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Abstract: Recently, the population of Seoul has been affected by particulate matter in the atmosphere.
This problem can be addressed by developing an elaborate forecasting model to estimate the
concentration of fine dust in the metropolitan area. We present a forecasting model of the fine dust
concentration with an extended range of input variables, compared to existing models. The model
takes inputs from holistic perspectives such as topographical features on the surface, chemical sources
of the fine dusts, traffic and the human activities in sub-areas, and meteorological data such as wind,
temperature, and humidity, of fine dust. Our model was evaluated by the index-of-agreement (IOA)
and the root mean-squared error (RMSE) in predicting PM2.5 and PM10 over three subsequent days.
Our model variations consist of linear regressions, ARIMA, and Gaussian process regressions (GPR).
The GPR showed the best performance in terms of IOA that is over 0.6 in the three-day predictions.

Keywords: particulate matter; forecasting model; dispersion model; PM2.5; PM10; Gaussian
process; ARIMA

1. Introduction

Recently, the population of Seoul was affected by fine dust or particulate matter (PM) in the
atmosphere [1]. Although some conjectured that the PM originated from outside metropolitan area [2–4],
others also emphasized on sources such as traffic, the human activity, and the chemical reactions in the
atmosphere in the area [5,6]. In addition to the problem of the sources, the dynamics of PM needs to be
modeled to aid the prediction of the concentration of PM to address the exposure to the population.

As we cannot determine the main source of PM, the model needs to consider PM generation from
a holistic perspective and the factors of the dynamics of the PM concentration. These perspectives
and factors are not limited to a single domain of expertise such as traffic, chemistry, meteorology,
and environmental studies. Therefore, we enumerate potential factors involved in PM concentration
prediction. We present the relative significances of the factors with regard to Seoul.

Using these varieties of inputs, we model the concentration with two different statistical models:
Autoregressive integrated moving average (ARIMA) and Gaussian process (GP). These models are
applicable to regression tasks in continuous domains with continuous outputs. The types of inputs
and the outputs are consistent with our application. Particularly, we employ the Gaussian process
because of its nonlinearity of the output. Our analyses of the inferred model consist of two folds.
First, we evaluate the prediction performance of the model with the index-of-agreement (IoA) and
root mean squared error (RMSE). Second, we examine the relative strength and the interpretation of
the coefficients from the inferred models to identify the most significant factors in determining the
PM concentration.
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Table 1. Summary of the existing forecasting models of the concentration of particulate matter with respect to complexity, methodology, independent variables,
and dependent variable.

Previous Research Independent Variables
Dependent
Variables

Complexity Research Methodology Location Time CO NO2 O3 SO2
Temp-
erature

Rain-
fall

Wind
Direction

Wind
Speed

Topo-
graphic

Traffic
Volume

Ultra
Violet

Power
Plant

PM

Linear Model

Chudnovsky et. al [7]
AOD Retrieval
+ Regression

X X X X PM2.5

Garcia et al. [8]
Generalized

Linear Model
X X X X X X X X X X PM10

Zhang et al. [9]
Spatio-temporal

Land-use Regression
X X X X X PM2.5

Neural Network
Model

Lal et al. [10] Vanilla ANN X X X X X X X
PM10
PM2.5

Lu et al. [11]
ANN + CPSO

Algorithm
X X X X X X

PM10
PM1

Zhou et al. [12]
Recurren

Fuzzy NN
X X X X X X X X X X PM2.5

Park et al. [13] Vanilla ANN X X PM10

Shtein et al. [14] Ensemble model X X
PM10
PM2.5

Zhao et al. [15] LSTM-FC X X X X X X X X X X PM2.5

Zamani et al. [16]
Random Forest +
eXGB + Deep NN

X X X X X PM2.5

Pak et al. [17] CNN-LSTM X X X X X X X X X X PM2.5

Nonlinear and
Nonparametric

Regression Model

Cheng et al.
(2014) [18]

Gaussian Process
Regression

X X PM2.5

Reggente et al. [19]
Gaussian Process

Regression
X X X X X X PM0.1

Liu et al. [20]
Gaussian Process

Regression
X X X X X PM2.5

Nonlinear and
Nonparametric

Regression Model
Ours

Gaussian Process
Regression

X X X X X X X X X X X X X X
PM10
PM2.5
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2. Previous Research

2.1. Development on Prediction Model Structure

This section discusses Table 1 by classifying the models by their complexities. Although linear
regression and its variants were frequently used, neural networks have recently been explored.
This paper presents a prediction model with a Gaussian process regression that is a nonlinear and
nonparametric regression model.

2.1.1. Prediction with a Linear Model

This subsection reviews the linear regression models and its variants in Table 1 with focus on the
PM concentration prediction. Because PM concentrations are significantly dependent on meteorological
conditions, most studies have proposed models to investigate the relation between PM concentrations
and meteorological data. Garcia et al. [8] proposed a generalized linear model (GLM) to predict PM10
concentrations in an urban area, whose size is approximately that of a medium-scale city with an area
of 34 km2. The proposed model utilized (1) air quality data such as CO, NO2, NO, O3, SO2, and PM10;
and (2) meteorological data, such as temperature, relative humidity, and wind speed. The coefficients
of the linear model were analyzed to determine the effects of each input dimension with respect to the
prediction of PM10.

2.1.2. Prediction with a Neural Network Model

This subsection describes the neural network-based approaches in Table 1 for PM concentration
prediction. Recently, researchers have adopted neural network models to approximate the nonlinearity
of the concentrations. Zhou et al. [12] utilized air pollutant CO, NO2, O3, SO2, PM2.5, and PM10 and
meteorological data (temperature, relative humidity, wind speed, and wind direction). Because the
concentration of PM2.5 exhibits complex nonlinear dynamics, the study proposed a recurrent fuzzy
neural network (NN) for the prediction. To select important factors from several factors, the model
utilized the partial least square (PLS) algorithm. Therefore, the proposed neural network comprised a
membership function, rule, defuzzy, and output layers. The proposed model demonstrated accurate
predictions because the model uses the dynamic information from past records. Zhao et al. [15]
proposed a long short-term memory-fully connected (LSTM-FC) neural network for predicting the
PM2.5 concentration in a metropolis. The inputs of this model consist of air quality data, meteorological
data, and the day of the week. This predictive model is developed on two components. One component
is a model on the local variation of PM2.5 from an LSTM-based temporal simulator. The other
component considers spatial dependencies among stations using a neural network-based spatial
combinator. The combination of these components revealed that LSTM-FC outperforms the vanilla
versions of NN and LSTM because it can memorize a long-term dependency. To consider the
spatio-temporal dependency, Pak et al. [17] proposed a neural network model, called CNN-LSTM,
with two components. The first component is a spatio-temporal convolutional neural network (CNN),
and the second component is an LSTM model. The CNN-LSTM predicts the daily average PM2.5 of
the subsequent day. CNN-LSTM showed that LSTM outperforms a simple MLP because LSTM is
efficient in considering the long-term information of the input data. The CNN-LSTM also showed
that the prediction performance improves if CNN is combined with LSTM because CNN extracts the
inherent features of the input data.

