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Human preimplantation development is a complex process
involving dramatic changes in transcriptional architecture.
For a better understanding of their time-spatial development,
it is indispensable to identify key genes. Although the single-
cell RNA sequencing (RNA-seq) techniques could provide
detailed clustering signatures, the identification of decisive fac-
tors remains difficult. Additionally, it requires high experi-
mental cost and a long experimental period. Thus, it is highly
desired to develop computational methods for identifying
effective genes of development signature. In this study, we first
developed a predictor called EmPredictor to identify develop-
mental stages of human preimplantation embryogenesis. First,
we compared the F-score of feature selection algorithms with
differential gene expression (DGE) analysis to find specific sig-
natures of the development stage. In addition, by training the
support vector machine (SVM), four types of signature subsets
were comprehensively discussed. The prediction results showed
that a feature subset with 1,881 genes from the F-score algo-
rithm obtained the best predictive performance, which
achieved the highest accuracy of 93.3% on the cross-validation
set. Further function enrichment demonstrated that the gene
set selected by the feature selection method was involved in
more development-related pathways and cell fate determina-
tion biomarkers. This indicates that the F-score algorithm
should be preferentially proposed for detecting key genes of
multi-period data in mammalian early development.
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INTRODUCTION
Human preimplantation embryo development refers to the first
7 days of fertilization, which proceeds through stages of the two-
cell stage, four-cell stage, eight-cell stage, morula, blastocyst, and
late hatched blastocyst.1,2 The first process of zygote development is
zygotic genome activation (ZGA) when the embryo gradually stops
depending on maternally inherited transcripts and proteins and ini-
tiates zygotic genome transcription.3,4 After a small transcriptional
activation wave from oocytes to the four-cell stage, major ZGA genes
are upregulated between the four-cell and eight-cell stage and start to
regulate the biological development of the embryo.5,6 Then, the differ-
ences between embryonic cells begin to appear, and three different
blastocyst cell lineages are formed.7 The formation of the trophecto-
derm (TE) reflects the first lineage segregation, followed by the next
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lineage segregation when the inner cell mass (ICM) is divided into
primitive endoderm (PE) and epiblast (EPI) cells.8 In fact, there
have been numerous studies of mRNA identification for embryo
development. For example, it has been found that pioneering factors
(ARGFX, CPHX1, LEUTX, and DUX4) activate the ZGA program by
an overexpression experiment and transcriptional analysis.9,10 In
mice, CDX2 represses OCT4 expression in the outer cells, leading to
TE-ICM lineage segregation,11 but in human CDX2-OCT4 antago-
nism may not be necessary.12 DPPA2 and DPPA4 regulate expression
of Dux and LINE-1 in mouse embryonic stem cells, suggesting that
they are an upstream factor of ZGA.13,14 Moreover, Yan et al.15

have identified 2,733 potential novel long non-coding RNAs
(lncRNAs) that were involved in preimplantation. However, potential
molecular events of embryo development are not fully understood.

Recently, the single-cell RNA sequencing (RNA-seq) techniques are
the mainmethod for detecting developmental trajectories and cellular
heterogeneity in early preimplantation embryos;16–19 however, such
techniques could only provide detailed clustering signatures, and
the identification of decisive factors remains difficult and requires
high experimental cost and a long experimental period. As good com-
plements to experimental techniques, computational methods play
high potential roles for cancer diagnosis and sequence classifica-
tion.20–27 For example, Capper et al.28 proposed random forest (RF)
to classify approximately 100 known tumor types of the central ner-
vous system based on DNA methylation data. Based on a single-cell
transcriptome, single-cell variational inference (scVI) aggregates in-
formation across similar cells and genes by stochastic optimization
and deep neural networks,29 and Scialdone et al.30 constructed a pre-
dictor for identifying cell-cycle stage. In addition, feature selection
methods are independent of prior knowledge of biological depen-
dencies, having been applied in bioinformatics, including protein pre-
diction and biomarker discovery.31,32 The QSPred-FL tool is based on
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Figure 1. The Workflow of Construction and Validation of the Embryo Development Signatures

