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Sensing leg movement enhances wearable
monitoring of energy expenditure
Patrick Slade 1✉, Mykel J. Kochenderfer 2, Scott L. Delp1,3 & Steven H. Collins1

Physical inactivity is the fourth leading cause of global mortality. Health organizations have

requested a tool to objectively measure physical activity. Respirometry and doubly labeled

water accurately estimate energy expenditure, but are infeasible for everyday use. Smart-

watches are portable, but have significant errors. Existing wearable methods poorly estimate

time-varying activity, which comprises 40% of daily steps. Here, we present a Wearable

System that estimates metabolic energy expenditure in real-time during common steady-

state and time-varying activities with substantially lower error than state-of-the-art methods.

We perform experiments to select sensors, collect training data, and validate the Wearable

System with new subjects and new conditions for walking, running, stair climbing, and biking.

The Wearable System uses inertial measurement units worn on the shank and thigh as they

distinguish lower-limb activity better than wrist or trunk kinematics and converge more

quickly than physiological signals. When evaluated with a diverse group of new subjects, the

Wearable System has a cumulative error of 13% across common activities, significantly less

than 42% for a smartwatch and 44% for an activity-specific smartwatch. This approach

enables accurate physical activity monitoring which could enable new energy balance sys-

tems for weight management or large-scale activity monitoring.
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Effective physical activity monitoring is necessary to under-
stand and overcome inactivity, which is the fourth-largest
cause of mortality1. Monitoring can relate physical activity

to health outcomes, investigate dose–response relationships, and
inform health policy. Participating in the recommended amount
of physical activity improves musculoskeletal health2 and weight
management2,3, a pervasive problem in the United States, where
40% of adults are obese4. Physical activity impacts perceived
quality of life, quality of sleep, and symptoms of depression and
anxiety2,5. Health policy committees have requested a tool to
objectively monitor physical activity at a large scale using a metric
like metabolic energy expenditure2.

Accurately estimating daily energy expenditure requires cap-
turing both basal and active energy expenditure. Basal energy
expenditure during basic functions such as breathing comprises a
significant portion of daily expenditure and can be estimated with
5–10% error using subject-specific information, such as age and
weight6. Estimating daily active energy expenditure requires
monitoring common and high-expenditure activities such as
walking, stair climbing, running, and biking. Walking and stair
climbing are necessary for mobility and have the highest energy
expenditure among activities of daily living7. In the United States,
running and biking are the most popular forms of exercise by the
number of outings and participation8.

A method for monitoring daily energy expenditure must meet
criteria for large-scale, everyday use2. Daily energy expenditure
should capture both steady-state activities as well as time-varying
activities, such as short bouts of walking9. Frequent estimation is
necessary to capture short bouts and rapid changes in energy
expenditure. Large-scale deployment requires accurate estimation
for new subjects, without relying on subject-specific calibration.
Design guidelines suggest that wearable medical devices should be
low-cost, easy to don and doff, and allow normal motion10.
Restricting computation requirements to mobile devices is
necessary for portability and providing real-time estimates. There
are many methods for monitoring activity levels or energy
expenditure, but most do not meet these requirements for
everyday use.

Self-report surveys and step counts are popular methods of
monitoring physical activity on a large scale, but both have sig-
nificant errors. Surveys categorize weekly activity into time spent
exercising at light, moderate, or vigorous-intensity levels11. This
approximate activity may be used to infer health outcomes based
on whether people meet recommended activity levels2. Unfortu-
nately, surveys are unreliable and difficult to correct because they
have low-to-moderate correlation and inconsistent bias when
compared with direct measures of activity12. Pedometers and
smartphones provide step counts and assume a fixed intensity
level of walking to estimate a relative amount of activity. Step
count accuracy depends on pedometer type and walking speed13.
Energy expenditure can be estimated from step counts, weight,
and subject-specific respirometry data, but have errors of 24% or
more and is limited to monitoring walking14.

Laboratory-based methods accurately estimate energy expen-
diture during steady-state activities but are not feasible for
everyday use. Respirometry requires minutes of breath-based
measurements from expensive and intrusive equipment for
steady-state energy expenditure estimation15,16, which prevents
everyday use and causes large errors during time-varying activ-
ities. Doubly labeled water provides relatively accurate estimates
but costs $200–$300 per use17, limiting scalability; a single esti-
mate requires 7–14 days18 and may not offer enough information
to relate physical activity and health outcomes. Simulation
methods use musculoskeletal models19,20 or walking mechanics21

for estimation. These simulations require many sensors, take

minutes or hours of computation time per estimate, and are
challenging to generalize22,23. Laboratory-based methods cannot
monitor activity at scale but offer accurate steady-state estimates
for training models.

Combining wearable sensors and data-driven methods enables
portable and computationally efficient estimation, but many
methods rely on subject-specific data to train their models and do
not evaluate the accuracy for new subjects. Data-driven methods
may use subject-specific information, such as weight and height24,
as well as a variety of wearable sensors including accelerometers
and inertial measurement units (IMUs)25,26, heart rate monitors,
or electrocardiography27,28, electromyography, impedance
pneumography29,30, and various combinations16,29–31. These
methods have shown a high correlation between sensor data and
energy expenditure32,33 and can accurately evaluate physical
fitness34. Wearable data-driven methods using subject-specific
training data have estimated energy expenditure with relatively
low errors of 14–27%16,28,30. Unfortunately, methods using
subject-specific training data have about twice the expected error
when estimating energy expenditure for new subjects35.

Activity monitors and smartwatches have high errors when
estimating energy expenditure for new subjects, possibly
because they rely on heart rate, wrist kinematics, or trunk
kinematics. Most activity monitor estimates are based on the
number of acceleration measurements that reach a threshold
each minute36,37. Activity monitors evaluated with new sub-
jects have been reported to have 30% error for wrist-worn
devices38 and 27% for hip-worn devices39, suggesting they do
not capture motion related to energy expended by lower-limb
muscles. Activity monitors typically only estimate during
walking or running because they require significant wrist or
pelvis motion, precluding activities like biking. Smartwatches
and wearable data-driven models report large errors, from 27%
to 93% when evaluated with new subjects30,31,39, with errors
varying across brands. Heart rate and respirometry have a
delayed response to changes in energy expenditure, which
causes errors at the start of steady-state conditions and during
time-varying activities.

