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A comparison of strategies 
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Due to the overall high costs, technical replicates are usually omitted in RNA‑seq experiments, but 
several methods exist to generate them artificially. Bootstrapping reads from FASTQ‑files has recently 
been used in the context of other NGS analyses and can be used to generate artificial technical 
replicates. Bootstrapping samples from the columns of the expression matrix has already been used 
for DNA microarray data and generates a new artificial replicate of the whole experiment. Mixing 
data of individual samples has been used for data augmentation in machine learning. The aim of 
this comparison is to evaluate which of these strategies are best suited to study the reproducibility 
of differential expression and gene‑set enrichment analysis in an RNA‑seq experiment. To study 
the approaches under controlled conditions, we performed a new RNA‑seq experiment on gene 
expression changes upon virus infection compared to untreated control samples. In order to compare 
the approaches for artificial replicates, each of the samples was sequenced twice, i.e. as true technical 
replicates, and differential expression analysis and GO term enrichment analysis was conducted 
separately for the two resulting data sets. Although we observed a high correlation between the 
results from the two replicates, there are still many genes and GO terms that would be selected from 
one replicate but not from the other. Cluster analyses showed that artificial replicates generated by 
bootstrapping reads produce it p values and fold changes that are close to those obtained from the 
true data sets. Results generated from artificial replicates with the approaches of column bootstrap or 
mixing observations were less similar to the results from the true replicates. Furthermore, the overlap 
of results among replicates generated by column bootstrap or mixing observations was much stronger 
than among the true replicates. Artificial technical replicates generated by bootstrapping sequencing 
reads from FASTQ‑files are better suited to study the reproducibility of results from differential 
expression and GO term enrichment analysis in RNA‑seq experiments than column bootstrap or 
mixing observations. However, FASTQ‑bootstrapping is computationally more expensive than the 
other two approaches. The FASTQ‑bootstrapping may be applicable to other applications of high‑
throughput sequencing.

Abbreviations
BATV  Batai virus
CB  Column bootstrap
FB  FASTQ-bootstrap
GO  Gene ontology
MO  Mixed observations
R1, R2  Replicate 1, replicate 2

High-throughput sequencing of RNA samples (RNA-seq) has become the standard for generating gene expres-
sion profiles of biological samples with a wide range of examples in biomedical  research1–3. Due to the overal 
costs of an RNA-seq experiment, technical replicates are usually omitted, especially in observational studies 
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which already include a large number of biological replicates. The general need for technical replicates has been 
discussed controversely in the last years. While, for example, a high reproducibility of RNA-seq analyses has 
been reported, the same study points at cases were technical replicates could improve the statistical power of an 
 experiment4. McIntyre et al.5 reported that reproducibility also depends on the size of coverage of sequencing 
reads across the reference genome. It has also been found that technical replicates can be useful to detect potential 
lane effects of the flow  cell6, the solid support of the RNA material within the sequencing machine. Moreover, Li 
et al.7 argue for the general need of measuring the reproducibility of high-throughput experiments, since many 
studies have shown changes in the ranking of selected features (i.e., genes). Such changes can finally lead to differ-
ent biological interpretation, or to different outcomes of subsequent analyses, e.g. gene-set enrichment  analysis8,9.

To circumvent to obstacle of additional costs for technical replicates, we study and compare three differ-
ent approaches to generate replicates of RNA-seq experiments computationally. The first approach has been 
presented in the context of DNA microarray experiments and takes bootstrap samples from the columns of the 
gene expression  matrix10. This technique does not generate new expression values but a new permutation of 
existing data. Thus, a replicate of the whole experiment and not for individual samples is generated. The second 
approach uses bootstrap samples from the sequencing reads stored in the individual FASTQ-files. Bootstrap-
ping from a set of sequencing reads has also already been proposed in the context of  transcriptomics11 and also 
 metagenomics12. This approach generates new expression levels for each biological sample that can be regarded 
as an artificial technical replicate. Finally, we include the approach of mixing observations by using a weighted 
mean over the columns of the expression matrix, a typical technique for data augmentation in machine  learning13. 
Usually, one expects in an experiment that the correlation of data from the same biological sample (e.g. in the 
form of a technical replicate) is larger than the correlation between data from biologically independent samples. 
Therefore, by mixing the data of biologically independent samples, this approach appears more appropriate to 
generate artificially biological replicates. In the following, we denote the three approaches by FB (approach 1, 
FASTQ-boostrapping), CB (approach 2, column bootstrapping), and MO (approach 3, mixing observations). 
By their nature, the CB and MO approach do not produce technical replicates for individual samples, but they 
still may be suited to study the reproducibility of an RNA-seq experiment.