The best signature from the F-score method consisted of 1,881 genes related to embryo development that was constructed and validated using gene expression from

publicly available datasets.
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the fact that quorum-sensing peptides in large-scale proteomic data
can be detected by feature representation learning and machine
learning algorithms,31 and the GF-ICF (gene frequency-inverse cell
frequency) pipeline can provide an effective and simple workflow
for feature selection and subsequent analyses. However, many studies
have advanced new computational methods to interpret single-cell
RNA-seq data,29,30,33,34 but most existing methods cannot build pre-
dictive models of development. To the best of our knowledge, so far
there is no computational tool available for identifying signature
genes of development.

Here, we develop the EmPredicitor, a novel machine learning-based
tool for predicting stages of human embryonic development. In this
predictor, we compared three traditional differential gene expression
(DGE) analyses with a feature selection method based on a single-cell
RNA-seq dataset of preimplantation embryos. Figure 1 shows a sche-
matic diagram of the model establishment workflow. The dataset was
first integrated and removed genes with no expression in all cells.
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Then, we applied three DGE methods (edgeR, limma, and DESeq)
and a feature selection method (F-score algorithm) to obtain signa-
ture genes. By comparing these method performances based on sup-
port vector machine (SVM) and functional enrichment analysis, the
F-score algorithm had the highest performance and obtained an
area under the receiver operating characteristic (ROC) curve
(AUC) of 0.95. Our results also suggested that DGE analysis relied
on pairwise comparison and overlap, inducing the loss of some key
genes that were highly expressed at multiple stages, and the F-score
algorithm considered gene expression at all stages and ignored low
expression of transcripts.

RESULTS
Global Expression Profiles of Human Embryos

Global transcriptome profiles were first analyzed based on a dataset of
early human embryos (Figure 2A, reads per kilobase transcript per
million mapped reads [RPKM] > 0). The gene expression level of
E3 cells was higher than that for other stages, indicating that the



Figure 2. Global Transcriptome Profiles of Human Embryos

(A) Expression-level boxplots for the expressed gene in E3–E7 embryos normalized to the Z score. (B) Heatmap of E3–E7 cells and the top 1,881 genes based on the F-score

using unsupervised clustering. (C) Two-dimensional t-SNE representation of 1,529 single-cell preimplantation transcriptomes using the top 1,881 genes according to the F-

score feature selection. (D) Heatmap of E3–E7 cells and 4,876 differentially expressed genes based on DESeq.
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zygote genome was activated and began to identify the genetic pro-
gram that may control this process.15 Also, the gene expression level
of the cells began to decrease during the E3–E6 stage but increased
during the E7 stage, suggesting that E7 embryos may initiate new
transcriptional activation to begin embryo implantation. To deter-
mine whether embryos at the same stage showed a high correlation,
we analyzed RNA-seq data of the E3–E7 embryos using the SC3 pack-
age (Figure 2C).35 Most of the cells from the same stage were clustered
into one cluster. E3 cells and E4 cells have a high correlation. Howev-
er, E5 cells have two clusters, because after ZGA, differences of em-
bryos begin to emerge and E5 cells appear to segregate ICM and
TE.12 Interestingly, the embryos at the E6 and E7 stages were clus-
tered together and divided into three clusters, suggesting that preim-
plantation of the early embryo resolved in the formation of three
distinct cell lineages of blastocysts.36

In order to investigate whether these gene expression profiles were
related to developmental stages, we conducted t-distributed stochastic
neighbor embedding (t-SNE) on all individual embryos (Fig-
ure 2B)37,38 and found that embryos at the same developmental stage
were clustered together, and the primary segregating factor was devel-
opmental time. With the development of embryos, the heterogeneity
of embryos increased gradually. In addition, we used differentially ex-
pressed genes (DEGs) to plot a heatmap by DESeq, which reflected
that embryo cells segregated into five groups, that E6 cells were less
different from cells in adjacent stages, and that E3 cells have more
DEGs than do other stages (Figure 2D).