2.1.3. Prediction with a Nonlinear and Nonparametric Regression Model

This subsection describes the existing studies on the Gaussian process regression-based models
in Table 1. Our approach is in this category of PM concentration prediction model. Several studies
have used Gaussian Process Regression (GPR) to predict PM concentrations [18–20]. Cheng et al. [18]
proposed a GPR model to predict the PM2.5 concentrations at locations where the concentration was
not observed, utilizing the concentration data from the monitoring sites. Whereas most studies focused
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on investigating the relation between PM concentrations and input features, such as meteorological
data, this study focused on estimating PM2.5 concentration that are not observable owing to the lack
of the monitoring sites. Reggente et al. [19] proposed a GPR model to predict ultrafine particle (UFP)
concentrations, also called PM0.1 concentrations. The proposed GPR model utilized the air quality data
(CO, NO2, NO, O3) from three monitoring sites in an urban area, approximately a small-scaled city
with size 3.93 km2. This study empirically demonstrated that GPR outperforms Bayesian linear models.
Furthermore, they showed that GPR that uses NO and NO2 as covariates, outperforming models that
use CO and O3 as covariates. Liu et al. [20] proposed a GPR model that combines squared-exponential
and periodic kernels to predict PM2.5 concentrations of the subway indoor air quality. This study
utilized air quality (CO2, CO, NO2, NO) and meteorological data, such as temperature and humidity.
From the experiments on varying cases of kernel combinations, they empirically demonstrated that
optimal performances are obtained from the combination squared-exponential and the periodic
kernels. Our study involves developing a GPR model that uses comprehensive input features, such as
topography, traffic, and coal-based power generation, and a kernel function that combines the Matérn
and the periodic functions that have not been tested in existing studies.

2.2. Integration of Societal and Urban Information into Prediction

In addition to the meteorological data, researchers have utilized data produced by residents
and the geographical features of the city. Lu et al. [11] utilized the traffic data to focus on the
PM concentration at urban intersections. The calculation of the traffic volume is based on each
green-light period, and the PM concentrations are collected for the corresponding green-light period.
This study proposed a novel hybrid model combining an artificial neural network (ANN) model and
a chaotic particle swarm optimization (CPSO) algorithm. The CPSO algorithm is used to overcome
the overfitting problem of ANN and to prevent local minima. Based on the relation among the
background PM concentration, traffic data, and meteorological data, the combination of ANN and
CPSO outperforms the ANN model. Additionally, the study demonstrated that wind speed in winter
plays an important role in the prediction of PM at urban intersections. Lal et al. [10] focused on
pollution from open-casting mines because air pollution has a significant impact on the health of
mining workers and those living near mines. An ANN-based model was developed to predict the PM10
and the PM2.5 concentrations using the meteorological data (wind velocity, dispersion coefficients,
rainfall, cloud cover, and temperature), the geographical data, and the emission rate as inputs. Whereas
most studies focused on the effect of meteorological and air pollutant data on PM, Zhang et al. [9]
utilized land-use data as an input. The inputs contain traffic and population data. The land-use
data consist of farmland, forest, grassland, water, urban, and rural areas. The traffic data include the
distribution of road networks. Using these inputs, Zhang et al. proposed a spatio-temporal land-use
regression model, and investigated the correlation between PM2.5 and the inputs including land-use.

To strengthen the geographical features, researchers have used remote sensing information
in the prediction. Observations from ground-level monitoring sites have limited spatial coverage.
Therefore, the limited observation does not accurately indicate the spatial variability of PM2.5.
To address this limitation, some researchers utilized satellite remote sensing data as inputs [7,14,16].
Chudnovsky et al. [7] utilized satellite data that is the high-resolution (1 km) aerosol optical depth
(AOD) retrieval from the moderate resolution imaging spectroradiometer (MODIS) data. The study
used the day-specific calibrations of AOD data for predicting PM2.5. Furthermore, the study
demonstrated that the accuracy of prediction of PM2.5 increases by adding sufficient meteorological
and land-use data. Zamani et al. [16] utilized the ground measurements of PM2.5, the meteorological
data, and the remote sensing AOD data as the inputs. They investigated the feature importance for
predicting PM2.5 concentrations using the random forest, eXtreme Gradient Boosting (eXGB), and deep
neural network approaches. Similarly, Shtein et al. [14] utilized the satellite remote sensing data to
improve the prediction of PM2.5. They proposed an ensemble model to adopt the advantages of each
model to demonstrate that the ensemble model outperforms the individual models.
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Although most studies have focused on outdoor PM concentrations, many residents in the
metropolis use public transportation, including the subway where indoor air quality affects the health
of riders. Park et al. [13] focused on indoor air quality of subway systems in the metropolis. However,
it is difficult to obtain indoor PM data because of the deployment of the measurement systems.
Thus, they predicted the indoor PM concentration using inputs such as outdoor PM10, the number of
subway trains in operation, and information on ventilation operation. ANN was used to predict the
indoor PM10, and the model empirically demonstrated a high correlation between the predicted and
the measured values. Furthermore, they investigated the relations between the performance of the
ANN model and the depth of the underground subway station.

3. Prediction Model of Particulate Matter Concentration

This section introduces our modeling approach using Gaussian Process Regression (GPR).
Before discussing the GPR, we briefly review our baseline model, ARIMA.

3.1. Prediction Models

3.1.1. Vector Autoregressive Integrated Moving Average with Linear Regression (Varima + Lr)

The ARIMA is a method used to predict continuous outputs with a time series dataset. ARIMAs
are generalizations of autoregressive moving average (ARMA) models wherein the concept of
integration is added. The ARMA model is a combination of auto-regression (AR) and moving average
(MA) models. The ARMA model is denoted by ARMA(p, q), that is, the combination of AR(p) and
MA(q). The autoregressive moving average model ARMA(p, q) with orders p and q is given by

yt = c +
p

∑
i=1

αiyt−i +
q

∑
j=1

θjεt−j + εt (1)

where c is a constant; α1, ..., αp are the regression coefficient parameters of the AR model; θ1, ..., θq

are the weight parameters of the MA model; and εt, εt−1, ..., εt−q are the error terms sampled from
a normal distribution with zero µ and an arbitrarily chosen σ. Furthermore, yt is the observed PM
concentration to be estimated.