Here, we compare the three approaches of artificially generating replicates of RNA-seq experiments on a data 
example as a case study produced by an experiment in our own labs. The experiment consists of infected and 
non-infected samples each subjected twice to RNA-seq, i.e. with two real technical replicates. The two resulting 
data sets are denoted by R1 and R2 in the following. We observe how well analytical results obtained from arti-
ficial replicates generated from data of R1 fit to the results obtained from data of the true technical replicate R2, 
and vice versa. Comparisons are done on the level of it p values and log fold changes from differential expression 
analysis and subsequent GO term enrichment analysis. The comparison is mainly done explorative looking at 
similarities between results from true and artificially generated data. We also compare the gene-wise dispersion 
estimates for biological and technical variance in the real and artificial data.

Methods
In this section, we detail first the three different approaches for generating artificial replicates of individual sam-
ples or replicates of the whole experiment (Fig. 1). In addition to the computational methods, we present the 
infection data set, that we use as a case study to demonstrate and compare the computational methods.

Data processing, mapping, differential expression and enrichment analysis. Raw FASTQ-files 
were processed by quality-based trimming using  Trimmomatic14 and mapped to the mouse reference genome 
(Version GRCm38 from https:// www. ncbi. nlm. nih. gov/) using STAR 15. Each differential expression analysis was 
performed by the R-package  DESeq23 to generate lists of it p values and log fold changes. Raw it p values were 
adjusted to control a false discovery rate of 5% by the method of Benjamini and  Hochberg16. GO term enrich-
ment analysis was performed based on the it p value lists from differential expression analysis using  Enrichr17. 
Differential expression and enrichment analyses were performed separately for data sets R1 and R2.

Bootstrapping columns of the expression matrix (CB approach). After mapping the reads of each 
original FASTQ-file to the reference genome, a matrix of read counts is generated which contains d genes in its 
rows and n samples in its columns. This is similar to expression matrices obtained in DNA microarray experi-
ments, except for the difference that microarray experiments generate fluorescence values as measure of gene 
expression. By bootstrapping with replacement columns from the expression matrix, new realizations of the 
whole experiment can be generated. Consider for example the data matrix has 10 columns, a new realization of 
the experiment would consist a random sample of these 10 columns, e.g. columns {8, 3, 4, 6, 3, 4, 1, 1, 8, 9}. From 
these realizations, new lists of it p values and log fold changes can be calculated. We applied this approach 10 
times on the expression matrix from R1 and 10 times on the expression matrix from R2.

Bootstrapping sequencing reads from FASTQ‑files (FB approach). A FASTQ-file is typically gen-
erated as a result of a high-throughput-sequencing run and lists the sequences (called reads) of millions of DNA 
or RNA molecules, together with quality keys for the detection of each single nucleobase. To generate an artifi-
cial technical replicate, we draw π · k reads from the FASTQ-file with replacement, where k denotes the number 
of reads in the original file and π is a percentage. Drawing reads with replacement means that a read from the 
original FASTQ-file can be selected multiple times for the bootstrap FASTQ-file. Here, we decided first to set 
π = 100% , so that the artificial replicate has as many reads as the original file. For computational efficacy, one 
can decide to use values of π < 100% , and we will also study and discuss this issue later. The reads from the new 
FASTQ-file are mapped again versus the reference genome to obtain read counts per gene. Then, new lists of it p 

https://www.ncbi.nlm.nih.gov/
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values and log fold changes can be calculated. As with the CB approach, we run the FB approach 10 times, once 
from the FASTQ-files of R1 and once from the FASTQ-files of R2.