Identification of the Developmental Signature by Comparing

with F-Score and Differential Expression Analysis

To identify the best signature genes related to embryonic develop-
ment, we obtained 24,444 gene expression profiles of 1,529 individual
cells (81 E3, 190 E4, 377 E5, 415 E6, and 466 E7 cells) from a public
database. As DGE analysis usually applied sequence count data, count
data were analyzed by comparing three DGE analyses and the F-score
algorithm. By using the same parameter (fold change > 2, p < 0.05),
limma, DESeq, and edgeR identified 3,754, 4,876 and 6,231 DEGs,
respectively, and the number of overlapping genes based on these
methods was 2,976 (Figure 3A; Figure S1A). E3 cells had the highest
number of DEGs compared to other stages (Figure S1A), and edgeR
had more differential genes than did other methods (Figure 3A). The
F-score algorithm calculated and ranked each gene score, but we still
did not know how many genes should finally be selected. To optimize
signature gene selection, we tried the number of signature genes
Molecular Therapy: Nucleic Acids Vol. 20 June 2020 157
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Figure 3. Identification of Development Signature by Comparing the F-Score with Differential Expression Analysis

(A) Venn diagram of DEGs from limma, edgeR, and DESeq. The number of overlapping genes from the three DGE methods is 2,976. (B) The IFS curve with the number of

genes and the performance of classifiers. The x axis is the number of genes used for SVM classifier construction and the y axis is the accuracy of the SVM classifier evaluated

with 5-fold cross-validation. (C) Venn diagram showing a comparison of DEGs and FSGs. Representative gene ontology (GO) terms are listed. (D) Boxplots of POU5F1 relative

expression level at the E3–E7 stages.
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(ranging from 10 to 24,444 genes) for training the support vector ma-
chine model and calculated their prediction performance, which
applied incremental feature selection (IFS) (Figure 3B).39,40 More
genes may bring the best performance but lead to more hardware
and time loss, so we chose 1,881 of the top genes by considering
gene number and their performance, the accuracy of which was
0.93, and this cost low memory consumption and took only 43 min
to obtain the best model. Then, we plotted a heatmap of 1,881 genes
based on F-score algorithms (FSGs) and using the SC3 package (Fig-
ure S1B). Interestingly, E5 cells were separated into two clusters, sug-
gesting that embryo lineage separation showed the formation of TE
and ICM.41,42

We also compared DEGs and FSGs by gene function enrichment (Fig-
ure 3C; Table S1). Unique DEGs were enriched for regulation of the
cellular process, positive regulation of themulticellular organismal pro-
cess, positive regulation of the metabolic process, and multicellular or-
ganism development. Unique FSGs were enriched for embryo develop-
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ment, regulation of cell shape, cell-cell adhesion, and the cell cycle,
which are most relevant to embryonic development. The genes over-
lapped by DEGs and FSGs were enriched for embryo implantation,
regulation of transcription, DNA-templated, multicellular organism
development, and positive regulation of cell proliferation, which related
to transcription and development. Briefly, unique FSGs relatedmore to
embryonic development compared to unique DEGs.

As shown in Table 1, some key genes were selected from FSGs and
DEGs. DPPA5, ZSCAN4, and SOX2 were selected by using these
methods (rank 9, 22, and 1,520, respectively). DPPA5 stabilizes
NANOG and supports human pluripotent stem cell (hPSC) self-
renewal and cell reprogramming in feeder-free conditions.43 ZSCAN4
is a unique gene highly expressed at the zygotic genome activation
stage.44,45 The POU5F1 gene is vital for PSC maintenance in the
mammalian embryo.46,47 Interestingly, POU5F1 (rank 1,470) was
not selected by the DGE method but was obtained by F-score. There-
fore, we analyzed the expression of POU5F1 among E3–E7 stages, and



