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Purpose. Aurantiamide acetate (AA) is a dipeptide derivative with complex pharmacological activities and remarkable effects on
preventing and treating various diseases. In the current study, we aimed to investigate whether AA can exert protective effects in a
mouse model of ALI induced by LPS. Materials and Methods. In this model, mice were given intranasal LPS for 3 days prior to
receiving AA (2.5, 5, and 10mg/kg) via oral gavage. An assessment of histopathological changes was performed by hematoxylin
and eosin (HE). Proinflammatory cytokines were detected in bronchoalveolar lavage fluids (BALFs) by enzyme-linked
immunosorbent assays (ELISAs). The effects of AA on protein expression of NF-κB and PI3K/AKT signaling pathways were
determined by Western blot. In addition, lung wet/dry (W/D) weight ratio, myeloperoxidase (MPO) activity, cell counts, and
protein content were also measured. Results. According to results, AA pretreatment significantly reduced lung pathological
changes, W/D ratio, MPO activity, and protein content. Additionally, AA resulted in a significant reduction in the number of
total cells, neutrophils, and proinflammatory cytokines in the BALF after LPS stimulation. The subsequent study revealed that
pretreatment with AA dose dependently suppressed LPS-induced activation of NF-κB as well as PI3K/AKT phosphorylation.
Conclusion. The results indicated that the AA had a protective effect on LPS-induced ALI in mice and could be a potential
drug for ALI.

1. Introduction

Acute lung injury (ALI) that has cell damage of the alveolar epi-
thelium and capillary endothelium is primarily accompanied
by diffuse alveolar parenchymal damage and so on. As a result
of severe ALI, acute respiratory distress syndrome (ARDS)may
develop. Acute lung injury is characterized by rapid breathing,
pulmonary edema, hypoxemia, and respiratory distress, which
are all linked with high mortality [1]. ALI outbreak has been
reported in the 2003 severe acute respiratory syndrome epi-
demic, as well as the current global outbreak of the corona virus
disease (COVID-19). Patients with severe ALI have the symp-
toms of diffuse alveolar injury, lung hyaluronic membrane for-
mation, and interstitial thickening in the lungs, which may
cause pulmonary fibrosis and ARDS [2–4]. To date, effective

strategies for treating ALI are lacking. NSAIDs and glucocorti-
coids are the main drugs used to treat ALI [5, 6], and they have
serious adverse events, including upper gastrointestinal reac-
tions, renal impairment, and arterial thrombotic events, and
limited efficacy [7, 8]. Therefore, novel effective drugs that alle-
viate the pathological symptoms of patients with ALI should be
developed. The most common precipitating factors are sepsis
and severe bacterial infection. Gram-negative bacteria contain
lipopolysaccharides (LPS), a component of their cell wall that
causes immune and inflammatory diseases and can be used
in animal models to induce ALI [9]. Therefore, a mouse ALI
model was established using LPS treatment.

Aurantiamide acetate (AA) is a dipeptide derivative with
a structure that resembles an endogenous peptide found in
both tissues and plasma (Figure 1). It is commonly found
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in natural medicinal plants, such as Baphicacanthus cusia,
Portulaca oleracea L., and Clematis terniflora DC. [10–12],
exerting diverse pharmacological effects, including antiviral,
antibacterial, antiparasitic, antitumor, anti-inflammatory,
and antioxidant effects [10, 13–15]. The results of studies
in vitro indicate that AA treatment decreases the expression
of proinflammatory gene mRNA cell lines infected with
influenza A virus and blocks the activation of NF-κB signal-
ing pathways, and AA effectively inhibits excessive cytokines
storm and IL-6, IL-8, IP-10, TNF-α, and CCL5 generation in
influenza A virus-infected lung epithelial cells (A549) [10].
Liu et al. [12] found that AA isolated and purified from
Clematis terniflora DC. can inhibit the release of LPS-
induced proinflammatory cytokines NO and prostaglandin
E2 (PGE2) in mouse RAW264.7 cells. Besides, AA regulates
MAPK and NF-κB signaling pathways and exerts neuropro-
tection, thereby reducing LPS-induced inflammation in
microglia [16].