Due to the generation of additional FASTQ-files, this approach requires a higher amount of storage. Consider, 
one original FASTQ-file has a size of 5 GByte, and one wants to generate 10 artificial replicates using the FB 
approach, 50 GByte of additional storage would be necessary temporarily. Therefore, our strategy is to first gen-
erate n FASTQ-files with subsequent mapping and counting. After the differential analysis has been performed, 
artificially generated FASTQ-files are removed before doing the next run.

Mixing columns of the expression matrix (MO approach). Mixing observations is a typical technique 
of data augmentation regularly used to obtain more accurate machine learning models. To mix observations has 
particularly a long tradition in image classification. Here, we use a weighted mean of the columns of the follow-
ing form to generate a new artificial replicates: xnew =

∑n
i=1

wixi , where xi is the ith column of the expression 
matrix, i.e. a vector of length d, and wi are weights such that 

∑
wi = 1 . In each replication of the experiment, we 

generate n new samples by this approach and bind them together as a new (d × n) expression matrix. As with 
the other two approaches, we replicate this approach 10 times, once based on the expression matrix of R1 and 
one based on the expression matrix of R2. Finally, the lists of it p values and log fold changes can be calculated.

RNA‑seq experiment on a Batai virus with technical replicates. In order to demonstrate the char-
acteristics of each approach, we performed a small RNA-seq experiment with 4 independent control samples of 
the immortalized mouse dendritic cell lines DC2.418 and 5 independent samples infected with Batai orthobuna-
virus (BATV)19. Cells used for infections as well as controls derived from the same batch were seeded in separate 
T25 ccm2 tissue culture flasks (Sarstedt AG & Co., Nümbrecht, Germany) at the same density. Each infection 
was carried out with the same aliquot of BATV and RNA isolations were carried out 24 h post infection using 
QIAzolTM Lysis Reagent (Qiagen, Hilden, Germany). Each sample underwent library preparation using TruSeq 
Stranded mRNA library preparation kit (Illumina, San Diego, USA) and was run two times as technical replicate 
on an Illumina NextSeq 500, i.e. 18 samples were sequenced in total. The 18 samples were randomized to three 
NextSeq v2.5 Mid Output Kits to avoid additional technical batch effects. Raw data is provided in the NCBI 

Figure 1.  Workflow of generating replicates by the different strategies. While the MO and CB approach are 
based on the read count data obtained after mapping, the FB approach starts directly with the reads from the 
FASTQ-files. Finally, the original results of differentially expression analysis and gene-set analysis are compared 
with the results obtained with the artificial replicates. The diagram was drawn using the software ‘diagrams’ 
(version 16.2.7, www. diagr ams. net).

http://www.diagrams.net
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Sequence Read Archive (please see ‘Availability of data and material’ statement), results of FastQC quality con-
trol are provided as supplementary material.

Results
As with the data sets, we also denote the analytical results from the first sequencing run of the nine samples (5 
infected versus 4 uninfected) by R1, and those from the second sequencing run of the nine samples by R2. It 
should be remarked that R1 and R2 were run simultaneously without a time gap. In the following, we call these 
also the true technical replicates, in contrast to the artificial replicates.

With each of the three strategies for generating artificial replicates, we produced 10 additional series of it p 
values and log2 fold changes, denoted in the following by FB1 to FB10 for the FASTQ-boostrap approach, by 
CB1 to CB10 for the column bootstrap approach, and by MO1 to MO10 for the mixed observations approach. 
The series of results also include those from the GO term enrichment analyses.