Table 1. Comparison between Key Genes of FSGs and DEGs

Genes Gene Ontology Terms FSGs (1,881) F-Score limma edgeR DESeq

GDF9 positive regulation of cell proliferation C 1.97 *** *** ***

DPPA5 multicellular organism development C 1.51 * * *

RNF168 zinc ion binding C 1.42 *** *** ***

KLF17
transcription factor activity, sequence-specific
DNA binding

C 1.39 *** *** ***

ZSCAN4 transcription, DNA templated C 1.20 * * *

TLE6 repressing transcription factor binding C 1.14 *** *** ***

CCKBR C 0.65 *** *** ***

PTN C 0.49 *** *** ***

CD24 C 0.48

OSR2 embryo development C 0.34

DLX3 transcription from RNA polymerase II promoter C 0.31 ***

SOX2
transcription factor endodermal cell fate
specification

C 0.22 * * *

POU5F1 somatic stem cell population maintenance C 0.22

STC2 embryo implantation C 0.19

ERVFRD-1 B 0.09 *** *** ***

If a gene belongs to the dataset, replace it with C; otherwise, replace it with B. F-score shows the importance of features selected by the F-score algorithm. *p < 0.05, ***p < 0.001.

www.moleculartherapy.org
POU5F1 was highly expressed in E4 and E5 cells (Figure 3D). There-
fore, DGE analysis mainly relies on pairwise comparison and overlap,
so if a gene is highly expressed at two or more stages, differential
expression analyses may lose the gene, suggesting that DGE analysis
only considered DEGs highly expressed at a stage. The F-score algo-
rithm showed the importance of a gene in all stages. If the expression
level of a gene was too low, the F-score algorithm would give a
low score for this gene, especially similar to ERVFRD-1 (Figure S1C;
Table S2). Although transcripts of low expression may be important,
most of these are outliers, suggesting that transcripts with low expres-
sion levels were preprocessed, in line with previous studies.48

In addition to known markers, several less described markers were
identified, such as RNF168, CCKBR, PTN, CD24 and STC2 (rank
12, 151, 332, 349, and 1,851). CCKBR, a cholecystokinin B receptor,
has been found in a diverse range of cancers.49 We found that in
the late blastocyst, E6 and E7 cells expressed high levels of CCKBR,
indicating that CCKBR may be involved in the ICM segregation of
Table 2. Performance of Stage Predicting Models with 5-Fold Cross-

Validation

Method Gene No. Precision (%) Recall (%) Accuracy (%) F1 Measure (%)

DESeq 4,876 90.23 89.81 89.85 89.73

limma 3,754 91.5 91.23 91.24 91.24

edgeR 6,231 90.82 90.36 90.42 90.31

F-score 1,881 93.3 92.91 93.01 93.2

Underlined text represents the maximum value of every performance evaluation
criterion.
EPI and PE cells. PTN-encoded protein has significant roles in cell
growth, migration, and tumorigenesis,50,51 and it was expressed in
the late blastocyst, suggesting that PTNmay be involved in embryonic
cell migration. Then, we found that most of the 500 top-ranked genes
were high relative expression genes of E3 stages (Table S2), similar to
what has been previously reported.15
Predictor of Human Preimplantation Development and the Web

Server

To develop a predictor to identify developmental stages of human
preimplantation embryogenesis, we applied the support vector ma-
chine classifier to train models based on three DGE analyses and
F-score algorithm in 5-fold cross-validation, and we obtained the per-
formance of the four methods (Table 2). The models of the four
method showed high performances; however, FSGs achieved preci-
sion, recall, accuracy, and F1 measure values of 0.933, 0.929, 0.930,
and 0.930, respectively, and the number of FSGs had the fewest (Ta-
ble 2). In addition, the classifier using the F-score algorithm also
showed high performance, with an AUC greater than 95% (Figure 4).