To address the limitation from the non-stationarity, Integration (or Differencing) is applied to
the ARMA model to enable the non-stationary time series data follow the stationary property called
ARIMA. For example, the first differencing y

′
t of yt is computed as

y
′
t = yt − yt−1. (2)

Denoting the d-th differencing of yt by y(d)t , the ARIMA model ARIMA(p, d, q), with orders p, d, q,
is given by

y(d)t = c +
p

∑
i=1

αiy
(d)
t−i +

q

∑
j=1

θjεt−j + εt (3)

where d is called the degree of differencing.

3.2. Prediction on Diverse Locations

There are several monitoring sites of PM in the metropolitan area. That is, there are multiple output
values, yt’s, measured by the different observatories at time t. To describe the spatial dependencies over
the observations, the Vector ARIMA model (VARIMA) extends the ARIMA model [21]. Whereas yt in
ARIMA represents the observation data at time t from a single source, VARIMA uses yi

t to represent
the observation data, measured by the i-th monitoring site at time t. For simplicity, we denote



Sensors 2020, 20, 3845 6 of 21

the output value as yi
t regardless of the level of differencing in ARIMA. Then, the VARIMA model

VARIMA(p, d, q) with orders p, q, d, is given by

yi
t = c +

p

∑
k=1

S

∑
j=1

αk
i,jy

j
t−k +

q

∑
k=1

S

∑
j=1

θk
i,jε

j
t−k + εi

t f or i = 1, ..., S, (4)

where S is the number of the monitoring sites; αk
i,j are the extended regression coefficient parameters of

the AR model that considers the spatial dependencies (i and j-th monitoring sites) over the observations
under the degree of k over p; θk

i,j are the extended weight parameters of the MA model that considers
the dependencies (i and j-th monitoring sites) over the error terms under the degree of k over q.
Owing to the extension to the vector space, the VARIMA model considers the spatial dependencies
over output values from different monitoring sites, while maintaining the advantages of the ARIMA
model. From the aforementioned equations of VARIMA, we can also extend the AR, MA, and ARMA
models to the vector space, denoted by VAR, VMA, and VARMA, respectively. It is noted that
VARIMA(p, d, q) is a generalization of VAR(p), VMA(q), and VARMA(p, q).

Furthermore, we combine the linear regression model with VARIMA to incorporate the
site-specific perspectives of input features, such as the topography, and the meteorological data.
We denote this model by VARIMA + LR. The role of the parameters in the linear regression model is to
investigate the relations between input features and the corresponding output values. We assume that
the relations do not depend on the monitoring sites. Therefore, we utilize the same parameters with
respect to the linear regression model’s total output dimensions that means the same parameters for
the N monitoring sites. Therefore, the combined model, VARIMA(p, q, d) + LR, is given by

yi
t = c +

p

∑
k=1

S

∑
j=1

αk
i,jy

j
t−k +

q

∑
k=1

S

∑
j=1

θk
i,jε

j
t−k +

M

∑
j=1

φjx
j
i,t + εi

t (5)

where M is the number of input features used. Herein, we denote the input feature by xj
i,t representing

the j-th input feature information observed at the i-th monitoring site at time t. Furthermore, φj is the

linear regression parameter corresponding to the input feature xj
i,t given i and t. In matrix notation,

VARIMA(p, d, q) + LR is given by

Yt =


y1

t
y2

t
...
yS

t

 =


α1

1,1 α1
1,2 ... α1

1,S
α1

2,1 α1
2,2 ... α1

2,S
... ... ... ...

α1
S,1 α1

S,2 ... α1
S,S




y1
t−1

y2
t−1
...

yS
t−1

+ ... +


α

p
1,1 α

p
1,2 ... α

p
1,S

α
p
2,1 α

p
2,2 ... α

p
2,S

... ... ... ...
α

p
S,1 α

p
S,2 ... α

p
S,S




y1
t−p

y2
t−p
...

yS
t−p



+


θ1

1,1 θ1
1,2 ... θ1

1,S
θ1

2,1 θ1
2,2 ... θ1

2,S
... ... ... ...

θ1
S,1 θ1

S,2 ... θ1
S,S




ε1
t−1

ε2
t−1
...

εS
t−1

+ ... +


θ

q
1,1 θ

q
1,2 ... θ

q
1,S

θ
q
2,1 θ

q
2,2 ... θ

q
2,S

... ... ... ...
θ

q
S,1 θ

q
S,2 ... θ

q
S,S




ε1
t−q

ε2
t−q
...

εS
t−q



+


x1

t,1 x1
t,2 ... x1

t,M
x2

t,1 x2
t,2 ... x2

t,M
... ... ... ...

xS
t,1 xS

t,2 ... xS
t,M




φ1

φ2

...
φM

+


ε1

t
ε2

t
...
εS

t

 .

(6)

3.2.1. Gaussian Process Regression

Formally, GPR uses a GP prior defined over functions p( f ), where f is a function mapping from
an input space X ∈ RM to R. Consider a set of arbitrary input points X = {x1, x2, ..., xN} that can be
past records of the PM concentration, X can be defined over space and time. Herein, we define X to be
past records over the space and time, simultaneously; hence, the index of X has two axes corresponding
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to time and space, and use the notation xn ∈ RM for xispace ,ttime for simplicity. In addition, we write

yn ∈ R for y
jspace
ttime

for simplicity.
After setting X = {x1, x2, ..., xN}, the corresponding set of random function variables is

f = { f1, f2, ..., fN}. Given a pair of two input instances, the GP prior is defined by f (x) ∼
GP(m(x), K(xi, xj)) with the mean function, m(x); and the covariance function, K(xi, xj) over the
function f (x). The mean and covariance function are defined as follows:

m(x) = E[ f (x)],

K(xi, xj) = E[( f (xi)−m(xi))( f (xj)−m(xj))].
(7)

A useful property of GP is the definition of the following joint multivariate Gaussian distribution,
given any finite set of input points:

p(f|X) = N (f|m, K), (8)

where m = (m(x1), ..., m(xN)) is the mean vector of input points; and the covariance function K is
constructed from a covariance function K(xi, xj). The covariance function, K, shows the domain
information, such as proximity and temporal trends that are formulated as Matérn or squared
exponential, or a customized function from the domain.

Using the prior function defined over the continuous domain on space and time, we introduce
a GPR that plays a crucial role in estimating the PM concentration. Let D = {(xi, yi)

N
i=1} = (X, y)

be a dataset consisting of snap-shot feature inputs X, such as windspeed, and the concentration of
NOx; and the corresponding outputs y that is the concentration of the PM. To estimate the underlying
function f : X→ y, we assume yi = f (xi) + ε, a noisy realization of the function from f (xi), wherein
ε ∼ N (ε|0, σ2) is the independent Gaussian noise.