We hypothesized that a data-driven method without subject-
specific training data that relies only on wearable measurements
of lower-limb kinematics segmented by stride, without subject-
specific training data, could estimate energy expenditure more
accurately than state-of-the-art methods during common activ-
ities including walking, running, stair climbing, and biking.
Lower-limb kinematics could provide more useful information
than heart rate, wrist kinematics, or trunk kinematics because
lower-limb activities constitute a larger portion of daily energy
expenditure than upper-limb activities7,8. Lower-limb kinematics
converge more quickly than heart rate or respirometry, enabling
estimation during time-varying activities. Measuring lower-limb
kinematics requires only a few low-cost and wearable IMUs.
During these activities, lower-limb kinematics are periodic and
can be segmented by stride. This new modeling approach creates
time-invariant inputs appropriate for simple data-driven models
such as linear regression, which requires minimal computation.
Additional information from the percent stride may improve
estimation accuracy compared with existing data-driven methods.
To evaluate this hypothesis, we performed experiments to select
two sensors worn on one leg from a comprehensive set of existing
wearable biomechanics sensors. Next, we collected training data
and validated a Wearable System with a diverse group of new
subjects during new steady-state and time-varying conditions. We
expected our results to inform the development of energy balance
systems for weight control and data collection tools for relating
physical activity to outcomes like cardiovascular health.
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Results
Evaluating the wearable data-driven method. In order to
monitor physical activity by accurately estimating energy
expenditure, we evaluated several methods, explored sensor
importance, and extended estimation to time-varying conditions.
We estimated energy expenditure during steady-state activities
where each healthy subject (n= 13) participated in one condition
of sideways walking, backward walking, and hopping as well as
multiple conditions of normal walking, loaded walking, and
running (Supplementary Fig. 1a). We measured ground truth
energy expenditure by averaging respirometry measurements
from the last 3 mins of each condition, which we refer to as
Steady-State Respirometry. An initial exploration estimated
energy expenditure during time-varying conditions where healthy
subjects (n= 4) transitioned back and forth between walking and
running with a 30 second period. We approximated ground truth
during time-varying conditions by interpolating between subject-
specific Steady-State Respirometry values from walking and
running conditions based on treadmill speed, which we refer to as
Interpolated Respirometry. The data were recorded with tethered
respirometry and wearable sensors including electromyography,
force-sensing insoles, IMUs, and a heart rate monitor (Supple-
mentary Fig. 1b). We estimated metabolic energy expenditure
with several methods including the Heart Rate Model, the
Activity Monitor, the Musculoskeletal Model using muscle-level
energy estimates, the Data-Driven Model using all wearable
sensor data segmented by stride in a linear regression model
(Supplementary Fig. 2), Per-Breath Respirometry, and Fast-
Estimated Respirometry which fit laboratory-based respirometry
measurements to a first-order exponential function for quicker
steady-state estimates. Accuracy was evaluated by removing one

subject and one condition from the training data, fitting a model
to the training data, estimating energy expenditure for the
withheld subject and condition, and comparing it to ground
truth. We did this for all permutations of subjects and conditions
and averaged the error.

We validated that the Data-Driven Model using all wearable
sensor inputs was the best wearable method for estimating energy
expenditure because it had the lowest errors during steady-state
and time-varying conditions. The Data-Driven Model had a
10.5% relative error during steady-state conditions, about half the
error of the second-most accurate model (Supplementary Fig. 3a).
The Data-Driven Model estimates were constant from the start of
the condition because input signals converged quickly, as
expected (Supplementary Fig. 3b). Fast-Estimated Respirometry
had the lowest steady-state error after 74 seconds, confirming its
usefulness as a laboratory-based test where accuracy is paramount
and longer trial times are acceptable. During time-varying
conditions, the Data-Driven Model had a 7% absolute error,
about one-quarter the error of the next-most accurate model
(Supplementary Fig. 4). Physiological signals had a delayed
response to changing energy expenditure, causing significant
error in steady-state and time-varying conditions.

The Data-Driven Model error decreased with additional
training data (Supplementary Fig. 5) and increased when
estimating activities with energy expenditure values significantly
different from the training data. Holding out and evaluating
conditions other than running resulted in errors between 10%
and 15%, indicating some generalization to new conditions.
Holding out and evaluating running conditions resulted in the
largest errors because the model estimated smaller energy
expenditure values, similar to the training data (Supplementary
Fig. 6). Thus, the similarity of training data impacts the error
when estimating new conditions. The approach used by the Data-
Driven Model requires training data for all activities that will be
monitored. The Musculoskeletal Model was less sensitive to the
choice of training data. Combining these two methods may
perform best when estimating energy expenditure for many new
activities. We focused on estimating known activities and selected
the Data-Driven Model because it had greater accuracy and
required minimal computation when trained on sufficient data.

Selecting informative sensors. The Data-Driven Model was
evaluated with different inputs to select a simple and informative
set, and an IMU on the shank and thigh of one leg was found to
have the lowest steady-state error. We first compared inputs from
permutations of four sensor classes including inertial measure-
ments, muscle activity, kinematics, and vertical ground reaction
forces. We evaluated these existing sensors, rather than develop
new sensors, to ensure the needed sensors would be commercially
available. The IMUs were selected because they had the lowest
error when using only one sensor class (Supplementary Table 1).
We then compared all permutations of the IMUs, each of which
had a triaxial accelerometer and gyroscope (Supplementary
Table 2). The best results were achieved with one sensor on the
shank and one on the thigh. Input from these two sensors had a
13.7% relative error, compared with 10.5% error when using
inputs from all sensors. Using a single IMU on the thigh resulted
in an error of 16.7%, indicating a single sensor such as a smart-
phone strapped to the leg may not be quite as accurate.

The selected IMUs offered some additional benefits beyond
other wearable sensors. They are low-cost, which may enable
large-scale use. They are lightweight, compact, easy to don and
doff, and allow uninhibited motion. Processing data from these
sensors required little computation; a portable microcontroller

Fig. 1 The Wearable System components, energy expenditure estimation
methods, and experimental conditions. a The Wearable System consists
of a microcontroller, battery, and an inertial measurement unit (IMU)
attached to the shank and thigh on one leg. b The Wearable System
estimated energy expenditure in real-time, using a model trained with data
from 13 subjects completing three conditions of walking, running, stair
climbing, and biking. The trained model was held constant to test the
Wearable System with 24 new subjects during two different steady-state
conditions for the same activities and four new time-varying conditions.
These subjects had not participated in previous experiments and were
selected to emulate a diverse adult population. c The Wearable System was
compared with commercial devices including the Smartwatch and the
Activity-Specific Smartwatch as well as baselines including the Heart Rate
Model, Per-Breath Respirometry, and Fast-Estimated Respirometry.
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computed real-time energy expenditure estimates in 0.01 s
(Supplementary Table 3).

Designing and training the Wearable System. Next, we built the
Wearable System, which consisted of a microcontroller and bat-
tery worn on a belt as well as two IMUs worn on the shank and
thigh of one leg (Fig. 1a and Supplementary Movie 1). The total
system cost was approximately $100 in retail components. The
Wearable System weighed 232 grams and could estimate energy
expenditure for 7.3 h on a single charge.

The Wearable System estimated energy expenditure using a
new Data-Driven Model trained with a combination of previously
collected and new data. The previously collected walking and
running data used to select the best estimation method were
combined with a new experiment where healthy subjects climbed
stairs and biked (n= 11) (Fig. 1b). The stair climbing conditions
were collected on a stairmill at speeds of 40, 60, and 80 steps per
minute. The biking conditions were collected on a stationary bike
at resistance levels of 20, 70, and 150 Watts while pedaling at 80
revolutions per minute. Pilot tests revealed that changes in the
placement of the IMUs resulted in large estimation errors. To
address this, we applied random rotations to the sensors in the
training data to create synthetic data. The Data-Driven Model
was trained with this synthetic data to improve robustness to
orientation errors. The Wearable System used this robust model
for all evaluations with new subjects and new conditions.