Aside from its anti-inflammatory properties, AA appears
to protect tissues and organs from damage. However, it is
unclear whether AA protects against ALI. AA was examined
in this study as a protective factor for lung tissue in mice
undergoing LPS-induced ALI, to preliminarily explore its
mechanism of action in order to discover potential therapeu-
tic drugs for ALI treatment.

2. Materials and Methods

2.1. Reagents. AA (purity > 98%) from Chengdu Purechem-
Standard Co., Ltd. (Chengdu, China) was dissolved in 0.5%
sodium carboxymethyl cellulose (CMC-Na) solution. Dexa-
methasone acetate (Dex) was from Tianjin Tianyao Pharma-
ceuticals (Tianjin, China) and dissolved in normal saline
with 1% DMSO. Lipopolysaccharide (LPS) was purchased
from Sigma-Aldrich (St. Louis, MO, USA). The myeloperox-
idase (MPO) assay kit was obtained from Nanjing Jiancheng
Bioengineering Institute (Nanjing, China). TNF-α, IL-6, and
IL-1β ELISA kits were purchased from BioLegend Inc. (CA,
USA). All antibodies used in this study were supplied by Cell
Signaling Technology Inc. (Beverly, MA).

2.2. Animals. We obtained adult male ICR mice from
Zhejiang Laboratory Animal Centre (Hangzhou, China) that
weighed 18-22 grams. During the 12-hour dark/light cycle,

mice were free to eat and drink at 22-25°C. Animal experi-
ments were performed strictly according to protocols (No.
2021R0618) approved by the Institutional Animal Care and
Use Committee at the Zhejiang Laboratory Animal Center.

2.3. Experimental Design. Six groups of twelve ICR mice each
were randomly divided: (1) the control group, (2) LPS
group, (3) LPS+Dex (5mg/kg) group (as the positive group),
(4) LPS+AA (2.5mg/kg) group, (5) LPS+AA (5mg/kg)
group, and (6) LPS+AA (10mg/kg) group. Before LPS
induction, all animals were given normal saline or drugs
intragastrically for 3 days. One hour after the last gavage,
inhalation of isoflurane anesthetized the mice (except for
mice in control group), and 10μg/mouse LPS was infused
through nasal cavity to induce ALI [17]. After 24 hours,
the lung tissues of each group of mice were collected along
with bronchoalveolar lavage fluid (BALF). BALF was col-
lected via intubation of trachea and lavage (3 times with
PBS, each 1.0mL) of the lungs.

2.4. Lung Wet-to-Dry (W/D) Weight Ratio. Excision of right
lungs of mice after euthanizing them was subsequently
recorded along with their wet weight. Then, bake the lungs
at 80°C for 48 hours, remove them, and measure their dry
weight. To determine the extent of tissue edema, lung W/D
weight ratios were calculated.

2.5. MPO Activity Assay. After homogenizing the mice’s left
lung in PBS, MPO activity was assessed using an assay kit
(Nanjing Jiancheng Bioengineering Institute, Nanjing,
China) according to the manufacturer’s protocol.

2.6. Lung Histology Assay. 4% neutral formaldehyde was
used to fix the upper lobes of each group’s left lung for 24
hours. A series of gradient concentrations of ethanol was
then used to dehydrate the lung specimens, followed by
xylene clearing, embedding in paraffin, and sectioning them
into sections of 4μm thickness. Under light microscopy, the
same location of the lung tissues is examined for pathologi-
cal changes, and deparaffinization and hematoxylin and
eosin (H&E) staining were done.

2.7. Analysis of Cell Counts in BALF. After the onset of LPS-
induced lung inflammation, BALF was collected 24 hours
later. After centrifugation at 3000 rpm for 10 minutes at
4°C, we collected the supernatants and frozen them at
-80°C for backup. After resuspending cell pellet in 1% BSA,
the total cell counts were calculated by hemocytometer,
and neutrophils were counted by centrifugation, followed
by Wright’s stain.

2.8. Determination of Protein Content and Proinflammatory
Cytokines. BCA protein assay kit was used to quantify pro-
tein concentrations in BALF supernatants. The expressions
of IL-6, TNF-α, and IL-1β in BALF were determined accord-
ing to the manufacturer’s instructions using ELISA kits.