In a typical regression scenario, given test points x∗, we estimate the corresponding function
values f∗. Introducing a zero-mean GP prior over f (·) (Because the GP prior requires the zero-mean,
the predicted values and the past records of the PM concentration should be normalized to have zero
mean. Additionally, it is noted that the high variance in the GP prior will result in a numerical error
in the GP sampling.) and using standard GP methodologies, we can derive the following predictive
relationships to estimate f∗:

p(y|f) = N (y|f, σ2I),

p(f∗|x∗, X, y) = N (f∗|µ∗, Σ∗),
(9)

where the mean µ∗ and covariance K∗ are defined as follows:

µ∗ = K∗K−1
y y,

Σ∗ = K∗∗ −KTK−1
y K∗.

(10)

The covariance functions K∗, K∗∗, and Ky are computed using the following formulae:

K∗ = K(x, x∗),

K∗∗ = K(x∗, x∗),

Ky = K(x, x) + σ2I.

(11)

Before predicting the test points, we estimate the kernel hyperparameters by maximizing the
marginal likelihood p(y|X) =

∫
p(y|f, X)p(f|X)df. Under the GPR model, the log-marginal likelihood

is as follows:
log p(y|X) = −1

2
yK−1

y y− 1
2

log |Ky| −
N
2

log 2π. (12)

Because the maximization of the likelihood is a non-convex optimization task, we use standard
gradient methods (The gradient can be computed using recent probabilistic programming frameworks,
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i.e., TensorFlow. In addition, one can use the matrix derivative to calculate ∂
∂θ log p(y|X) using

scikit-learn). For arbitrary kernel hyperparameters θ, we obtain the partial derivatives of the
log-marginal likelihood with respect to the hyperparameters:

∂

∂θ
log p(y|X) = 1

2
yTK−1

y
∂Ky

∂θ
K−1

y y− 1
2

tr
(

K−1
y

∂Ky

∂θ

)
. (13)

In the actual experiments, we required a further scaling for the GP implementation. Therefore, we
used the Stochastic Variational Gaussian Process (SVGP) model [22] that scaled the model by inducing
points from stochastic variational perspective. We initialized the inducing points from the training
dataset using the K-Means Clustering algorithm by setting K to be 500.

To significantly approximate an arbitrary function, the GP should be designed with a kernel
function, K, adapted to the problem domain. Our task of predicting the PM concentration is spatially
clustered with strong temporal dependencies. This means that the PM concentration should be
modeled with a joint distribution of temporal and spatial features. Moreover, there is a seasonal effect
in the temporal pattern, and there are unaccounted outside effects, which will be treated as noise.
Therefore, the periodicity is modeled in the kernel. Because there is no exact prior knowledge of
the customized kernel on these settings, we composed a concatenated kernel function by varying
our selection among Periodic, Matérn 3/2, Matérn 1/2, and RBF (Radial Basis Function) per feature
variable. Whereas we enumerate the individual kernel function for each feature variable, the final
composition of a kernel function is a weighted linear concatenation of these individual kernel functions
mapped to the input features:

• Periodic kernel

KPeriod(xi, xj) = σ2 exp

−1
2

M

∑
k=1

 sin
(

π
p (xk

i − xk
j )
)

ρ

2 , (14)

• RBF kernel

KRBF(xi, xj) = exp
(
− d2

2σ2

)
, (15)

• Matérn 1/2 (M12) kernel

KM12(xi, xj) = σ2 exp
(
−d

ρ

)
, (16)

• Matérn 3/2 (M32) kernel

KM32(xi, xj) = σ2

(
1 +

√
3d
ρ

)
exp

(
−
√

3d
ρ

)
, (17)

where d = d(xi, xj) =

√
∑M

k=1

(
xk

i − xk
j

)2
is the distance metric between two data points; σ2 is the

output variance; p is the period; and ρ is the length scale.
To explain our kernel function design, we need to enumerate the modeled variables in our scenario.

Table 2 shows the list of variables with annotations on their relevant types. Although most variables are
frequently utilized features in studies [10,12,15,17,19,20], to our knowledge, there are no prior studies
on developing a GPR model with topographic information, traffic information, ultraviolet information,
and power plant operation information. Variables, such as wind direction and topographic categories,
require further explanations because these two variables are converted into a set of dummy variables
by the discretization. Wind direction is discretized in four directions resulting in four categorical
variables of X7, ..., X10, and topographic categorization is a categorical variable resulting in dummy
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variables X12, ..., X15. The details of each variable will be discussed in Section 3.3. Table 3 presents
details of our kernel function designs for the input features.

Table 2. Variable information.

Type Variable Information Unit

Location X1 Latitude Degree

X2 Longitude Degree

Time X3 Day of Year Year/Month/Day

X4 Hour of Day h

Meteorological Information

X5 Temperature °C

X6 Precipitation mm/h

X7 − X10 Wind Direction Categorical

X11 Wind Speed m/s

Topographic Information X12 − X15 Topographic Categories Categorical

Traffic Information X16 Agent Traffic Volume Vehicles/Hr

Air Quality Information

X17 Sulfur Dioxide (SO2) ppm

X18 Carbon Monoxide (CO) ppm

X19 Nitrogen Dioxide (NO2) ppm

X20 Ozone (O3) ppm

Ultraviolet Information

X21 UVA Max MJ/m2

X22 UVA Sum MJ/m2

X23 UVB Max KJ/m2

X24 UVB Sum KJ/m2

Power Plant X25 Usage of Thermal Power Plant %

From examining the input variable list, we propose a kernel function for each input variable
as shown in Table 3. Some variables provide complete information in pairs, i.e., Latitude(X1) and
Longitude(X2); accordingly, such variables become a vector of kernel function inputs. We used the
periodic kernel for the temporal inputs, and the other continuous inputs are processed by the Matèrn
kernel function.

Table 3. Kernel design with respect to input variables.