Variability between the results from true technical replicates R1 and R2. To assess the variability 
between the results from the two real technical replicates, R1 and R2, we compared the raw gene-wise p values 
as well as the absolute log2 fold changes of all genes after differential gene expression analysis (Fig. 2). We took 
the absolute log2 fold changes, because gene ranking would be based (besides on it p values) on the size of the 
fold changes independent of their sign, i.e independent of up- or down-regulation. As a measure of compari-
son, we used Spearman’s rank correlation coefficient ρ . In general, the results from both sequencing runs show 
significantly high rank correlation of gene-wise it p values and absolute log2 fold changes ( ρ = 0.88 , p < 0.01 
and ρ = 0.94 , p < 0.01 , respectively). However, we can observe genes that deviate strongly from the bisecting 
line in both plots, indicating that a technical replication of the experiment can yield varying results. In extreme 
cases, this deviation can mean that some genes that have a significant it p value and a high fold change under 
R1 would not be selected as differentially expressed when the sample are sequenced a second time as technical 
replicate, and vice versa. Thus, even with a high correlation, biological conclusions drawn from the two replicates 
can differ.

Similarity of replicates p values and log fold changes. As specified above, 10 new lists of it p val-
ues and log2 fold changes were produced per strategy. The similarity between these values in relation to those 
obtained from the two original replicates, R1 and R2, were compared in hierarchical cluster trees. We calculated 
the cluster trees where similarity between it p values was again measured using Spearman’s rank correlation coef-
ficient. To be more precise, we used 1− ρ as a distance measure. In order to obtain compact clusters, we used 
the Ward method for clustering. When doing the comparison between results generated from real and artificial 
replicates, one should keep in mind that results from artificial replicates generated from R1 should reflect the 
results from the true replicate R2, and vice versa.

Figure 3 shows the relation of it p value lists obtained from the original two replicates and from the different 
approaches of building artificial replicates. Results are shown, when artificial replicates were either generated 

Figure 2.  Smooth scatterplots of raw, gene-wise it p values generated from true experimental replicates R1 and 
R2 (left), and of absolute log2 fold changes (right). Spearman correlations between R1 and R2 are high, showing 
in principle a similar ranking of genes between technical replicates in an RNA-seq experiment. However, the 
plots also show a high number of genes which diviate stronger from the bisecting line, i.e. genes which would be 
selected by one experimental replicate but not by the other.
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on the basis of data from R1 (Fig. 3, top) or from R2 (Fig. 3, bottom). Furthermore, results for the FB approach 
are either based on values of π=100% or π=80%. As detailed above, π denotes the percentage of reads sampled 
relative to the original amount of reads in a FASTQ-file.

When generating FB results from R1, one can observe that the distance between results generated by the FB 
approach are closer to the results of the true experimental replicates R1 and R2 than results from the CB and 
MO approaches. When generating artificial replicates from R2 there are two results from the CB method that are 
as close to R1 and R2 as the FB results. Independent of generating results from R1 and R2, the results obtained 
from the MO approach and the majority from the CB approach clustered as outgroups. There is nearly identical 
clustering when changing the value of π . However, in regard of the desired aim, FB results are always too close 
to the original replicate from which artificial replicates were generated.

Figure 3.  Cluster trees of it p value lists, where similarity of it p value lists was specified using Spearman’s 
correlation coefficient ρ . R1 and R2 denote the it p value lists obtained from the differential expression analysis 
of the original two replicates. FB1 to FB10 are the it p value lists from the approach of generating technical 
replicates by boostrapping reads from FASTQ-files. CB1 to CB10 denote the results after column boostrap and 
MO1 to MO10 denote the results obtained by the mixing observation approach. Cluster trees were generated 
either when artificial replicates were generated from R1 (top) or from R2 (bottom). Furthermore, FB replicates 
were either sampled with π = 100% or π = 80% of reads from the original FASTQ-files.
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When comparing the log2 fold changes we observe a slight change in the cluster trees that are generated the 
same way as those for the it p value lists (Fig. 4). When artificial results were generated from R1, one can observe 
that the results obtained from the MO approach are closest to R1, but results obtained from the FB method also 
cluster close to R1 and very close to R2. When results were generated on the basis of R2, the results from MO 
and CB approaches are more divided within the cluster trees. Half of the results obtained by the MO approach 
are close to R2 and the other half is clustered together with the majority of the CB results as an outgroup. In 
general, the observations for log2 fold changes are more in favour of the FB approach than could be observed 
for the analysis of it p values. In fact, results based on artificial replicates generated from R1 cluster closer to the 
results from R2, and vice versa.