Based on our proposed model, a user-friendly and publicly accessible
web server for EmPredictor was established (available at http://
bioinfor.imu.edu.cn/empredictor), where users can upload or paste
a dataset of the eight key genes to predict the stage of their samples.
The home page of EmPredictor is shown in Figure 5. We also consid-
ered that users may want to know the relative expression trend of a
gene, so the server provides the function of searching for a gene on
a single-cell dataset from E-MTAB-3929. The user guide is available
on the web page.
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Figure 4. The Predictor of Human Preimplantation Development Based on

Machine Learning

ROC curve and AUC showing that the F-score method obtained high performance.
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DISCUSSION
Herein, we have proposed the first EmPredicitor, a novel machine
learning-based tool for predicting stages of human embryonic devel-
opment. Based on three DGE analyses (limma, edgeR, DESeq) and
F-score algorithm, the single-cell transcriptomes data obtain 3,754,
4,876, 6,231, and 1,881 signature genes, respectively. Then, supervised
machine learning is used to estimate the contribution of embryonic
development to these signature genes. Toward the application of
5-fold cross-validation on a benchmark dataset, the F-score algorithm
can achieve the highest accuracy of 0.93 and AUC of 0.95. Further-
more, functional enrichment analysis showed that the F-score
algorithm can obtain key signaling pathways related to embryo devel-
opment. Based on prior biological knowledge, some key genes were
used to estimate the assessment of F-score and DGE analyses. DGE
analyses rely on pairwise comparison and overlap to obtain differen-
tially expressed genes. F-score detected key genes of multi-period data
that contributed to identifying early embryo stages. In addition, we
constructed a user-friendly and publicly accessible web server where
users can upload or paste a dataset of the eight key genes to predict the
stage of their samples.

There are still some disadvantages of this work. Here, we investigated
only predicting embryonic days. However, embryonic development is
a complex process involving lineage specification and X chromosome
dosage compensation.7,12,46 Integrating genetic and epigenetic data
with gene expression may provide a more comprehensive view of em-
bryonic development. In addition, feature selection methods have
irreplaceable advantages in processing single-cell transcriptome
data and are independent of prior knowledge of biological depen-
dencies, which extend the development analysis pipeline. In the
future, we will use advanced feature selection methods to study em-
bryonic development based on more accurate molecular events and
multi-omics data.
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MATERIALS AND METHODS
Data and Preprocessing

We downloaded a single-cell transcriptome dataset of human preim-
plantation embryos from ArrayExpress under accession E-MTAB-
3929,12 including 1,529 samples. The dataset has five different cell
stages, which are embryonic day (E)3, E4, E5, E6, and E7. The E3 stage
has 81 cells, the E4 stage has 190 cells, the E5 stage has 377 cells, the E6
stage has 415 cells, and the E7 stage has 466 cells.

The data were processed using TrueSeq dual-index sequencing
primers (Illumina) according to the manufacturer’s recommenda-
tions on an Illumina HiSeq 2000.12 The data quality was checked
and reads were mapped to the human genome (hg19) using STAR
with default settings.52 RPKM were calculated using rpkmforgenes53

by the uniquely mapped read counts. Genes were filtered, keeping
24,444 out of 26,178 genes that were expressed in at least 1 out of
1,529 cells (count > 0).
Feature Selection

Linear Model

During the past decade, the limma package54 has been a popular
choice for gene discovery through differential expression analyses
of microarrays. Recently, limma has also provided differential expres-
sion and differential splicing analyses of RNA-seq data. limma uses
the voom function by converting mean variance to precision weights
and using a linear model,

E
�
ygi
�
= mgi = XT

i bg ; (Equation 1)

where Xi is a vector of covariates and bg is a vector of unknown co-
efficients representing log2 fold changes between experimental condi-
tions. In matrix terms

E
�
yg
�
=

X
bg
; (Equation 2)

where yg is the vector of log cpm values for gene g, and X is the design
matrix with the Xi as rows. The limma package is available at https://
bioconductor.org/packages/release/bioc/html/limma.html.
Negative Binomial Distribution

edgeR55 is designed for the analysis of replicated count-based
expression data. Data are modeled as negative binomial (NB)
distributed