Kernel Information Variables Kernel Type 1
(Matérn)

Kernel Type 2
(RBF)

Kernel Type 3
(Matérn + RBF)

k1 Latitude, Longitude X1, X2 Matérn 3/2 (M32) RBF RBF
k2 Day of Year X3 Periodic Periodic Periodic
k3 Hour of Day X4 Periodic Periodic Periodic
k4 Temperature X9 Matérn 3/2 (M32) RBF RBF
k5 Precipitation X10 Matérn 3/2 (M32) RBF Matérn 3/2 (M32)
k6 Wind Direction X11, X12, X13, X14 Matérn 3/2 (M32) RBF RBF
k7 Wind Speed X15 Matérn 3/2 (M32) RBF RBF
k8 Topographic Categories X16, X17, X18, X19 Matérn 3/2 (M32) RBF RBF
k9 Agent Traffic Volume X20 Matérn 3/2 (M32) RBF RBF
k10 Sulfur Dioxide (SO2) X5 Matérn 3/2 (M32) RBF Matérn 3/2 (M32)
k11 Carbon Monoxide (CO) X6 Matérn 3/2 (M32) RBF Matérn 3/2 (M32)
k12 Nitrogen Dioxide (NO2) X7 Matérn 3/2 (M32) RBF Matérn 3/2 (M32)
k13 Ozone (O3) X8 Matérn 3/2 (M32) RBF Matérn 3/2 (M32)
k14 Ultraviolet X21, X22, X23, X24 Matérn 3/2 (M32) RBF RBF
k15 Usage of Thermal Power Plant X25 Matérn 3/2 (M32) RBF RBF
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3.3. Input Data for the Prediction Model

Because of the limitation on data availability and our methodology, we limit our study to the Seoul
metropolis and its surroundings. Seoul is approximately 600 km2 in size with a resident population
of approximately 10 million. To estimate the concentration of the PM, and to investigate the relation
between PM and other factors, we selected the various input features that were collected from different
sources. The following subsections describe the input features in detail.

To manage the data efficiently, we partitioned the study area into the grid cells with 0.01 degree
latitude and longitude. Figure 1 represents our grid setting over the study area. The study area consists
of total of 3318 cells, including the Seoul area.

The objective of this study is to predict the PM2.5 and PM10 concentrations of each grid cell using
the suggested input features. Because we utilized GPR as our methodology, our study differs from
other studies by the selection and diversity of the input features. Therefore, we enumerate each feature
in the following subsections to describe the detailed information of each input data. In addition, we
note that we excluded the modeling on industry types, such as chemical and metallurgy industries
because the given region does not host such industries with significance.

Figure 1. Grid setting of research area where the blue area represent Seoul, the grey dot indicates the
position of each grid point, and the red lines are the major highways in the area.

3.3.1. Particulate Matter and Air Quality Data

We utilized the PM and air quality data from the Korea Environment Corporation (https://www.
airkorea.or.kr) that contain hourly data on several air quality elements including PM2.5 (µg/m3)
yearly. In accordance with the regulations of the Korea Environment Corporation, only data up to
the end of 2018 was available. Thus, we utilized the data of 2017 and 2018 for this study. There are
131 monitoring sites in our study area, and each site has several types of air sensors. Figure 2 shows
the air quality monitoring sites as blue points. Owing to the breakdown and lack of sensors, the data
have significantly high missing values, see Table 4. Therefore, we interpolated these missing values
by averaging the values from other centers within 10 km, which is the optimal distance with the
least interpolation errors among the five distance levels that we experimented. After interpolation,

https://www.airkorea.or.kr
https://www.airkorea.or.kr
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the missing value proportions of PM2.5 were reduced from 40.15% to 1.61% for the year 2017, and from
11.88% to 0.04% for the year 2018. From the air quality data, the hourly values of PM10 and PM2.5
were used as the target outputs measure. However, CO, NO2, O3, and SO2 values were used as the
input variables of our forecasting model to consider the air quality condition.

Figure 2. Locations of monitoring sites of each input type.

Table 4. The number of missing instances in each air quality elements.

The Number of Missing Instances in Each Air Quality Data (%) Total

InstanceYear SO2 CO O3 NO2 PM10 PM2.5

2018
46,079

(4.16%)

55,436

(5.00%)

71,456

(6.44%)

50,039

(4.51%)

68,782

(6.20%)

131,734

(11.88%)
1,108,992

2017
31,978

(3.00%)

42,871

(4.02%)

58,319

(5.46%)

39,153

(3.67%)

47,856

(4.48%)

428,544

(40.15%)
1,067,304

3.3.2. Location and Time

Additionally to the air quality data, we select the first two types of input variables as location and
time. The location information includes the latitude and longitude of each grid cell for the analyzed
area. The time information contains (1) the day of the year and (2) the hour of the day when the data
was observed.

3.3.3. Meteorological Data

We utilized the meteorological data that were measured hourly by an automatic weather system
(AWS) from Korea Meteorological Administration (http://data.kma.go.kr). They provided the nine
types of the meteorological information, namely (1) temperature, (2) wind speed, (3) wind direction,

http://data.kma.go.kr
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(4) precipitation, (5) spot-atmospheric pressure, (6) sea-level pressure, (7) humidity, (8) the ultraviolet
strength from the sun, and (9) the illumination strength from the sun. However, we considered
temperature, wind speed, wind direction, and precipitation as the input features regarding selecting
variables for the meteorological data. Moreover, the other variables have many missing values in the
observation data, which are not suitable for use as input variables. The main challenge is the mismatch
between the locations of the observatories and the PM monitoring sites. To address this difference,
we assigned the weather condition of the nearest observatory for each PM monitoring site.

3.3.4. Topographic Data

The Ministry of Environment (ME) provides the levels of the topographic information from the
Environmental Spatial Information Service (https://egis.me.go.kr/bbs/landcover.do). In our setting,
we utilized the level 2 code among the levels provided. To manage the level efficiently, we reduced
to the five types of topographic categories, namely, urban, grassland, forest, water, and unknown
areas. We introduced four dummy variables to represent the five categories. This means that each
category has a binary indicator at the corresponding dimension except that the unknown area has all
zero values. Thereafter, the topographic information is assigned to the corresponding grid cell as an
input feature. Figure 3 shows the land cover map representing the topographic information of the
level 2 code over our grid setting. Table 5 presents the topographic categories based on the level 2 code
from the Environmental Spatial Information Service and its corresponding dummy variables. The use
of dummy variables is common in structuring a regression model with categorical inputs [23–25].

Figure 3. Land cover map of Seoul.

3.3.5. Traffic Data

Considered as a major metropolis in Korea, our study area has a complex road network. The traffic
data are collected from the traffic points and junctions of major highways and roads, and a total
of 406 traffic sensors provide hourly traffic data. Although this number is large, the sensors are
sparsely located compared to the entire study area. We interpolated the traffic data from 406 traffic
observation posts into grid level traffic information. To achieve a smooth interpolation of the traffic
effect, we conducted a simple GPR for the traffic data using only spatio-temporal variables such as the
latitude, and longitude; and the hour of the day.

https://egis.me.go.kr/bbs/landcover.do
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Table 5. Topographic information.