2.9. Western Blot Analysis. Homogenized lung tissues were
washed with PBS, and then extract total protein from them
using lysis buffer containing a protease inhibitor cocktail
(Sigma, St. Louis, MO). Load the samples onto 10% gels
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Figure 1: Chemical structure of AA.
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and transfer onto nitrocellulose subsequently. Then, we
incubated the membranes with appropriate concentrations
of specific antibodies. After washing, incubate the mem-
branes with second antibody conjugated with horseradish
peroxidase. After stripping the membranes, anti-GAPDH
antibody was reblotted to ensure that each lane was loaded
with equal amounts of protein. The relative levels of protein
expression were quantified by a densitometer (Imaging Sys-
tem) with respect to GAPDH. Visualization of immunoreac-
tive bands was conducted with a phototope-horseradish
peroxidase-based system (Cell Signaling Technologies, Bev-
erly, MA), and densitometry was performed with Molecular
Analyst software (Bio-Rad Laboratories, Hercules, CA).

2.10. Statistical Analysis. All data are expressed as means ±
SD. The one-way ANOVA with or without the Tukey-
Kramer multiple comparison (post hoc) tests was used in
evaluating statistical differences. The least significant differ-
ence method was used in analyzing multiple comparisons

with homogeneity of variance. Dunnett’s T3 method was
used with the heterogeneity of variance. Statistical signifi-
cance was defined as p < 0:05 or p < 0:01.

3. Results

3.1. Effects of AA on Lung Histopathologic Changes. Lung
pathological changes of mice in each group were assessed
via H&E staining. Figure 2 shows that the control group’s
lung tissues displayed normal alveolar structure and no signs
of pathology. In contrast, mice in the LPS group had severely
damaged lung tissue structure, with varying alveolar septa
sizes, thickened and broken alveolar walls, proliferation of
vascular endothelial cells, and a large amounts of neutrophil
infiltration and red blood cell extravasation in the lung
interstitium. However, both Dex and different doses of AA
pretreatment can markedly ameliorate lung pathological
damage to varying degrees, and the effect of AA was
dose-dependent.

Control LPS LPS+Dex

LPS+AA 2.5 mg/kg LPS+AA 5 mg/kg LPS+AA 10 mg/kg

Figure 2: Effects of AA on histopathological changes in lung tissues in LPS-induced ALI mice. Representative histological changes of lung
obtained from mice of different groups (magnification ×200).
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Figure 3: Effects of AA on lung W/D ratio and MPO activity in ALI mice. Data are expressed as the mean ± SD (n = 6). #p < 0:05 and
##p < 0:01 vs. control group. ∗p < 0:05 and ∗∗p < 0:01 vs. LPS group.
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3.2. Effects of AA on Lung W/D Weight Ratio. The most obvi-
ous pathogenic change in ALI induced by LPS is lung edema.
AA was tested 24 hours after the challenge with LPS for its
effect on lung edema, and lung W/D weight ratio was deter-

mined. As exhibited in Figure 3(a), when lung W/D weight
after LPS challenge is compared to those for the control group,
this ratio increased significantly. AA pretreatment, however,
inhibited this increased ratio in a dose-dependent fashion.
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Figure 4: Effects of AA on inflammatory cell count. (a) Total cell count and (b) neutrophil count in BALF. Data are expressed as the
mean ± SD (n = 6). #p < 0:05 and ##p < 0:01 vs. control group. ∗p < 0:05 and ∗∗p < 0:01 vs. LPS group.
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Figure 5: Effects of AA on levels of inflammatory factors in BALF. (a) Total protein concentration, (b) IL-6 concentration, (c) IL-1β
concentration, and (d) TNF-α concentration in BALF in each group. Data are expressed as the mean ± SD (n = 6). #p < 0:05 and
##p < 0:01 vs. control group. ∗p < 0:05 and ∗∗p < 0:01 vs. LPS group.
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3.3. Effects of AA on Lung MPO Activity. Using MPO activity
in lung tissues, we examined neutrophil infiltration in ALI
mice induced by LPS. As illustrated in Figure 3(b), in
comparison to the control group, significantly more MPO
activity was observed in lung tissues in the presence of
LPS. At doses of 2.5, 5, and 10mg/kg, AA markedly inhib-
ited this increase.