Figure 4.  Cluster trees of log2 fold changes, where similarity of absolute log2 fold changes lists was specified 
using Spearman’s correlation coefficient ρ . R1 and R2 denote the log2 fold changes obtained from the differential 
expression analysis of the original two replicates. FB1 to FB10 are the log2 fold changes from the approach 
of generating technical replicates by boostrapping reads from FASTQ-files. CB1 to CB10 denote the results 
after column boostrap and MO1 to MO10 denote the results obtained by the mixing observation approach. 
Cluster trees were generated either when artificial replicates were generated from R1 (top) or from R2 (bottom). 
Furthermore, FB replicates were either sampled with π = 100% or π = 80% of reads from the original FASTQ-
files.
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Although there are still samples that managed to be clustered close to the two technical replicates the FB 
approach seems to be more consistent in both cases, when artificial results are generated from R1 or R2. Also, in 
both comparisons the results obtained from the FB approach are always clustered together and are close to both 
technical replicates regardless of the value π.

Besides comparing the results from differential expression analysis in form of it p values and log2 fold changes, 
we also compared directly the similarity between original gene expression data and that from the artificial rep-
licates. Cluster trees, separately for treatment and control data, is provided as Supplementary Figures S5 and S6. 
The overall picture in these plots is not as clear as in the cluster trees of it p values and log2 fold changes. The FB 
and MO generated data cluster relatively close to R1 and R2 while several (but not all) CB data cluster further 
away from R1 and R2. In order to understand, whether the correlation between original data R1 and R2 with the 
artificial data depends on specific factors, we generated some exemplary scatter plots (Supplementary Figure S7). 
The overall shape was very similar in other replicates generated by the three approaches. It can be seen from the 
correlation plots that in general the distribution of highly expressed genes remains more stable with each of the 
three approaches, while there is less stability for low expressed genes. We could not identify another particular 
influence on the stability of gene expression values.

Overlap of selected genes and GO terms. While the above cluster trees are based on results for all 
genes, we now focus only on the genes selected as differentially expressed and GO terms selected as significantly 
enriched. Heatmaps in Fig. 5 show the overlap in percentage of differentially expressed genes between each pair 
of true and artificially generated replicates. Again, one plot shows the results when artificial results were gener-
ated from R1 (top plot) and the other plot when samples were generated from R2 (bottom plot). Each data set is 
represented in one column and one row as well. Remark that the overlap matrices shown in the heatmaps are not 
symmetric. Each row represent a reference data set and the columns the data sets with which the set of selected 
genes in the reference data set is compared. Differentially expressed genes were selected using a threshold of 0.05 
for FDR-adjusted it p values and a threshold of +/− 2 for the log fold change.

When artificial samples are generated from R1 we wish to have a large overlap with the results from R2. 
Therefore, we first look at the second row of Fig. 5 (top left): genes selected from the FB data sets show a little bit 
more overlap with genes selected from R2 than genes selected from CB and MO data sets. The same results can 
be seen from the first row in Fig. 5 (bottom left), when artificial samples were generated from R2.

What we also see from the heatmaps is the correlation between the results of each individual method and 
between R1 and R2. From data sets R1 and R2, 595 and 565 genes are selected with the above defined thresholds, 
respectively, with an overlap of 447 genes. I.e., 447/595 = 75% of genes selected from R1 are also found from R2, 
and 447/565 = 79% of genes selected from R2 are also found from R1. The overlap of selected genes between 
the FB data sets ranges between 67 and 76%. Within CB and MO data sets the overlap ranges from 55 to 94%, 
and from 79 to 96%, respectively. Thus, there is much higher variability in the results generated from CB and 
MO data sets than in the results from FB data sets. Moreover, the size of overlaps between results from FB data 
sets is more similar to the overlap between results from R1 and R2, compared to the size of overlap between CB 
and MO samples.