LV2
Code LV2 Name LVL

Code LVL Name Dummy Variable

110 Residential Area

1 Urban Area [1, 0, 0, 0]

120 Industrial Area
130 Commercial Area
140 Amusement Facility Area
150 Traffic Area
160 Public Facilities Area
610 Mining Area
620 Artificial Area

210 Rice Paddy Area

2 Grassland Area [0, 1, 0, 0]

220 Farming Area
230 House Farming Area
240 Orchard Area
250 Other Farming Area
410 Natural Grassland Area
420 Golf Course Area
430 Other Grassland Area

310 Broad-leaf Forest Area
3 Forest Area [0, 0, 1, 0]320 Coniferous Forest Area

330 Mixed Forest Area

510 Inland Wetland Area

4 Water Area [0, 0, 0, 1]520 Coastal Wetland Area
710 Fresh Water Area
720 Sea Water Area

999 Unknown Area 5 Unknown Area [0, 0, 0, 0]

3.3.6. Ultraviolet Information

To investigate the relation between PM and the chemical reactions, we utilized the UV values as
the input features. UV is partitioned into UVA (315–400 nm), UVB (280–315 nm), and UVC (100–280 nm)
based on the wavelength. The UVA and UVB affect the surface of the earth, therefore, we collected
the UVA and UVB data from the Korea Meteorological Administration (http://data.kma.go.kr). They
provided the total quantity and the maximum quantity of UVA and UVB measured hourly. The area
unit of the observed UV data is quite large such as Seoul. The area of Seoul and Anmyeon-do that they
provide as unit area covers our grid cells entirely. Thus, the UV data from Seoul and Anmyeon-do
were used for the UV variables, i.e., all grids in Seoul utilize the same UV data.

3.3.7. Power Plant Data

As power plant data, we utilized the thermal power plant data that were collected from the
Korea Power Exchange (https://kpx.co.kr). They only provided the information of the thermal power
generation and the raw materials such as coal, gas, and oil (https://www.komipo.co.kr/kor/content/
39/main.do?mnCd=FN021302), without the distinctions of plant type and built year for the entire
Seoul area that is measured hourly. This measurement is also applied to the entire list in our grid cells.
The other power plant data except for the thermal plant data was not available because they do not
provide hourly measured data or do not open data to the public.

3.4. Performance Indicator of the Forecasting Model

Given the prediction methodology and the input variable list, we adopted two performance
measurements that are frequently utilized in the domain.

https://kpx.co.kr
https://www.komipo.co.kr/kor/content/39/main.do?mnCd=FN021302
https://www.komipo.co.kr/kor/content/39/main.do?mnCd=FN021302
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3.4.1. Root Mean Squared Error (RMSE)

Given that y is the actual observed value and ŷ is the estimated value of the forecasting model,
the mean squared error (MSE) measures the average of the squared errors. Herein, the errors are the
average of the squared differences between the estimated values and the actual value. By taking the
square root of MSE, the root mean squared error is computed as follows:

RMSE(y, ŷ) =

√√√√ 1
N

N

∑
i=1

(yi − ŷi)
2 (18)

where N is the number of instances. The smaller value of RMSE indicates the higher predictive power
of the model.

3.4.2. Index-of-Agreement (IOA)

IOA represents the degree of the prediction error of the prediction model, varying between 0 and
1. IOA measures the ratio of the total mean square error, ∑N

i=1 (yi − ŷi)
2, and the total potential error,

∑N
i=1 (yi − y)2 + ∑N

i=1 (ŷi − y)2. By subtracting the ratio value from 1, IOA is computed as follows:

IOA(y, ŷ) = 1− ∑N
i=1 (yi − ŷi)

2

∑N
i=1 (yi − y)2 + ∑N

i=1 (ŷi − y)2 (19)

where y is the average of the observation values. High IOA value indicates that the predicted values
are consistent with the observed values.

4. Experiments

This section discusses the experimental components of our prediction model to predict the PM in
the metropolis with a Gaussian Process.

4.1. Experimental Setting

Our goal is to predict PM2.5 and PM10 over our geospatial grids by training a GPR with
observations from the monitoring sites. We utilized the input data that were observed in 2017 and
2018. Because the evaluation considers the temporal movement, we cannot simply perform N-fold
cross validation. Therefore, we adopt the sliding window approach, described in Figure 4. We train
the GPR with the 12-month observations from all monitoring sites. Thereafter, we test the GPR with
the observations for the next three days. Subsequently, we move this 12-month training window
toward the observation end time, which is the end of 2018. This moving window approach results
in 37 replications because the window size is 10. In terms of the kernel designs of our GPR model,
we combined the three kinds of kernels as presented in Table 3.

To examine the effectiveness of our GPR model, we implement three alternative statistical models,
namely Linear Regression (LR) model, VARIMA model, and a combined model of LR and VARIMA
(VARIMA+LR). Linear regression is a basic model to investigate the effect of each input. Because we
considered a holistic perspective of the PM generation with respect to several input features, LR is
suitable for a comparative investigation. A VARIMA model predicts the current PM concentrations
from the previous. Because our model does not utilize the previous PM concentrations as an input,
we implement VAIRMA+LR for unbiased comparison. Consequently, the VARIMA model admits the
input features that we utilized. For variants of the VARIMA model, we implement the VAR, VMA,
and VARMA models. We performed our experiments by varying the period of training sets and the
types of output, such as PM2.5 and PM10.
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Figure 4. The experimental settings based on the sliding window approach where the window size is
10 days with 365 days of thetraining period and three days of the testing period.

4.2. Experimental Results

4.2.1. Quantitative Results

Table 6 presents the performance of the models in terms of RMSE and IOA. RMSE is the error
measurement. Therefore, lower values of RMSE are preferable. In contrast, IOA is the accuracy
measurement, hence higher values of IOA are desired. From the experiments, GPR is preferable for
both criteria of PM10 and PM2.5. Although the kernel choice causes a performance change, the change
from the kernels is less than the difference between that from GPR and the variants of VARIMA.
Comparing the variants of VARIMA, the VARIMA+LR model outperforms the VARIMA model in
PM10. This means PM10 is significantly influenced by site-specific features, such as topography
and meteorology. In spite of the better performance of VARIMA+LR in PM10, VARIMA+LR in
PM2.5 is worse than VARIMA. Although, from literature, PM2.5 is affected by the local surroundings,
our statistical analyses does not indicate this information. Therefore, features that contributed to
predicting PM10 will be disjoint to the features for predicting PM2.5. This means that the features of
PM2.5 should be investigated for further studies. We also note a consistent performance of LR and a
weak performance of VARIMAs. We conjecture that a typical bias-variance trade-off is applicable to
interpret the results. If a complex model is not well trained with a provided data, the prediction of the
complex model becomes worse than its simpler models because of its high variance error with small
bias improvement. From this perspective, the parameter inference of GPR showed a better training
result given its highest performance, although GPR is the complex model in the compared model set.