3.4. Effects of AA on Inflammatory Cell Count in BALF. This
study was conducted to assess the amounts of total cells and
neutrophils in BALF. As demonstrated in Figure 4, LPS
induced a significant increase in the number of total cells
and neutrophils compared to the control group. The
amounts of total cells and neutrophils in LPS-stimulated cells
were significantly greater than in controls. Nevertheless, in
contrast with the LPS group, pretreatment with AA remark-
ably reduced neutrophil counts and total cells, and this
change was more obvious in the LPS+AA (10mg/kg) group.

3.5. Effects of AA on Protein Concentration in the BALF.
As demonstrated in Figure 5(a), there was greater lung
protein concentration in the LPS group than in controls.
Yet, when Dex or AA was administered, lung protein con-
centrations were significantly reduced relative to those of
the LPS group.

3.6. Effect of AA on Proinflammatory Cytokine Levels in the
BALF. Inflammatory mediators, especially IL-6, TNF-α,
and IL-1β, are crucial to the development of ALI induced
by LPS. Thus, AA was tested for its ability to produce proin-
flammatory cytokines, TNF-α, IL-1β, and IL-6. ELISA test
revealed an increase in IL-6, TNF-α, and IL-1β in BALF
after LPS exposure, while AA pretreatment significantly sup-
pressed this increase (Figures 5(b)–5(d)).

3.7. Effect of AA on Protein Expression of NF-κB Signaling
Pathway. According to research, regulation of inflammatory
cytokines is carried out by NF-κB. In order to elucidate AA’s
anti-inflammatory mechanism, we examined the NF-κB sig-
naling pathway. Compared to the control group, p-p65
expression increased and p-IκBα was observed in the LPS
group according to Western blot analysis. However, pre-
treatment with AA dose dependently suppressed LPS-
induced activation of NF-κB (Figure 6).

3.8. Effect of AA on Protein Expression of PI3K/AKT Signaling
Pathway. Upstream of NF-κB are PI3K and AKT. In this
study, we assessed how AA affected the phosphorylation of
PI3K and AKT in lung tissues induced by LPS. Phosphoryla-
tion levels were higher in the LPS group. On the other hand,
as a result of LPS stimulation, it is dose-dependent that AA
inhibits PI3K and AKT phosphorylation (Figure 7).
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Figure 6: AA pretreatment inhibits LPS-induced NF-κB activation. (a) Western blot analysis of p-IκBα, IκBα, p-p65, and p65 expressions in
lung tissue. GAPDH was used as the loading control. (b–c) Quantitative analysis of (a). Data are presented as the mean ± SD, repeated for
three times. #p < 0:05 and ##p < 0:01 vs. control group. ∗p < 0:05 and ∗∗p < 0:01 vs. LPS group.
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4. Discussion

Life-threatening lung diseases such as ALI and its more
severe form, ARDS, are often associated with acute and
severe lung inflammation. Major breakthroughs have been
made in research on ALI/ARDS, but no effective drug ther-
apy for ALI/ARDS treatment is currently available. The
novel corona virus pneumonia is raging around the world,
leading to severe respiratory distress syndrome [18]. There-
fore, novel treatments for ALI/ARDS and severe pneumonia
(such as COVID-19) are in high demand on the market.

Plant-derived natural products have many active com-
pounds with novel structures, multitargeting capability, high
activity, and low side effects, showing potential as drugs and
important sources of anti-inflammatory agents [19, 20].
Microsomal prostaglandin E synthase-1 (mPGES-1) is an
enzyme that is crucial for the production of PGE2 during
inflammation, and anti-inflammatory drugs could be devel-
oped targeting this target [21]. Chen et al. [22] screened the
potential inhibitors of mPGES-1 from the TCM Database@-
Taiwan. They found that AA conforms to the pharmaco-
phore and quantitative structure–activity relationship
model and has a high docking score and binding stability
with mPGES-1. The biological activity of AA was predicted
using multiple linear regression and support vector machine,
which corroborated its anti-inflammatory activity. AA has

an inhibitory effect on superoxide formation and histamine
release and inhibits the expression of LPS-induced proin-
flammatory cytokines (TNF-α and IL-2) [23]. Additionally,
it has selective inhibitory effect against superoxide anions
generation and overreleased elastase by fMLP/CB-induced
human neutrophils and overreleased elastase [24]. There-
fore, AA is a candidate compound for anti-inflammatory
drug development.