The heatmaps also emphasise that results from MO replicates are more different from results from FB and 
CB replicates, which was already given in the cluster trees of Fig. 3. On the one hand, most genes selected by 
the MO replicates are also found by the other approaches (yellow parts in the areas at the bottom). On the other 
hand many genes selected by the FB and CB replicates are not found by the MO approach (blue areas at the top 
and center right of the heatmaps. While plots in Fig. 3 are based on all it p values, it appears that the distance of 
MO replicates to the other results is even more brought out after gene selection.

Since enrichment analysis of GO terms is based on the it p value lists obtained from the differential expression 
analysis, it is very likely that the performance of methods for artificial replicates is similar as described above. 
Indeed, one can observe a similar trend of results (Fig. 6). Overall, results produced by the FB approach have 
more overlaps with results from R1 and R2 ( > 50% ) in enriched GO terms compared to the overlap of results 
from the CB and MO approach with R1 and R2 ( < 50%).

Dispersion across data sets. As part of differential expression analysis, DESeq2 determines gene-wise 
dispersion estimates which can be used to determine biological or technical variance in different subsets of the 
data. For the following analysis, biological and technical variance were extracted for approx. 30 thousand genes 
to which the reads of the original FASTQ-files mapped. The distribution of gene-wise biological dispersion 
estimates obtained from data sets R1, R2, FB1–FB10, CB1–CB10, and MO1–MO10 are shown in Fig. 7 (left 
plot), where each boxplot represent approx. 30 thousand variance estimates. As can be seen, the distributions of 
biological variances determined in the artificial data sets FB1–FB10 are more similar to those of R1 and R2 than 
to those obtained in data sets CB1–CB10 and MO1–MO10. Additionally, the distributions in the 10 FB data sets 
are more homogenous, while the results from the CB and MO data sets show a high variability.

To determine the technical variance, dispersions were estimated in different subsets: R1 plus R2, all FB, all CB 
or all MO data sets, respectively. In this setting, not the experimental group factor (infected versus control) but 
the nine biological replicates where put as factor in the design matrix of DESeq2. Thus, the dispersion estimates 
reflect the technical variance between the replicates. The analysis yields that neither of the three strategies reflects 
the technical variance appropriate. The FB and the MO approach under-estimate the variance for most genes, 
while dispersions estimated by the CB approach are mostly larger than in the true replicates (Fig. 7, right plot).

Tuning variability of FASTQ‑bootstrap replicates. We evaluated the FB approach by tuning the 
amount π of sampled reads from the original FASTQ-file. Changing π from 100 to 80% seems to have no notice-
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able impact on the results represented by detected differential expressed genes or identified enriched GO terms 
(Figs. 5 and 6) and by pair wise comparisons of it p value lists and log2 fold change lists (Figs. 3 and 4). We 
further reduced the size of π to values of 75% and 50%, respectively, and observed that the it p values and log2 
fold changes do not change strongly. A value of π=75% still produces results close to R1 and R2 in comparison to 
the results obtained from the CB and MO approaches. However, when reducing π to a value of 50% the amount 
of detected differential expressed genes decreases strongly. Compared to π=100%, where approximately 80% of 
genes represented in R1 are also detected by the FB approach, a π of 50% results in the detection of less than 
50% of those genes. Furthermore, less than 30% of differentially expressed genes detected with a π of 50% are 
also detected in R1. Heatmaps and cluster trees for results with π = 75% and π = 50% are provided as Supple-
mentary Figures S1–S4.

Figure 5.  Heatmaps reflecting the overlap of selected differentially expressed genes from true experimental 
replicates R1 and R2 as well as from the artificial replicates with the three different approaches. Again, heatmaps 
are shown when artificial replicates were generated from R1 (top) or R2 (bottom) and with different values π for 
the FB apprach. Overlap is given in percent of genes detected in a comparison analysis (column) with respect 
to an reference analysis (row). Exemplarily, the interpretation for the plot top left is as follows. Replicates were 
generated from the data of R1 with the purpose of obtaining similar results as from R2, which is shown in 
the second line. Here, FB and CB results show a stronger overlap with R2 than results from the MO strategy. 
Heatmaps were drawn using the R-package ‘ComplexHeatmap’ (version 2.6.2., www. bioco nduct or. org).