Although the average RMSE of GPR is the lowest among the compared models, the relative
significance of the error level should be compared. For this purpose, we also analyzed the IOA index
that accounts for the scale of the target value. Our IOA is beyond 60% in the next three-day predictions,
and recent studies focused on the same day or the next day forecasting [26,27].



Sensors 2020, 20, 3845 16 of 21

Table 6. Quantitative results of the models.

Model Model
Specification

PM10 PM2.5

RMSE (µg/m3) IOA RMSE (µg/m3) IOA

Linear Regression (LR) LR 22.19 ± 4.65 (14.43) 0.56 ± 0.05 (0.15) 22.04 ± 5.08 (15.78) 0.55 ± 0.05 (0.15)

VAR(p)

VAR(1) 26.17 ± 5.07 (15.73) 0.26 ± 0.03 (0.08) 29.30 ± 6.63 (20.57) 0.21 ± 0.05 (0.16)

VAR(2) 26.03 ± 4.75 (14.73) 0.29 ± 0.03 (0.08) 28.41 ± 6.29 (19.53) 0.22 ± 0.05 (0.15)

VAR(3) 26.44 ± 4.36 (13.54) 0.29 ± 0.03 (0.09) 28.09 ± 5.85 (18.14) 0.23 ± 0.05 (0.14)

VMA(q)

VMA(1) 25.80 ± 5.01 (15.56) 0.26 ± 0.03 (0.09) 27.59 ± 5.78 (17.94) 0.21 ± 0.04 (0.12)

VMA(2) 25.92 ± 5.00 (15.53) 0.27 ± 0.03 (0.09) 27.65 ± 5.75 (17.84) 0.22 ± 0.04 (0.12)

VMA(3) 26.06 ± 4.99 (15.49) 0.28 ± 0.03 (0.09) 27.71 ± 5.72 (17.75) 0.23 ± 0.04 (0.12)

VARMA(p, q)

VARMA(1, 1) 33.40 ± 4.46 (13.84) 0.30 ± 0.04 (0.13) 29.05 ± 6.15 (19.1) 0.30 ± 0.06 (0.18)

VARMA(2, 2) 45.78 ± 6.95 (21.57) 0.33 ± 0.04 (0.13) 28.11 ± 5.83 (18.1) 0.30 ± 0.05 (0.17)

VARMA(3, 3) 51.92 ± 7.45 (23.13) 0.35 ± 0.04 (0.11) 32.09 ± 6.56 (20.35) 0.32 ± 0.05 (0.15)

VARIMA(p, d, q)

VARIMA(1, 1, 1) 45.65 ± 7.01 (21.77) 0.15 ± 0.02 (0.05) 46.08 ± 7.02 (21.8) 0.10 ± 0.01 (0.04)

VARIMA(2, 1, 2) 45.55 ± 7.01 (21.74) 0.20 ± 0.02 (0.06) 45.73 ± 6.99 (21.68) 0.14 ± 0.02 (0.06)

VARIMA(3, 1, 3) 45.89 ± 6.98 (21.67) 0.22 ± 0.02 (0.06) 45.55 ± 6.95 (21.58) 0.16 ± 0.02 (0.06)

VAR(p) + LR
VAR(1) + LR 23.89 ± 4.55 (14.12) 0.53 ± 0.05 (0.17) 29.60 ± 4.75 (14.73) 0.41 ± 0.05 (0.15)

VAR(2) + LR 23.56 ± 4.96 (15.4) 0.56 ± 0.05 (0.16) 31.11 ± 5.40 (16.75) 0.42 ± 0.05 (0.15)

VMA(q) + LR

VMA(1) + LR 21.04 ± 4.66 (14.47) 0.59 ± 0.05 (0.15) 25.60 ± 4.97 (15.41) 0.49 ± 0.05 (0.14)

VMA(2) + LR 21.12 ± 4.65 (14.44) 0.59 ± 0.05 (0.15) 25.56 ± 4.96 (15.38) 0.49 ± 0.05 (0.14)

VMA(3) + LR 21.20 ± 4.65 (14.42) 0.59 ± 0.05 (0.15) 25.52 ± 4.95 (15.36) 0.49 ± 0.05 (0.14)

VARMA(p, q) + LR

VARMA(1, 1) + LR 47.79 ± 10.26 (31.84) 0.43 ± 0.05 (0.17) 46.62 ± 6.19 (19.22) 0.31 ± 0.04 (0.13)

VARMA(2, 2) + LR 53.82 ± 14.01 (43.47) 0.46 ± 0.04 (0.13) 54.28 ± 7.86 (24.38) 0.33 ± 0.05 (0.15)

VARMA(3, 3) + LR 60.49 ± 13.31 (41.3) 0.45 ± 0.04 (0.12) 55.35 ± 14.15 (43.9) 0.35 ± 0.05 (0.14)

VARIMA(p, d, q) + LR

VARIMA(1, 1, 1) + LR 50.65 ± 7.26 (22.53) 0.19 ± 0.02 (0.06) 44.93 ± 6.54 (20.3) 0.16 ± 0.02 (0.05)

VARIMA(2, 1, 2) + LR 46.55 ± 7.07 (21.94) 0.23 ± 0.02 (0.06) 43.54 ± 7.18 (22.27) 0.20 ± 0.03 (0.08)

VARIMA(3, 1, 3) + LR 45.86 ± 7.44 (23.1) 0.25 ± 0.02 (0.07) 45.65 ± 6.89 (21.38) 0.19 ± 0.02 (0.06)

Gaussian Process
Regression

GPR - (Matérn) 21.10 ± 4.29 (13.33) 0.61 ± 0.05 (13.93) 21.96 ± 4.97 (15.42) 0.58 ± 0.05 (0.15)

GPR - (RBF) 21.13 ± 4.28 (13.29) 0.59 ± 0.05 (13.78) 19.16 ± 4.71 (14.63) 0.61 ± 0.04 (0.14)

GPR - (Matérn + RBF) 20.97 ± 4.40 (13.67) 0.60 ± 0.05 (13.92) 21.92 ± 4.89 (15.16) 0.57 ± 0.05 (0.15)

4.2.2. Temporal Patterns from Gaussian Process Regression

Figures 5 and 6 present the predictive abilities of GPR in some grid cell at several times. The black
dots in figures indicate the observed points of PM2.5, and the blue line represents the predicted mean
values of the GPR model. The grey area represents the 95% confidence interval at each time. Except for
four days, the observations fall in the confidence interval throughout the year. From Figure 5, there is an
insignificant seasonal trend that shows the up-turn on days 0–100 and days 300–364; and the down-turn
on days 100–300. This corresponds to the winter and the summer seasons of the site, respectively.