Evaluating the Wearable System with new subjects and new
conditions. We compared the Wearable System to commercial
products and other methods of estimating energy expenditure to
determine the estimation error for new subjects and new condi-
tions. The methods we compared included the Smartwatch, the
Activity-Specific Smartwatch, the Heart Rate Model, the Activity-
Specific Model, Per-Breath Respirometry, and Fast-Estimated
Respirometry (Fig. 1c). The methods were evaluated with a group
of diverse subjects (n= 24, 15 men and 9 women; age = 34.8 ±
11.6 years; body mass = 74.3 ± 13.1 kg; height = 1.73 ± 0.07 m;
body mass index = 24.9 ± 4.1) that had not participated in pre-
vious experiments. The subjects completed two new steady-state
conditions at intermediate speeds between the three training
conditions collected for each activity, as well as four new time-
varying conditions. The steady-state conditions included walking
at 1.0 and 1.5 m/s, running at 2.5 and 3.0 m/s, climbing stairs at
50 and 70 steps per minute, and biking with a resistance of 50 and
120 Watts. The ground truth energy expenditure during steady-
state conditions was Steady-State Respirometry. The time-varying
conditions periodically changed treadmill speed for discrete steps
between quiet standing and walking, sinusoidal walking speeds,
discrete steps between walking and running, and sinusoidal
walking and running speeds. Interpolated Respirometry
approximated ground truth during time-varying conditions by
interpolating between subject-specific Steady-State Respirometry
values from walking and running conditions based on
treadmill speed.

The Wearable System used inputs of lower-limb kinematics
which converged quickly from the start of steady-state conditions,
resulting in consistent, low-error estimates (Fig. 2a). The other
methods relied on physiological signals that had delayed
responses to changing energy expenditure and slowly reached
steady state. The other methods had steady-state errors that
varied widely by activity (Supplementary Fig. 7). The Wearable
System had the lowest error for the first 44 s, after which the
laboratory-based, Fast-Estimated Respirometry had the lowest
error (Fig. 2b). Although respirometry is not feasible for large-
scale monitoring, it offers accurate steady-state estimates for

training models. the Heart Rate Model, the Smartwatch, and the
Activity-Specific Model rely on physiological signals and have
large initial errors, which decrease over time, but still result in
large steady-state errors.

The Wearable System had the lowest steady-state errors of the
wearable methods, closely matching Steady-State Respirometry
(Supplementary Movie 2). The steady-state error of the Wearable
System was lower than all other methods (paired t tests: p ≤ 1 ×
10−6). During steady-state conditions, the Wearable System had
13% steady-state error, about half the error of the second-most
accurate model, the Activity-Specific Smartwatch (Fig. 2c). The
steady-state errors for the Smartwatch and the Activity-Specific
Smartwatch match those from previous studies31,39. Even the
Activity-Specific Model, which used manual labeling during steady-
state conditions to achieve perfect activity classification, had higher
steady-state error than the Wearable System (18%). The cumulative
energy expenditure error of the Wearable System was 12%,
significantly lower than with the other methods, which had errors
ranging from 38% to 71% (paired t tests: p ≤ 2 × 10−14) (Fig. 2d).

The Wearable System accurately estimated energy expenditure
during time-varying conditions (Supplementary Movie 3). The
Wearable System captured changes in energy expenditure while the
other models had incorrect and delayed estimates (Fig. 3a–d). The
error over time for the Wearable System was 23%, significantly less
than 46–105% error for other methods (paired t tests: p ≤ 3 × 10−4)
(Fig. 3e). The cumulative energy expenditure error followed a
similar trend (paired t tests: p ≤ 7 × 10−4) (Fig. 3f). Across all
steady-state and time-varying conditions, the Wearable System had
a cumulative energy expenditure error of 13%, significantly less
than 42–86% for other methods (paired t tests: p ≤ 2 × 10−21). We
also evaluated a version of the Wearable System using only data
from the thigh IMU and found a cumulative error of 19%.

We visualized the linear regression model used by the
Wearable System to understand how conditions were differen-
tiated to achieve low error. The magnitude of the model weight
assigned to an input indicated importance (Fig. 4a). Larger
weights were assigned to the gyroscope inputs. Certain portions
of each stride also had larger weights, such as the second and fifth
quintiles. The model weighting as a function of percent stride was
similar to the standard deviations of input signals across activities.
The normalized dot product between the weights and standard
deviation of input signals resulted in a cosine similarity of 0.96,
indicating the high-dimensional trends were similar. We plotted
the most informative input signal alongside the model weights to
illustrate how it contributed to an estimate of energy expenditure
(Fig. 4b). Interpretation of how inputs contribute to estimates is
difficult as all inputs are compared at once.

Subject surveys found the Wearable System to be comfortable
and have high usability. Twenty-one subjects who participated in
the validation of the Wearable System were surveyed. The
usability was evaluated with the System Usability Scale40. The
Wearable System had a relatively high overall score of 80.9 out of
100 averaged across subjects (Supplementary Table 4), which is
the 90th percentile among 5000 device surveys that used the
System Usability Scale41. Comfort-related metrics were evaluated
with a survey based on the Questionnaire for User Interaction
Satisfaction42. The Wearable System had high scores associated
with different comfort-related attributes (Supplementary Table 5).
This indicates the Wearable System, though only a research
prototype, has the potential to be adapted for use in clinical or at-
home settings.

Discussion
The approach used in the Wearable System meets the require-
ments for devices that monitor physical activity on a large scale,
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thereby providing a tool that could be used in weight manage-
ment systems and for studies that relate physical activity to health
outcomes. The Wearable System used low-cost IMUs worn on the
shank and thigh of one leg to estimate energy expenditure in real-
time (Supplementary Movie 1). This approach is portable and
unobtrusive, meeting the criteria to allow for everyday use. We
demonstrated that the Wearable System accurately estimated
energy expenditure during steady-state and time-varying activ-
ities, including walking, running, stair climbing, and biking, the
activities that contribute the most to daily energy expenditure.
The Wearable System was evaluated with a diverse group of
subjects, indicating it may effectively monitor most adults. The
Wearable System estimated energy expenditure once per stride,
possibly enabling new types of studies, such as characterizing the
health benefits of acute dose–response with repeated, low-
intensity exercise11. The cumulative energy expenditure error of
the Wearable System was one-third the error of state-of-the-art
wearable methods, a substantial improvement that could better
relate physical activity to health outcomes.

The Activity Monitor had twice the steady-state error of the
Data-Driven Model, which may be because it relied on pelvis
kinematics, rather than lower-limb kinematics, and did not
incorporate stride information. The success of the data-driven
approach seems to be largely attributable to the selection of
lower-limb kinematics as inputs and segmenting data by stride. A
version of the Data-Driven Model using only trunk kinematics as

inputs resulted in twice the steady-state error, reinforcing the
finding that using lower-limb kinematics was beneficial (Sup-
plementary Fig. 3a). When the Activity Monitor and Data-Driven
Model were given the same trunk kinematics as inputs, estimation
differences were due to differences in data segmentation. The
Data-Driven Model segmented data by stride for time-invariant
estimates and achieved lower error than the Activity Monitor,
which counted acceleration measurements that reached a
threshold. Future devices designed to estimate energy expenditure
may benefit from using sensors that measure lower-limb kine-
matics and models that exploit stride structure.