http://www.bioconductor.org
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Application of FASTQ‑bootstaps for the analysis of the BATV experiment. Based on the above 
findings that the FB approach produces artificial technical replicates that behave similar as true replicates, we 
want to demonstrate here, how this approach can be used to rate uncertainty in an RNA-seq experiment. In the 
RNA-seq experiment on the BATV, 628 genes were selected in the R1 replicate with an FDR-adjusted it p value 
< 5% and an absolute log2 fold change > 2 . Only 346 of these genes were again selected in 100% of 10 replicates 
of the whole experiment generated by the FB approach, additional 77 genes were selected in 90% of the FB 
replicates. One of the 628 genes was not selected by either of the FB replicates. Furthermore, 1059 genes were 
additionally found in the FB runs but not in R1. However, 934 of these 1059 were detected in less than 50% of the 
FB runs, thus these additional findings would not be too critical. The complete comparison between numbers of 
selected genes in R1 and the 10 FB runs are given in Table 1.

Figure 8 shows the raw it p values of the 628 selected genes from R1 and the number of runs a gene was 
selected in the replicates generates by the FB approach. Typically, genes are ranked by their raw it p value in a 
differentially expression analysis (adjusted it p values can contain bindings leading to a less accurate ranking, 
and fold changes don’t contain information about variance and significance.) The two genes indicated by red 
circles in this figure represent extrem scenarios. The gene that was selected in only 4 FB runs would obtain a 

Figure 6.  Heatmaps reflecting the overlap of selected enriched GO terms in the same way as the heatmaps of 
differentially expressed genes. Heatmaps were drawn using the R-package ‘ComplexHeatmap’ (version 2.6.2., 
www. bioco nduct or. org).

http://www.bioconductor.org
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higher rank than the gene selected in 10 FB runs, however, the bootstrap approach points at a higher uncertainty 
for the former one.

Figure 7.  Left: distribution of gene-wise dispersions estimated in the real and artificial data sets. These 
dispersions reflect the biological variance of the nine samples. Right: distribution of gene-wise dispersions 
between true replicates R1 and R2, as well as between all FB, all CB and all MO samples. These distributions 
reflect the variance between each set of replicates.

Table 1.  Comparison of genes selected as differentially expressed in true technical replicate R1 (TRUE=gene 
was selected by adjusted it p value and log2 Fold Change; FALSE=gene was not selected) and in 0, 1, ..., 10 runs 
with artificially generated technical replicates by the FB approach. Of 628 genes selected from the R1 data, only 
346 genes were selected in all 10 runs of the FB approach.

FB approach

0 1 2 3 4 5 6 7 8 9 10

R1
FALSE – 524 210 131 78 57 39 21 7 1 0

TRUE 1 2 4 9 19 31 34 51 54 77 346

Figure 8.  Raw it p values of 628 genes selected as differentially expressed by in the R1 data set versus number of 
runs with artificially replicates generated by the FB approach.
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Discussion
Reproducibility of scientific results has been discussed widely in the recent years, also including its perception 
as a ‘crisis’20. In general, reproducibility means the ability to reproduce another scientist’s results, or eventually 
to reproduce own results. Primarily, this can be translated to the ability of performing an experiment that leads 
to the same scientific conclusions as a prior experiment. Other aspects of reproducibility include reproducible 
analysis, i.e. the availability of data and analysis code, and reporting  guidelines21,22.

Although RNA-seq seems to have a high level of reproducibility, results still can change when technically 
replicating the experiment. In consequence, this can change the biological interpretation when selected genes or 
GO terms fall out or come into the list. For example, falsely identified induced or repressed pathways may lead 
to costly follow-up experiments, which will not lead to informative data or in the worst case wrong therapeutic 
approaches. However, it is state of the art to validate candidate genes and pathways by an independent method 
such as qRT-PCR or Proteomics approaches before planning therapeutic interventions or follow-up animal 
experiments. This effect of altered interpretation based on different replicates data was also seen in the technical 
replication of our case study.