Figure 6 shows three daily trends at an arbitrarily chosen site for PM10 and PM2.5, respectively.
The intra-day trend is consistent with the lower PM concentration around 4:00 a.m.; and the higher PM
concentration around 6:00 p.m. These correspond to the lowest activity within cities and the busiest
traffic hour of the city.

We also examine the limitation of GPR that originates from the nature of the Gaussian distribution.
The Gaussian distribution possesses a long tail from negative infinity to positive infinity. Therefore,
the GPR does not predict if the input is always positive, or not. Figures 5 and 6 show some areas of
confidence interval in the negative PM2.5, which is unrealistic. In the experiments, the mean function
of GPR is consistently positive. The high variance of the observations yields the wide confidence
interval. We can minimize the confidence interval to be in the positive area of PM2.5 by adding
sufficient observations in the deployment stage.
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(a) PM2.5 Prediction in 2018 at 10 a.m.

(b) PM10 Prediction in 2018 at 10 a.m.
Figure 5. One year prediction results of our GPR model at grid location of (126.835169, 37.544682).
(Black dot: observed, Blue line: predicted, Grey area: 95% confidence interval.)

(a) PM2.5 Prediction in 2018

(b) PM10 Prediction in 2018

Figure 6. One day prediction results of our GPR model at grid location of (127.040207, 37.543796).
(Black dot: observed, Blue line: predicted, Grey area: 95% confidence interval.)

4.2.3. Spatial Patterns from Gaussian Process Regression

Figure 7 shows the spatial patterns over Seoul. The dots indicate the observed PM2.5
concentration, and the other areas are covered with the predicted values from our GPR model. Figure 7
shows the prediction results at 2:00 a.m., 6:00 a.m., and 10:00 a.m. From 2:00 a.m. to 10:00 a.m.,
the overall PM2.5 concentration increases because the activities and traffic increases. The upper
right subregion is the forest area, hence the PM2.5 concentrations in this area are consistently low.
We observe that the commercial areas with several road segments have higher PM2.5 concentrations,
whereas the mountain and the sea areas have low concentrations that shows the consistency between
the prediction results and the topography of the city.
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Figure 7 shows less variability in the observations than the predictions. The plotted observations
originate from a specific timepoint of the modeled region, whereas the prediction is from the trained
model of the entire past records. Therefore, the prediction shows the higher variability induced by the
past records. This effect is illustrated in the upper right corner of the analyzed region. Although the
corner is a forest area that has low PM concentrations over the period, the observation at a specific
timestep can deviate from the historic pattern. Moreover, it be noted that, although the observation
posts are clustered in the urban center that shows high variations in the predication, there are few
observation posts in the suburban areas that have discrete changes by their topographies.

(a) 2AM (b) 6AM (c) 10AM

Figure 7. PM2.5 prediction at 45th day in 2018 over our grid.

4.2.4. Ablation Study

To investigate the relative importance of the input features, we conducted an ablation study
based on our GPR model. From Table 3, we composed our kernel design by input features; thus,
we implemented the ablated GPR models by excluding each kernel component corresponding to each
input feature. Figure 8 presents the results of our GPR model for PM2.5 prediction; RMSE for Figure 8a;
and IOA for Figure 8b. Each bar represents the prediction performance with a 95% confidence interval
if the corresponding input feature was excluded. Therefore, the worse prediction performance indicates
the value of the ablated input feature. Additionally, the red line represents the original performance of
our model with all input features. All ablated cases reported worse performances than the original
performance that indicates that the input features are necessary to estimate the concentration of PM2.5.

Particularly, the performance reduced significantly provided location (X1, X2), say (X3), and CO
(X20) are excluded. Therefore, these input features are relatively important for predicting PM2.5.
Location is important because it determines the closeness to the traffic and the activities. Moreover,
Time also becomes the indicator of the traffic and the activities, hence they latently infer the same
dynamics. Another input from Time is seasonal effects, such as summer, and winter. Furthermore,
CO is a highly correlated indicator of PM generation [28], hence CO is a key factor.

(a) RMSE result of GPR with RBF kernel if each input feature is excluded. (↓ : lower is better)
Figure 8. Cont.
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(b) IOA result of GPR with RBF kernel if each input feature is excluded. (↑ : higher is better)
Figure 8. Ablation study for the input features in the prediction of PM2.5.

5. Conclusions

This study analyzes the capability of Gaussian process regression to predict the concentration of
particulate matter. We recorded beyond 0.6 of IOA in the prediction of the next three days. GPR is
versatile in including the input features with a customized kernel design. Furthermore, the GPR
outperformed the VARIMA in the given prediction tasks. For example, the cyclic pattern of the
seasonal trend can be captured by the periodic kernel. In addition, the spatial pattern is captured by
the radial basis kernel function. In addition to the prediction performance, we identified the relatively
important input features as Location, Time, and CO. We performed ablation studies to identify key
features, and all features were necessary to statistically improve the IOA performances. Our study
shows key feature selections from varying attributes in the prediction tasks. Therefore, analyses on the
features is relevant information to actual modeling for the public system.
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Abbreviations

The following abbreviations are used in this manuscript:

PM Particulate Matter
CO Carbon Monoxide
NO2 Nitrogen Dioxide
SO2 Sulfur Dioxide
O3 Ozone
UV Ultraviolet
RMSE Root Mean Squared Error
IOA Index Of Agreement
GP Gaussian Process
GPR Gaussian Process Regression
SVGP Stochastic Variational Gaussian Process
RBF Radial Basis Function
LR Linear Regression
AR Auto-Regressive Model
MA Moving Average Model
ARMA Autoregressive Moving Average Model
ARIMA Auto-Regressive Integrated Moving Average
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VAR Vector Auto-Regressive Model
VMA Vector Moving Average Model
VARMA Vector Auto-Regressive Moving Average Model
VARIMA Vector Auto-Regressive Integrated Moving Average Model
GLM Generalized Linear Model
NN Neural Network
PLS Partial Least Square
LSTM Long Short-Term Memory
FC Fully Connected
CNN Convolutional Neural Network
MLP Multi-Layer Perceptron
UFP Ultra-Fine Particle
CPSO Chaotic Particle Swarm Optimization
ANN Artifial Neural Network
AOD Aerosol Optical Depth
MODIS Moderate Resolution Imaging Spectroradiometer
eXGB eXtreme Gradient Boosting
ME Ministry of Environment
MDPI Multidisciplinary Digital Publishing Institute
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