The Activity-Specific Smartwatch and the Smartwatch had a
threefold higher cumulative error than the Wearable System,
potentially because of a reliance on heart rate and wrist kine-
matics rather than lower-limb kinematics. Previous Smartwatch
studies report similar errors from 35% to 93% when estimating
energy expenditure for new subjects30,31,39, supporting the idea
that Smartwatches have significant errors. The sensor inputs and
models used by the Smartwatches are not publicly available, but
our results indicate that the Activity-Specific Smartwatch relies on
heart rate and the Smartwatch relies on wrist kinematics (Sup-
plementary Fig. 7). The Activity-Specific Smartwatch exhibited
similar trends to the Heart Rate Model, including higher esti-
mates during walking and quiet standing, estimates drifting
during conditions, and a delayed response to changes in energy
expenditure (Fig. 2a). The Smartwatch estimates during stair

Fig. 2 Estimating energy expenditure during steady-state conditions. a Methods estimating energy expenditure were evaluated during 6-minute steady-
state conditions followed by 3 mins of quiet standing. Two conditions were collected for each activity in a randomized order. The estimates were
interpolated at 1 s intervals, averaged over subjects, and low-pass filtered. b The error as a function of time from the start of the condition evaluated how
quickly the methods reached a steady-state estimate, averaged across all conditions. The absolute percent error was computed by taking the mean
absolute error between the estimates and ground truth Steady-State Respirometry. c The steady-state error represents the mean absolute percent error
between the estimates of each method averaged over the last 3 mins of a condition and Steady-State Respirometry (n= 24 subjects). Per-Breath
Respirometry and Fast-Estimated Respirometry were not compared because they become Steady-State Respirometry when averaged over multiple
minutes. d Cumulative energy expenditure is the total expenditure during each steady-state condition, including expenditure above quiet standing during
the 3 mins following the condition (n= 24 subjects). The cumulative error represents the mean absolute percent error between cumulative estimates for
each method and Per-Breath Respirometry. The boxes extend from the lower to upper quartile values of the data, with a line at the median and a dot at the
mean. The whiskers extend to the last data point within 2.5 times the interquartile range. Fliers were not plotted due to the wide range of errors.
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climbing and biking were substantially lower than ground truth
values, possibly because subjects held onto the handrails or
handlebars, which minimized wrist motion (Supplementary
Fig. 7). The Smartwatches may have higher error because they do
not seem to segment data by stride, as indicated by the large
initial steady-state error and drift in estimates. The Wearable
System had a consistent level of error across all steady-state
conditions (Supplementary Fig. 7). Previous experiments found
activity monitors to estimate energy expenditure with 30% error
for wrist-worn devices38 and 27% for hip-worn devices39, sug-
gesting that these locations do not capture motion related to
energy expended by lower-limb muscles as accurately as sensors

placed on the legs. These results suggest the wrist is a suboptimal
placement for sensors when estimating energy expenditure.

The finding that the Wearable System provides significantly
more accurate energy expenditure estimates than existing wear-
able methods by using two carefully selected sensors is surprising.
From an information-theoretic perspective, we would expect that
selecting multiple sensors would achieve at least the same accu-
racy as a single prescribed sensor, such as a Smartwatch. How-
ever, the careful selection of two IMU sensors enabled the
Wearable System to have three times lower cumulative error than
the Smartwatches. A version with inputs from the single-thigh
IMU still had less than half the cumulative error of the Smart-
watches. Including heart rate, a signal used in many wearable
methods for estimating energy expenditure, as an input to the
Wearable System did not improve the accuracy. Even using
comprehensive sensor measurements of leg kinematics and major
muscle groups performed similarly to the two selected IMU
sensors. The Wearable System was more accurate than wearable
data-driven methods using a variety of sensors and subject-
specific training data with errors of 14–27%16,28,30, which would
have approximately twice the error when evaluating new
subjects35. When designing wearable devices, rigorous sensor
selection may provide counterintuitive results that can sig-
nificantly improve performance.

The Smartwatches’ large errors were likely due to a reliance on
heart rate, rather than a difference in training data. The Smart-
watch and Heart Rate Model had similar average steady-state
errors of 43% and 39% and match trends across individual con-
ditions (Supplementary Fig. 7). The Heart Rate Model had sig-
nificantly higher error than the Wearable System, despite being
trained with the same data. This suggests that heart rate was less
informative than lower-limb kinematics. No information is
available about the data used to train the commercial Smartwatch
methods. The similarity between the Heart Rate Model and
commercial Smartwatch methods indicates they would likely have
significantly higher error than the Wearable System, even if
trained from the same data. The Wearable System estimates had
no statistically significant correlation between error and age,
height, weight, or body mass index. The results from evaluating
the different methods with a diverse group of subjects suggest the
Wearable System would likely be more accurate than the
Smartwatch methods when monitoring most adults.

The Wearable System estimated time-varying energy expen-
diture much more accurately than other methods because it was
based on lower-limb kinematics that more closely tracked the
activity in the leg muscles, which contribute the most to energy
expenditure. The Wearable System estimates were accurate from
the start of steady-state conditions (Fig. 2b and Supplementary
Movie 2), captured sinusoidally (Fig. 3b, d), and step (Fig. 3a, c)
changes in energy expenditure during time-varying conditions,
and had a low cumulative error. Lower-limb kinematics are
known to quickly converge to steady-state following gait changes
and track continuous fluctuations in walking speed. The other
methods relied on physiological signals which had a delayed
response to changing energy expenditure that caused significant
error during the start of steady-state conditions, throughout time-
varying conditions, and cumulatively (Fig. 3e, f). We estimated
instantaneous energy expenditure during time-varying conditions
using measured energy expenditure from steady-state conditions
and interpolation based on speed. This assumes the instantaneous
energy expenditure matches the work rate of the subject at each
instant in time, which has been shown to be a good assumption
for walking conditions below the aerobic threshold43. The time-
varying conditions had a period of 30 seconds, faster than the
delays in breath-to-breath measurements. This 30-second period
was selected to minimize energy expenditure associated with

Fig. 3 Estimating energy expenditure during time-varying conditions. The
time-varying conditions consisted of periodic profiles of treadmill
speeds including a discrete steps between quiet standing and walking,
b sinusoidally varying walking, c discrete steps from walk to run, and
d sinusoidally varying walk to run. The mean and standard deviation of each
estimation method is represented as a line with error bands. Interpolated
Respirometry approximated ground truth by interpolating between subject-
specific Steady-State Respirometry values from walking and running
conditions based on treadmill speed. The error profiles represent one
standard deviation. e The error over time represents the mean absolute
percent error between estimates from each method and the Interpolated
Respirometry (n= 24 subjects). f Cumulative energy expenditure error was
computed as the mean absolute percent error between cumulative
estimates for each method and Per-Breath Respirometry (n= 24 subjects).
The boxes extend from the lower to upper quartile values of the data, with a
line at the median and a dot at the mean. The whiskers extend to the last
data point within 2.5 times the interquartile range. Fliers were not plotted
due to the wide range of errors.
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changing speeds by maintaining a low average acceleration of
0.07 m/s2. Prior experiments found that varying walking speeds
by 0.6 meters per second sinusoidally, with a 4-second period
(0.15 m/s2 acceleration), increased energy expenditure by 4–8%44.
Assuming that increased energy cost is linearly related to accel-
eration, the cumulative energy expenditure during time-varying
conditions would be ~2–4% higher than the interpolated esti-
mates of instantaneous energy expenditure, because the inter-
polation between steady-state energy expenditure values does not
include the costs of additional acceleration.