Understanding the technical reproducibility of an RNA-seq experiment is also important since several studies 
have demonstrated that the way of analysis and of results reporting can additionally affect the reproducibility of 
 results22,23. Therefore, we have studied the usability of artificially generated replicates for measuring the uncer-
tainty of selected molecular features. While the CB and MO approach may also be helpful to study the range of 
possible results when replicating an RNAs-seq experiment, the FB approach appears to be better suited since 
these data and results obtained from their analysis are closer to real technical replicates. The proposed methods 
are cheap to perform in contrast to true replicates, however, additional storage space per analysis must be allowed 
for, in particular for the FB approach.

Analysis of estimated dispersions has shown that the FB approach maintains the distribution of biological 
variances very well, but under-estimates the technical variance. The two other approaches do neither maintain 
the biological variance observed in the true data nor reflect the technical variance seen in the true replicates. 
Although the other results for the FB method are promising, an under-estimation of the technical variance can 
lead to an too optimistic view on the reproducibility of an experiment.

For specific questions concerning direct effects of the sequencing machine, such as lane effects of the flow 
cell, artificially generated replicates are, however, not helpful. Furthermore, we have not yet studied how many 
artificial replicates of an experiment would be necessary. Here, we used 10 instances for each of the three strate-
gies and think that this number will be sufficient in most scenarios to judge whether selected genes and GO 
terms from the true samples would be selected if the experiment was replicated.

It also appears that artificially replicates generated by the studies approachs don’t have an effect on the power 
to detect differentially expressed genes. The improvement of power when using technical replicates on different 
lanes of the flow cell was mentioned by Marioni et al.4, but we did not explicitly investigate this effect in our 
analysis. Marioni et al. argue that the number genes whose expression can be assessed increases with the num-
ber of replicates. Consequently, there would also be an increased power to detect differentially expressed genes. 
When using the FB approach to generate technical replicates artificially reads are drawn always from the same 
original set of reads. For the MO and CB approach, it is also very clear that no additional genes will be involved. 
Therefore, the FB approach will not lead to additional genes whose expression can be assessed.

The approach of bootstrapping from the FASTQ-files has been demonstrated useful in metagenomics based 
on high-throughput sequencing, and may also be applicable to many other applications of high-throughput 
sequencing that produce FASTQ-files such as variant  analysis24, single-cell RNA-seq25 or methylation  analysis26. 
In general, the possibility of using simulated technical replicates allows scientists to commit available resources to 
including more biologically independent replicates, which is more relevant to the reproducibility than technical 
 replicates27. Although we have not studied the possibility of using the FB approach for the purpose of data aug-
mentation in machine learning, this could be worth a question for further research. The observations from the 
direct data comparison (Supplementary Figures S5 and S6 suggest that the FB and MO approaches may be useful 
for data augmentation in the context of machine learning. For the purpose of judging the uncertainty of differ-
ential expression and enrichment analysis, we think that our findings from Figs. 3 and 4 are more informative.

Conclusions
Bootstrapping sequencing reads from FASTQ-files is a helpful approach to generate artificial replicates in RNA-
seq experiments. It has been shown in our example experiment that data generated by the FB approach show a 
similar behavor as true experimental replicates. In contrast, replicates generated by the CB and MO approaches 
show a higher variablity among each other than the variability among true replicates. While with the FB approach, 
information of each original sample is preserved in the artificial replicates, information of individual samples 
can be lost when using column bootstrap (CB) or weighted mixed observations (MO). The FB appproach can 
be used to better judge uncertainty and reproducibility of genes selected as differentially expressed between two 
groups of samples. In particular, results from differential expression analysis on the FB generated replicates can 
be used to judge the robustness of ranking lists obtained from the true data. In addition, the FB approach can be 
used for the same purpose in subsequent gene set analysis such as gene-set enrichment analysis. One drawback 
of the FB approach is it’s high computational cost.

Data availability
The datasets generated and/or analysed during the current study are available in the NCBI Sequence Read Archive 
(SRA) repository, https:// www. ncbi. nlm. nih. gov/ sra/ PRJNA 764858.

https://www.ncbi.nlm.nih.gov/sra/PRJNA764858
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