Ygi � NB Mipgj;fg

� �
(Equation 3)

for gene g and sample i. Here, Mi is the library size (total number of
reads), fg is the dispersion, and pgi is the relative abundance of gene g
in experimental group j to which sample i belongs. The edgeR package
is available at https://bioconductor.org/packages/release/bioc/html/
edgeR.html.
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Figure 5. A Semi-screenshot Showing the Home Page of the EmPredictor Web Server
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DESeq56 provides methods to test for differential expression by use of
the negative binomial distribution and a shrinkage estimator for the
distribution’s variance,

Kij � NB
�
mij; s

2
ij

�
; (Equation 4)

which has two parameters, the mean mij and the variance s2ij. The read
counts Kij are non-negative integers. The DESeq package is available
at https://bioconductor.org/packages/release/bioc/html/DESeq.html.

F-Score Algorithm

F-score is a simple and basic but effective algorithm for evaluating the
importance of each feature in the dataset. F-score is a computed each
feature values and

FðiÞ =
�
xð+ Þ
i � xi

�2

+
�
xð�Þ
i � xi

�2

1
n+�1

Pn+

k= 1

�
xð+ Þ
k;i � xð+ Þ

i

�2

+ 1
n�1

Pn�
k= 1

�
xð�Þ
k;i � xð�Þ

i

�2;

(Equation 5)

where xi; x
ð+ Þ
i ; xð�Þ

i are the average of the ith feature of the whole, pos-
itive, and negative datasets respectively; xð+ Þ

k;i is the ith feature of the
kth positive instance; and xð�Þ

k;i is the ith feature of the kth negative
instance. A Python program fselect.py can compute each feature
value and rank the feature downloaded from https://www.csie.ntu.
edu.tw/�cjlin/libsvmtools/.57

Machine Learning Model Implementation

The support vector machine (SVM) was proposed by Vapnik et al.58

SVM shows many advantages in solving small sample, nonlinear, and
high-dimensional pattern recognition. The idea of SVM is based on
transforming the input vector into a high-dimensional Hilbert space
and finding a separating hyperplane in this space. Gaussian radial ba-
sis function (RBF) kernel function59 is a widely used kernel function
because of its high performance in non-line classification:

KGaussion xi; xj
� �

= e

xi � xj

���
���

���
���
2

2s : (Equation 6)

We applied LIBSVM as an SVM model with a one-against-one strat-
egy60 and RBF kernel. A grid search strategy with a cross-validation
test is always utilized to obtain the best values of the regularization
parameter C and kernel parameter g. We used the gird.py file
(https://www.csie.ntu.edu.tw/�cjlin/libsvmtools/) in LIBSVM to
search for the best C value and g value (the range of the C parameter
is between 2�5 and 210, and the range of the g parameter is between
2�15 and 23).60 Classifier performance was evaluated by 5-fold
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cross-validation analysis,28,59 where each training dataset was
randomly partitioned into four equal parts with one part being
used for model training and the remaining part used for testing.
We used the cross-validation method to limit overfitting of the
classifier. To have a complete measurement of the prediction perfor-
mance, four statistics, i.e., accuracy, recall, precision, and F1 mea-
sure,30,59 were calculated as follows:

Accuracy =
TP +TN

TP + FN +TN + FP
(Equation 7)

Recall =
TP

TP + FN
(Equation 8)

Precision =
TP

TP + FP
(Equation 9)

F1 measure =
2 � ðprecision � recall Þ
ðprecision+ recall Þ =

2 � TP
2 � TP + FN + FP

;

(Equation 10)

where TP is the true positive correct result, FP is the false unexpected
result, FN is the false missing result, and TN is the true correct absence
of result.

Code Available

The code for the implementation of the EmPredictor is available on
GitHub: https://github.com/liameihao/EmPredictor.
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