Visualizing the linear regression model used by the Wearable
System revealed that gyroscope measurements and percent stride
of input data contributed to accurate estimation. The linear
regression model had larger weights assigned to gyroscope inputs
(Fig. 4a), possibly because angular velocity better captured the
motion of two bodies connected by a pin joint. Model weight
varied across each stride with large weights during the second and
fifth quintiles, indicating knowledge of phase within a stride is
important for estimation. Portions of each stride with larger
weights also had larger standard deviations in input signals across
activities. The model may use phases with large differences to
distinguish activities, similar to activity classification. The
Wearable System still had lower steady-state error than the
Activity-Specific Model even given the fact that the Activity-
Specific Model was based on ideal activity classification per-
formed manually. This indicates that the Wearable System may
extract additional information, such as how the activity was
performed, where changes in motion may relate to muscle-level
energy expenditure.

Interpreting how the Wearable System estimates energy
expenditure from input signals is challenging because all inputs
are compared at once. Simple, interpretable mechanisms by
which the linear regression model might operate include relating
the absolute value of signals to energy expenditure or differ-
entiating two points of the input data to approximate a derivative.
To illustrate this, we compare the most informative input signal,
the gyroscope measurement of the shank in the sagittal plane,
alongside the model weights (Fig. 4b). The 10th and 11th points
in the stride have a large positive weight and the running input
signal has the highest values at these points; the model may
directly associate this signal with large energy expenditure during
running. The 3rd and 4th points in the stride have large weights,
one positive and one negative, which may differentiate these two
points and distinguish the walking condition, which has a large
positive slope, from biking, which has a slope near zero. Seg-
menting input signals by stride creates 360 parameters to capture
information for accurate estimation, but a simultaneous com-
parison of so many inputs makes exact model interpretation
impossible. Although we cannot say for sure, the model seems to
utilize absolute weighting and differentiation to distinguish
conditions.

The approach used by the Wearable System may be effective
for monitoring physical activity, but improved hardware would
be necessary for large-scale deployment. The Wearable System
was a proof-of-concept device with a bulky microcontroller and
wired sensors. Despite being a prototype, the subject surveys
reported that the Wearable System had a high usability rating
(Supplementary Table 4) and high ratings in metrics rated to

Fig. 4 Interpreting the Wearable System. a The Wearable System used a linear regression model to estimate energy expenditure with inputs from inertial
measurement units worn on the shank and thigh. The inertial measurement units consist of a three-axis accelerometer (accel) and a three-axis gyroscope
(gyro). The X, Y, and Z directions represent the fore-aft, mediolateral, and vertical axes, respectively. These orientations are assigned during quiet standing,
but the sensors are attached to different body parts that move relative to the global reference frame. Input data were low-pass filtered, split by stride, and
discretized each stride to a fixed input size before being used in the model. The model used ridge regularization that penalized the sum of the squared
model weights. A larger magnitude weight indicated a more informative input. The input signals are shown in descending order of importance based on
contribution to total model weight. Gyroscope inputs were more informative than accelerations. Inputs in the second and fifth quintile of each stride were
the most informative. b The input signal with the largest weight, the gyroscope measurement of the shank in the sagittal plane, was plotted for each activity
alongside the model weights. The linear regression model may relate the absolute value of signals to energy expenditure or differentiate two points of the
input data to approximate a derivative. Interpretation is challenging as all inputs are compared at once.

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-24173-x ARTICLE

NATURE COMMUNICATIONS |         (2021) 12:4312 | https://doi.org/10.1038/s41467-021-24173-x | www.nature.com/naturecommunications 7

www.nature.com/naturecommunications
www.nature.com/naturecommunications


comfort (Supplementary Table 5). This is likely owing to the light
weight and small form factor of the IMUs. A demonstration of
donning and doffing the device shows that these are simple
procedures, taking 25 and 14 seconds, respectively (Supplemen-
tary Movie 4). A future product would need to be refined by using
common sensors such as a smartphone worn on the thigh, IMUs
embedded into a shoe or integrated into clothing, or stickers
powered by heat or sweat45. A smartphone could provide wireless
sensor communication and compute estimates. This future pro-
duct will also require investigation to determine if it is convenient
enough for large-scale, everyday use.

The Wearable System accurately estimated energy expenditure
for the tested conditions, but additional data collection may
improve performance and the activities that can accurately be
monitored. The Wearable System was trained with data from 13
young and healthy subjects during four common activities. Col-
lecting data from a larger and more diverse group of subjects and
activities would create a more accurate and general model, which
may require additional information such as subject age. Addi-
tional training data would need to be collected and used to retrain
the Wearable System to accurately estimate energy expenditure
for any other activities. Early evaluations of other machine
learning models found worse performance than linear regression,
likely because they overfit the relatively small amount of training
data. Future studies with access to more data may benefit from a
more expressive model, such as a neural network. Activities that
have significant upper-limb activity may be challenging to detect
without additional sensors but are not among the most common
activities with high energy expenditure and thus may comprise
only a small portion of active energy expenditure7,8. Likewise,
activities beyond the aerobic threshold were not considered owing
to the challenges of obtaining ground truth energy expenditure
values. Accurately estimating conditions with similar kinematics
but different energy expenditures, such as biking at different
resistances, could be susceptible to error if people were to con-
sistently use the same kinematics. However, in freely selected
behaviors, people tend to have large variations in kinetics and
muscle activity46, and we did not observe this issue in the fixed-
cadence cycling trials in this study. Evaluating other possible
signals, such as respiration frequency47, might help differentiate
energy expenditure for conditions with similar kinematics.

The approach demonstrated by the Wearable System may offer
a solution to one of the challenges facing engineers, physicians,
and global health organizations: accurately and objectively
monitoring common physical activities with a portable, low-cost
system. The accuracy when evaluated with a diverse population
indicates the Wearable System may be ready to be deployed for
effective physical activity monitoring of most adults. The Wear-
able System relies on two low-cost sensors that may simplify
deployment at a large scale, especially for low-income countries
and countries with high mortality rates from inactivity. Clinical
researchers studying obesity and physical activity could use sys-
tems like this one to more accurately investigate how the activity
relates to health outcomes and inform health policies. Engineers
designing wearable devices could leverage our sensor selection
approach to improve the effectiveness of their devices. Machine
learning researchers may find our insights into using gait cycle
structure to create time-variant inputs helpful for modeling other
challenges related to motion and physiology. Biomechanics
researchers may be interested in the implications of the selected
sensor signals and locations for monitoring and understanding
gait and energy expenditure. The Wearable System could be
combined with a method for estimating caloric intake to create an
energy balance system. Monitoring and understanding energy
balance could enable personalized weight management tools to
reduce obesity.