In this study, neutrophils in BALF increased significantly
as a result of LPS exposure, whereas AA pretreatment signif-
icantly decreased the level of neutrophils. Neutrophils con-
tain a significant quantity of MPO in their cytoplasmic
granules, and thus, its level and activity in tissues represent
the function and activity of neutrophils [25]. We found that
after exposure to LPS, MPO activity was remarkably
enhanced in lung tissues but significantly reduced after AA
pretreatment. Histopathological results further confirmed
that AA could inhibit neutrophil infiltration in lung tissues.

LPS triggers the release of several inflammation-related
cytokines and chemokines [26]. Activated TNF-α, IL-1β,
and IL-6 do not only initiate but also amplify and prolong
ALI’s inflammatory response [27]. An inflammatory
response starts with TNF-α as its initial and most important
mediator. It is mainly produced by activated monocytes or
macrophages and causes an inflammatory cascade response
that damages the endothelial cells of the vascular system
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Figure 7: AA pretreatment inhibits the activation of PI3K/AKT signaling in LPS-induced ALI. (a) Western blot analysis of p-PI3K,
PI3K, p-AKT, and AKT expressions in lung tissue. GAPDH was used as the loading control. (b–c) Quantitative analysis of (a). Data are
presented as the mean ± SD, repeated for three times. #p < 0:05 and ##p < 0:01 vs. control group. ∗p < 0:05 and ∗∗p < 0:01 vs. LPS group.
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while also inducing the alveolar epithelial system to release
other cytokines, IL-6, for example [28]. Following LPS expo-
sure, IL-6, IL-1β, and TNF-α were significantly elevated in
BALF, but the levels were markedly reduced after AA pre-
treatment. As a symptom of inflammation, an indicator of
pulmonary edema is the lung W/D weight ratio. Based on
three results, AA reduced the lung W/D ratio and alleviated
pulmonary edema symptoms, suggesting ALI induced by
LPS is protected against by it.

NF-κB is a transcription factor involved in producing
inflammatory cytokines, which is essential for the develop-
ment of inflammatory diseases like ALI, chronic obstructive
pulmonary disease, and pulmonary fibrosis. It is possible to
alleviate lung inflammation by inhibiting NF-κB activation
[10, 29, 30]. Activation of PI3K/AKT can promote the trans-
location of NF-κB, as well as its transcriptional activity, thus
directly affecting inflammatory cytokine expression [31].
Acute pancreatitis-related lung injury is caused by the
PI3K/AKT/NF-κB signaling pathway, which activate inflam-
matory cytokines [32]. In this study, we measured the
expression of NF-κB p65, NF-κB p-p65, IκBα, p-IκBα,
PI3K, p-PI3K, AKT, and p-AKT in lung tissues by Western
blot. The p-IκBα/IκBα, p-p65/p65, p-PI3K/PI3K, and AKT/
p-AKT ratios in the LPS group significantly increased. AA
pretreatment led to a dose-dependent reduction in these
levels compared with the LPS group. It is believed that NF-
κB dimers bind to inhibitory protein IκBα under normal
conditions and are inactive in the cytoplasm. The dissocia-
tion of NF-κB p65 from IκBα by LPS leads to its transloca-
tion to the nucleus and inflammatory cytokine genes by
which transcription is controlled [33]. Therefore, LPS expo-
sure can lead to the degradation of IκBα, which can be
blocked by AA pretreatment. Taken together, these data sug-
gest that the alleviating effect of AA on LPS-induced lung
inflammation may be partly related to the inhibition of
NF-κB activation as well as PI3K/AKT phosphorylation.

Collectively, this study revealed the potent protective
effect of AA against LPS-induced ALI, which may be linked
to its anti-inflammatory activities. It appears that AA is a
promising treatment for ALI. However, further studies are
recommended for better elucidation of the underlying
molecular mechanisms of AA.
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