cloneSEQ to detect MDR in multiple
myeloma, B-cell acute lymphoblastic leukemia and chronic
lymphocytic leukemia in 2018. Within the same year, the FDA
approved the Oncotype DX AR-V7 Nucleus Detect® test for the
detection of the splice variant of the androgen receptor AR-V7 in
CTCs for late-stage mCRPC to predict responsiveness to androgen
deprivation. On the other hand, the immunophenotype-based
detection methods for CTCs and DTCs still need clinical
standardization before they may become broadly available. The
disadvantage of this method is the dependency on the detection of
pre-defined markers e.g., epithelial markers such as EpCAM which
are dynamically regulated during tumorigenesis, clonal evolution,
metastatic spread and under therapeutic pressure. Therefore, highly
sensitive, label-free approaches based on microfluidic devices to
discriminate different cell populations based on cell size or cell
viscosity are currently under development and in clinical testing,
e.g., the Parsortix® system (ANGLE plc.), the DEPArray™ System
(Menarini Silicon Biosystems), the ClearCell® FX System or real-
time deformability cytometry (270–273). Additionally, non-invasive
tests to monitor tumor progression and therapy response in urinary
samples of PCa patients, for example, gene expression analysis of
urine exosome with the ExoDx (IntelliScore) test (274). If these
approaches can be applied for DTC analysis in the bone has to be
tested. Moreover, sensitivity, and specificity, as well as clinical
applicability, are necessary before proposing MRD positivity to
guide treatment planning and individual decision making for
metastatic PCa patients. Moreover, at present, there is no
experimental or clinical study published investigating DTC counts
and MRD upon radiotherapy. Future prospective clinical trials for
MRD detection methods may consider novel clinical endpoints
such as metastasis-free survival for non-metastatic CRPC (275).
However, given the high degree of heterogeneity within PCa and the
dormant cell state of DTCs the applicability of MRD diagnostics in
PCa might be limited.

Impact of the Immune System on
Metastatic Spread
Metastasis-initiating PCa cells use the homing factor CXCL12,
which is under physiological conditions a chemoattractant
secreted by stromal cells and involved in the regulation of
bone marrow homing, retention, and mobilization of
hematopoietic stem cells (HSC) (253, 276). Despite PCa cells
hijack the HSC homing route and bone niche, upon arrival they
often enter a dormancy state induced by GAS6 or DKK1
signaling and thus evade immune attack (277). The connection
of cancer progression and chronic inflammation was already
described in 1863 by Rudolf Virchow who recognized an
increased leukocyte count in tumors (278). Today we
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distinguish ‘hot’ tumors with an inflammatory hallmark based
on a high number of infiltrating T cells such as melanoma or lung
cancer from ‘cold’ entities. These tumors are genetically unstable,
with high mutational burden and increased production of T cell
recognized neoantigens. However, PCa is classified as ‘cold’
tumor with a low rate of immune infiltration. At the primary
site, tumor cells generate an immune suppressive environment
through recruitment of myeloid cells and macrophages to escape
from CD8+ T cell- and NK cell-mediated cell killing (279). In
particular, tumor-associated macrophages (TAMs) are able to
switch their phenotype from tumor-suppressive (M1) to tumor
promoting (M2) function. M2 TAMs promote migration and
environmental adaptations at the metastatic site (280). The
interaction of CD163+ M2 macrophages and FoxP3+CD4+

regulatory T cell (Treg) was investigated by Erlandsson et al. in
PCa biopsies from 1367 patients with localized tumors. Within
this study, they separated patients with tumor progression and
development of metastatic PCa (n=225) from patients with
indolent disease (n=367) based on 10-year follow-up data. The
authors found that the amount of M2 macrophages and Tregs
correlate to each other and that patients with high macrophage
numbers (>25 cells within the core) had a 2.05-fold higher risk to
progress into lethal disease (281). They conclude that Treg and
M2 macrophages have a dominating role to turn the local
prostate tumor microenvironment into an immunosuppressive
and tumor promoting milieu. Another study published
by Di Mitri et al. investigated the same in an experimental
PTEN-null prostate-specific conditional (pc−/−) mouse model
and identified the CXCL1/CXCL2/CXCL5-CXCR2 signaling as
major driver to polarize TAMs into CD45+CD11b+LY6G−F4/80+

macrophages with M2 phenotype. Moreover, they found that
CXCR2 blockade leads to TAM re-education into M1, tumor
regression, increased T cell response, and decreased vessel size.
The TAM reprogramming was associated with increased TNFa
secretion and induction of senescence in PCa (282).
Macrophages within the bone, so-called osteal macrophages,
are located adjacent to osteoclasts and regulate bone formation
and skeletal homeostasis under physiological conditions.
Metastasis-associated macrophages (MAMs) within metastatic
PCa lesions are actively recruited via IL-6 secreted by PCa cells
and promote bone metastasis formation (283). Another immune
regulator responsible for DTC immune evasion is the high TGF-
b concentration within bone metastasis that is released either
through bone matrix remodeling or secreted by osteoblasts.
TGF-b induces polarization of CD4+ T helper into Th17 and
Treg lineage and restrains Th1 cells (284). Jiao et al. hypothesize
that this mechanism is the key factor that explains the lack of
clinical efficiency of immunotherapies in metastatic
CRPC patients and indicates the potential of immune
checkpoint therapy in combination with TGF-b inhibitors
(285, 286). A recently published study demonstrated that the
immunosuppressive microenvironment within PCa bone
metastasis can be targeted via the CCL20-CCR6 axis.
Treatment of mice with syngeneic prostate bone metastases
with a CCL20-blocking antibody led to T cell exhaustion and
significantly prolonged survival (287). However, further studies
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are needed to understand the role of immune cell induced and/or
regulated DTC dormancy to prevent rapid interruption, re-
activation, mobilization and further metastatic progression of
novel targeting agents. Another highly interesting research focus
with therapeutic potential are investigations of immune signals
from the primary tumor to form a pre-metastatic, “primed”
niche at a distant site.
CONCLUSION

Elucidation of the molecular and cellular mechanisms that drive
tumor cell dissemination and regulate cellular response to
radiotherapy is essential for developing novel diagnostic
criteria and individualized therapeutic strategies. Today,
systemic therapy remains standard of care, even in patients
with no or up to three visible metastases. However, PCa
patients may benefit from metastasis-directed therapy, e.g.,
based on stereotactic ablative radiotherapy, in combination
with immediate androgen deprivation or extension of systemic
therapy. Moreover, PCa patients with oligo-metastatic disease
Frontiers in Oncology | www.frontiersin.org 19
are a heterogeneous subgroup of patients and urgently need
a better stratification system to improve standard of care. Blood-
based biomarkers such as circulating tumor cells (CTCs) are
a unique non-invasive method with enormous clinical utility for
patient stratification and monitoring in particular for patients
with metastatic disease.
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225. Broncy L, Paterlini-Bréchot P. Clinical Impact of Circulating Tumor Cells in
Patients with Localized Prostate Cancer. Cells (2019) 8(7):676. doi: 10.3390/
cells8070676
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