Methods
Experimental design. The research objective was to compare errors when esti-
mating energy expenditure of the Wearable System method and state-of-the-art
wearable methods. We hypothesized that the Wearable System would have sig-
nificantly lower error than the state-of-the-art methods. The necessary sample size
to validate the Wearable System was found to be 15 subjects from a power analysis
based on earlier experiments that estimated the Wearable System would have 14%
absolute error, a standard deviation of 12%, a difference of at least 14% with each
compared method, and a power of 0.9. We stopped data collection after reaching
25 subjects in case of sensor failures and because some subjects were not able to
complete all conditions. One subject was excluded because of sensor failure and no
other exclusions were made. All subjects were volunteers and provided written
informed consent before completing the protocol IRB-17282 approved by the
Stanford University Institutional Review Board. The authors affirm that human
research participants provided informed consent for publication of Supplementary
Movies 1–4. The experiments consisted of human subject testing in a laboratory
experiment, where each subject performed the same set of conditions in a ran-
domized order. Each of the four experiments performed in this study is detailed in
the next four sections. These sections each describe the motivation for the
experiment, which sensors were used to collect data, and how the data were col-
lected. The subheading for each experiment matches the corresponding subheading
in the Results section.

Evaluating the wearable data-driven method and selecting informative sen-
sors. In order to evaluate the data-driven method and select the fewest sensors
necessary to estimate energy expenditure, we performed an experiment to collect
data from a variety of conditions and wearable sensors for offline testing. Healthy
young adults (n= 13, 8 men and 5 women; age = 23.8 ± 2.6 yr; body mass = 68.3
± 10.6 kg; height = 1.72 ± 0.07 m) completed 12 steady-state conditions on a
treadmill (Supplementary Fig. 1a). One subject was excluded owing to sensor
failure. The conditions were completed in the order: quiet standing, six speeds of
walking and running between 0.75 and 3.25 m/s, sideways walking at 1 m/s,
backwards walking at 1 m/s, hopping in place at a self-selected rate and height, and
loaded walking at 1.25 m/s with an additional 10% and 20% of the subject’s
bodyweight. The conditions lasted 5 mins followed by quiet standing for at least 1
minute. The minimum, maximum, and average energy expenditures across con-
ditions were 179, 1295, and 471 Watts.

Biomechanics data were collected with a variety of wearable sensors
(Supplementary Fig. 1b). Tethered respirometry equipment (Quark CPET,
COSMED) measured the volume of carbon dioxide and oxygen exchanged per
breath. A heart rate monitor (Dual Heart Rate Monitor, Garmin) recorded heart
rate in beats per minute at the same intervals as the respirometry measurements,
for the last nine subjects. Electromyography sensors (Trigno IM, Delsys Inc.)
recorded muscle activity at 2000 Hz from seven muscles of the left leg: soleus,
medial and lateral gastrocnemii, tibialis anterior, vastus medialis, rectus femoris,
and biceps femoris. IMUs (MTw Awinda, Xsens) recorded motion at 100 Hz from
seven sensors placed on the pelvis and the foot, shank, and thigh of both legs.
Force-sensing insoles (Pedar, Novel) in both shoes recorded vertical ground
reaction forces at 50 Hz. The data processing steps for these sensors are detailed in
the “Sensor data processing” subsection. The wearable data were used to compare a
variety of methods including Steady-State Respirometry, Fast-Estimated
Respirometry, the Activity Monitor, the Activity-Specific Model, the Data-Driven
Model, and the Musculoskeletal Model.

Extending estimation to time-varying conditions. The second experiment col-
lected the same sensor data and steady-state conditions with additional time-
varying conditions that periodically transitioned between walking and running.
Healthy young adults (n= 4, 2 men and 2 women; age = 23.8 ± 2.6 yr; body
mass = 67.1 ± 10.7 kg; height = 1.71 ± 0.07 m) completed the protocol from the
first experiment and two time-varying conditions where the speed of walking and
running periodically followed a sinusoid or four discrete step changes between
1.25 m/s and 2.75 m/s. The sinusoidal change in speed had a period of 30 seconds.
The discrete steps were speeds of 1.25, 1.75, 2.25, and 2.75 m/s. Each discrete step
change had a 2 s acceleration followed by eight seconds of a constant speed,
resulting in a total period of 60 seconds. The time-varying conditions started with
10 seconds of walking at 1.25 m/s and then periodically changed the speed for
5 mins.

The instantaneous energy expenditure during time-varying conditions cannot
be directly measured with respirometry due to a delayed response to changing
energy expenditure. Interpolated Respirometry approximated ground truth by
interpolating between subject-specific Steady-State Respirometry values from
walking and running conditions based on treadmill speed. The methods for
estimating time-varying energy expenditure included: the Data-Driven Model, the
Heart Rate Model, Per-Breath Respirometry, and Fast-Estimated Respirometry.

Designing and training the Wearable System. The third experiment combined a
new collection of stair climbing and biking conditions with the previous walking
and running data from the first experiment to train the Data-Driven Model used in
the Wearable System. Healthy young adults (n= 10, 5 men and 5 women;
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age = 24.5 ± 2.5 yr; body mass = 65.5 ± 11.0 kg; height = 1.72 ± 0.07 m) completed
three steady-state conditions for both stair climbing and biking. The speeds for
stair climbing were 40, 60, and 80 steps per minute, which were selected to center
around the speed for healthy older adults. A stairmill was used to emulate con-
tinuously climbing stairs while remaining in one location for data recording. The
kinematics and muscle activity for climbing stairs and using a stairmill follow
similar trends. The biking conditions had resistance levels of approximately 20, 70,
and 150 Watts. The subject manually followed a pedal rate of 80 revolutions per
minute based on findings that this is a comfortable rate48.

The Wearable System was assembled from a few off-the-shelf components and
estimated energy expenditure in real-time with the Data-Driven Model trained
from experimental data (Supplementary Fig. 2a). The Wearable System consisted
of a Raspberry Pi 3b+, a rechargeable battery, and two Adafruit Precision NXP
Breakout Boards. Computation and data storage were performed on the Raspberry
Pi in real-time. The Data-Driven Model relied on inputs from the two IMUs worn
on the shank and thigh of the left leg.

The Wearable System identified quiet standing when strides were not detected
for at least 8 seconds and used a heuristic to estimate energy expenditure. If a stride
was not detected for 8 seconds, the Wearable System switched to estimate quiet
standing from a scaled estimate of basal energy expenditure. A previous equation
was used to estimate basal energy expenditure from a subject’s height, weight, age,
and gender6. The scaling factor was computed by dividing Steady-State
Respirometry estimates during quiet standing by basal estimates and averaging
across all training subjects. When evaluating the energy expenditure during quiet
standing for a new subject, their basal estimate was multiplied by this scaling factor.

Evaluating the Wearable System with new subjects and new conditions. The
fourth experiment compared the Wearable System and state-of-the-art wearable
methods when estimating energy expenditure for new subjects and new steady-
state conditions during walking, running, stair climbing, and biking as well as four
time-varying activities. The subjects were a diverse group of adults that had not
participated in any previous experiments (n= 24, 15 men and 9 women; age =
34.8 ± 11.6 yr; body mass = 74.3 ± 13.1 kg; height = 1.73 ± 0.07 m; body mass
index = 24.9 ± 4.1). We selected participants to achieve similar mean and standard
deviation values of the age, body mass, height, and body mass index of a previously
diverse study validating the error of Smartwatches estimating energy expenditure39.
The subjects could skip any conditions they were unable to complete. The new
conditions were selected at intermediate speeds or resistance levels between the
conditions collected to train the Wearable System. The steady-state conditions
included walking at 1.0 (n= 24) and 1.5 (n= 24) m/s, running at 2.5 (n= 13) and
3.0 (n= 11) m/s, climbing stairs at 50 (n= 22) and 70 (n= 14) steps per minute,
and biking with a resistance of 50 (n= 24) and 120 (n= 24) Watts while pedaling
at 80 revolutions per minute. The n values represent the number of the 24 subjects
that completed each condition. The time-varying conditions consisted of periodic
profiles of varying treadmill speeds including discrete steps between quiet standing
and walking at 1.0 m/s, sinusoidally varying walking speed between 1.0 and 1.5 m/s,
discrete steps from walking at 1.0 m/s to running at 3.0 m/s, and sinusoidally
varying from walking at 1.0 m/s to running at 3.0 m/s. Each condition lasted 6 mins
followed by at least 3 mins of quiet standing. The conditions were collected in two
sections, one consisting of walking and running conditions and the other of stair
climbing and biking because the cart containing the respirometry equipment had
to be moved to reach the exercise equipment. The order of the two sections and the
order of the conditions within each section were randomized. The evaluated
methods included: the Wearable System, the Smartwatch, the Activity-Specific
Smartwatch, the Heart Rate Model, Per-Breath Respirometry, Fast-Estimated
Respirometry, and Steady-State Respirometry.

A post hoc survey of 21 subjects was used to evaluate the usability of the
Wearable System as well as metrics related to comfort. The usability questionnaire
was the standard System Usability Scale40, which is a Likert scale meant to evaluate
the usability of a system. Twenty-one participants evaluated the Wearable System
with this survey. The metrics related to comfort were based on the Questionnaire
for User Interaction Satisfaction survey42.

Sensor data processing. Wearable sensor data from the first two experiments
were processed before being input to any models. Electromyography signals were
filtered with a 30–500 Hz bandpass filter, rectified, filtered with a 6 Hz low-pass
filter, and normalized by the maximum signal for each muscle during walking at
1.25 m/s. The filters were fourth-order, bidirectional Butterworth filters. Some
measurements from the force-sensing insoles reported negative forces, which were
corrected by replacing these values with the first preceding non-negative mea-
surement. The force measurements also drifted over time and were corrected by
shifting the minimum value of each 10-second window of data to 0, approximating
having no vertical ground reaction force during the flight phase of each stride.

The sagittal kinematics for the ankle, knee, and hip angles were computed by
passing orientation data from the IMUs to OpenSense, an open-source tool relying
on OpenSim musculoskeletal simulation19. OpenSense assumed the subject was
standing to calibrate a human Musculoskeletal Model. The IMUs provided data to
an inverse kinematics solver to estimate the lower-limb kinematics while meeting
musculoskeletal constraints. The initial calibration and solver were reset for each
condition to limit the error accumulated from sensor drift. The computed joint

kinematics from OpenSense were compared to those from a motion capture system
(Optitrack), resulting in an absolute error of five degrees averaged across all sagittal
joints and conditions.

Sensor data were synced with timestamps from each device and segmented by
stride. The first two experiments resampled all sensor data to 100 Hz and
segmented strides by detecting when the pressure insole of the right foot reported
in increasing force that crossed a threshold of 150 N. The Wearable System filtered
and processed inertial measurement data and used sagittal plane measurements to
segment strides49. This segmentation process is based on the change in angular
rotation of the shank of the leg, emulating heel strike during walking and running
as well as segmenting any cyclic activity, including biking. The sagittal plane
angular velocity of the IMU worn on the shank of the left leg was filtered with a
fourth-order 6 Hz low-pass filter before detecting peaks. The largest relative peaks
were required to be at least 0.5 s apart to identify one gait cycle.

The Apple Smartwatch data were stored on their paired smartphone and
exported from the Health app. The data were split into files containing active
energy burned, basal energy burned, and a variety of other information. Each
estimate of energy expenditure contained a start and stop timestamp along with a
value for kilocalories expended during that period. The energy expenditure rate in
Watts was computed by dividing the kilocalories by the duration of time in
seconds, and then multiplying by a scaling factor to convert the units to Watts. The
active and basal energy estimates were interpolated and then summed to produce
total energy expenditure estimates at 1 s intervals.

Data collection and processing used custom code relying on Python (version
3.6.1), Matlab 2019a, Motion Analysis 7.1, and OpenSim 4.0. Additional required
python packages include numpy (1.17.4), scikit-learn (0.21.3), scipy (1.3.2),
matplotlib (2.0.2), natsort (6.2.0), jupyter (1.0.0), ipython (5.3.0), and pandas
(0.25.3). See the Code availability section for access to the public repository
containing code and data to replicate the study.

Estimation methods. The methods of estimating energy expenditure we compared
included: Steady-State Respirometry, Per-Breath Respirometry, Fast-Estimated
Respirometry, the Activity Monitor, the Activity-Specific Model, the Data-Driven
Model, the Musculoskeletal Model, the Smartwatch, and the Activity-Specific
Smartwatch. These methods are capable of estimating energy expenditure for
extended periods if the activity is within the aerobic threshold15. Directly mea-
suring instantaneous energy expenditure of the whole body is not possible.
Respirometry cannot measure instantaneous energy expenditure because of sig-
nificant delays in replenishing energy stored in the muscles, primarily owing to
mitochondrial dynamics, oxygen consumption, and blood circulation50. Activities
outside the aerobic threshold violate steady-state assumptions in these respiro-
metry methods and thus cannot be monitored accurately.

Steady-State Respirometry acted as the ground truth energy expenditure values
for the steady-state conditions by averaging the last several minutes of respirometry
data converted to energy expenditure with the Brockway equation. Conditions
collected in the first three experiments lasted 5 mins and the steady-state estimate
was averaged over the last 2 mins. Conditions collected in the last experiment to
validate the Wearable System lasted 6 mins and the steady-state estimate was
averaged over the last 3 mins.

Per-Breath Respirometry provided noisier estimates of energy expenditure once
per breath also using the Brockway equation. Fast-Estimated Respirometry
estimated steady-state quickly by fitting estimates per breath to a first-order
exponential function. The asymptote value was treated as the estimate. Time-
varying conditions typically do not have a known step change in energy
expenditure, limiting use to steady-state conditions.

The Heart Rate Model estimated energy expenditure by using a linear
regression model to estimate Steady-State Respirometry from steady-state heart
rate values in beats per minute. The linear regression model had one weight and
one bias parameter.

The Activity Monitor used a linear model to estimate energy expenditure based on
the number of acceleration measurements that reached a threshold every minute. The
threshold and count protocol followed the popular ActiGraph procedure. The
accelerometer measured three axes and used the processing steps of the triaxial GT3X
activity monitor. A previous regression equation was selected to scale the number of
counts to energy expenditure in metabolic equivalents, which had units of kilocalories
per kilogram per hour and were converted to Watts for comparison37.

The Data-Driven Model used wearable sensor data to estimate energy
expenditure once per stride. The model was fit using linear regression with ridge
regularization with default regularization value of 1. Each stride of data were
discretized to a fixed input size by splitting input signals into 30 bins, selected from
previous experimentation35. The discretized input signals were flattened into a
vector with single features including the subject’s height, weight, and duration of
each stride in seconds. The last 50 strides from each training condition were
included in the training data. The training data was standardized separately across
each input signal by subtracting the mean and dividing by the standard deviation.
Tested conditions were normalized by using the mean and standard deviation from
the training data. Interaction and nonlinear terms were not included due to the
large number of input signals.

The Activity-Specific Model relied on ideal activity classification to estimate
energy expenditure with separate models for each activity. Inputs to the models
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consisted of subjects’ height, weight, and stride duration. The models were linear
regression with ridge regularization, using the default regularization parameter of 1.
Although this method was compared with the Wearable System it was evaluated
offline to add ideal activity classification.

The Musculoskeletal Model estimated energy expenditure by using a simulated
anatomical model tracking measured kinematics and applying measured muscle
activity to compute the metabolic rate of each leg muscle (Supplementary Fig. 2b).
Owing to large computation times, estimates were computed from five strides per
condition. The anatomical model was scaled by the subject’s height and weight.
The measured electromyography data were scaled to muscle activations using
activation values from similar running conditions. Scaling to muscle activations
during walking resulted in impossible activations above 100% during running20,51.
Muscle parameters were computed using muscle-driven forward simulation relying
on OpenSim software19,52. The normalized fiber length and velocity parameters
were validated by comparing to related simulation work. The metabolic rate of each
muscle was computed by passing the muscle activations and simulated muscle
parameters to a metabolic probe model22. This simulation was determined to meet
best practices52,53 as the simulated net joint moments for the ankle and knee in the
sagittal plane were within two standard deviations of experimental data during
walking.

The Smartwatch estimated energy expenditure approximately every minute
using an undisclosed model provided by Apple. The Smartwatch was an Apple
watch series 1 (42 mm) with model number A1154 and software version 4.3.2. We
evaluated the Apple watch series 1 because it is the only model that has been
previously validated in other research experiments31,39. Apple does not provide
information whether their method for estimating energy expenditure is different
for the generations of Smartwatches. However, all versions of their Smartwatches
have the same set of sensors and utilize the same software application, which we
updated to the most recent available version. The estimates were exported from the
Health app on a paired iPhone 6 S with model number A1633 and operating
system version 13.2.3. The inputs to the model are unknown but may include wrist
kinematics and heart rate. The Smartwatch was worn on the right wrist and
calibrated following Apple’s guidelines. The calibration process for each subject
consisted of resetting the calibration, entering subject-specific information in the
Health app, and ensuring a snug fit around the wrist. After all data were collected,
the estimates were exported from the Apple Health app on the paired smartphone.

The Activity-Specific Smartwatch estimated energy expenditure approximately
every 3 seconds using undisclosed and Activity-Specific Models provided by Apple.
The Activity-Specific Smartwatch was an Apple watch series 1 (42 mm) with model
number A1154 and software version 4.3.2. The estimates were exported from the
Health app on a paired iPhone 6 with model number A1549 and operating system
version 12.4.4. The Activity-Specific Smartwatch was worn on the left wrist. Before
the start of each condition the user selected the appropriate model for that activity.
The models for the walking, running, stair climbing, and biking activities were
labeled as indoor walk, indoor run, stair stepper, and indoor cycling. The indoor
run mode was selected for time-varying activities that included both walking and
running.

Performance metrics. Absolute error measured the error between estimated and
ground truth energy expenditure. The absolute error was calculated by finding the
percent error between the estimate and ground truth, taking the absolute value of
these errors, and then averaging all errors in each condition.

The relative error metric evaluated model precision in capturing the relative
changes in energy expenditure across all conditions. The relative error first
removed the difference between estimates and ground truth energy expenditure
across all conditions for each subject, eliminating any consistent offset. The relative
error was then calculated following the same steps as the absolute error.

The cumulative energy expenditure was calculated as the average energy
expenditure over the last 3 mins of the 6-min condition, including any expenditure
above quiet standing for 3 mins following the condition44. The cumulative energy
expenditure approximated the total energy spent during the activity because
methods relying on respirometry or heart rate had delayed response in the energy
expenditure estimates and remained elevated for several minutes after a condition.
The error of cumulative energy expenditure was computed between the estimates
and ground truth following the same steps as the absolute error.

Statistical analysis. The method used to estimate energy expenditure had a sig-
nificant effect for all reported error metrics with a Kruskal–Wallis one-way analysis
of variance (fixed effect: method; p ≤ 3 × 10−7). The Kruskal–Wallis test was
selected because the errors did not follow a normal distribution. We then used
paired t tests to evaluate the significance of the reported errors. We compared the t
test results using a significance level of 0.05 and applied the Bonferroni correction
with 15 comparisons, giving a modified significance level of 0.0033. The largest
reported value was p= 7 × 10−4, indicating all results were statistically significant.
There was no significant difference (paired t test; p= 0.64) in the steady-state
absolute error based on gender. Linear regression models that used the subject’s
heights, weights, or body mass index to estimate steady-state absolute error resulted
in R-squared values of 0.009, 0.024, and 0.017, respectively. Thus, there was no
significant correlation between the error and the subject’s height, weight, or body
mass index.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
All materials necessary to replicate the results from this work are available in a public
repository: https://simtk.org/projects/energy-est. This includes experimental data,
including the series of experiments to evaluate different types of models, select the
sensors for the Wearable System, collect training data for the Wearable System, and
validate the Wearable System with a diverse population. Source data are provided with
this paper. A reporting summary for this article is available as a Supplementary
Information file.

Code availability
All custom code necessary to replicate the results from this work is available in a public
repository (https://simtk.org/projects/energy-est) and a permanent reference version on
Github54. This includes code to estimate energy expenditure with the different models,
perform musculoskeletal simulations, train the Data-Driven Model used by the Wearable
System, validate the Wearable System results, and replicate the Wearable System.
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