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Abstract: The rapid spread of antibiotic resistance and lack of effective drugs for treating infections
caused by multi-drug resistant bacteria in animal and human medicine have forced us to find new
antibacterial strategies. Natural products have served as powerful therapeutics against bacterial
infection and are still an important source for the discovery of novel antibacterial drugs. Curcumin, an
important constituent of turmeric, is considered safe for oral consumption to treat bacterial infections.
Many studies showed that curcumin exhibited antibacterial activities against Gram-negative and
Gram-positive bacteria. The antibacterial action of curcumin involves the disruption of the bacterial
membrane, inhibition of the production of bacterial virulence factors and biofilm formation, and
the induction of oxidative stress. These characteristics also contribute to explain how curcumin
acts a broad-spectrum antibacterial adjuvant, which was evidenced by the markedly additive or
synergistical effects with various types of conventional antibiotics or non-antibiotic compounds.
In this review, we summarize the antibacterial properties, underlying molecular mechanism of
curcumin, and discuss its combination use, nano-formulations, safety, and current challenges towards
development as an antibacterial agent. We hope that this review provides valuable insight, stimulates
broader discussions, and spurs further developments around this promising natural product.

Keywords: antibacterial resistance; curcumin; bacterial infection; molecular mechanism; nano-formulations

1. Introduction

There is an urgent unmet medical need for new antibiotics for infections caused by
multidrug-resistant (MDR) Gram-negative ‘superbugs’ Pseudomonas aeruginosa, Acinetobac-
ter baumannii, and Klebsiella pneumoniae and Gram-positive methicillin-resistant Staphylococ-
cus aureus (MRSA), vancomycin-resistant S. aureus (VRSA), and mobilized colistin resistance
gene (MCR)-producing Enterobacteriaceae bacteria, which are resistant to almost all available
antibacterial drugs [1]. The coronavirus disease 2019 (COVID-19) pandemic especially led
to the increased clinical use of all antibiotics, which further promoted the development of
bacterial resistance, highlighting the unmet medical need for new antibiotics [2].

Since the golden age of antibiotic discovery in the mid-20th century, natural products
have served as the major foundation for the development of the majority of antibiotic drugs
in clinical use to this very day [3]. Natural product antibiotics act by directly inhibiting the
growth or killing the bacteria, acting as potentiators that augment or transform other agents
or as immunomodulators to host cells or block pathogen virulence [1]. For example, a recent
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study from our group showed that two natural products, α-mangostin and isobavachalcone,
could rapidly kill several types of MDR bacteria, including MRSA, VRSA, and MCR-
producing Enterobacteriaceae bacteria in vitro [4].

Curcumin ((1E,6E)-1,7-bis-(4-hydroxy -3-methoxyphenyl)-hepta-1,6-diene -3,5-dione)
is one of major active ingredients of turmeric extract, which is acquired from Curcuma longa,
a type of herb belonging to the ginger family and widely growing in southern and south-
western tropical Asia regions [5]. Curcumin is usually used as a coloring agent in foods or
cooking. In China, curcumin has been approved as a food additive to improve animal’s
productive performance [6]. Curcumin has been shown to possess direct broad spectrum
antibacterial activities against Gram-negative and Gram-positive bacteria [6–10]. Curcumin
also acts as an immunomodulator whereby it ameliorates bacterial infections by block-
ing the pathogen’s virulence factors and augmenting host-mediated immunity [11]. As a
potential broad-spectrum antibacterial adjuvant to permeabilize the bacterial membrane,
curcumin has a marked synergistic or additive anti-bacterial activity in combination with
some traditional antibacterial drugs (e.g., polymyxin B, colistin, ciprofloxacin, and tetra-
cycline) and natural active substances (e.g., berberine, and epigallocatechin gallate) [9,12].
Animal studies showed that topical curcumin was an effective treatment for localized
trauma-caused skin infections [13]. Importantly, human trials showed that oral administra-
tion of curcumin was safe and effective for skin diseases, including psoriasis, infection, acne,
skin inflammation, and skin cancer [14]. Bacterial infections also contribute to tumor forma-
tion, and curcumin combinations with some drugs have both anti-cancer and antibacterial
activities that would provide a novel thyroid cancer treatment strategy [15]. In the present
review, we survey the literature on the antibacterial properties and current underlying
molecular mechanism of curcumin per se, curcumin-based combinations, and its nano-
formulations, clinical trials, and major challenges, aiming to provide a prospective into the
further clinical application of this promising antimicrobial candidate or broad-spectrum
antibacterial adjuvant.

2. Chemical Structure and Biological Activity of Curcumin

The chemistry and structure of curcumin was first characterized in 1910 by Lampe
and Milobedeska. Three years later, in 1913, they reported the synthesis of curcumin and
confirmed its structure [16]. In 1953, Srinivasan reported the separation and quantification
of components of curcumin using chromatography [17]. Curcumin is a mixture largely
composed of three hydrophobic curcuminoids, namely, demethoxycurcumin (DMC), bis-
demethoxycurcumin (BDMC), and curcumin, in the proportion of 17: 3: 77 (Figure 1) [18].
From a structural viewpoint, curcumin, DMC, and BDMC all contain two aromatic feruloyl
rings with orthomethoxy phenolic OH groups (Figure 2). The highly polar aromatic rings
are symmetrically connected via a seven-carbon aliphatic chain and two α, -unsaturated
carbonyl groups (e.g., β-diketonemoiety) [19]. This seven-carbon aliphatic chain structure
is responsible for the hydrophobic nature of curcumin, which makes it practically insoluble
in water; however, solubility can be achieved in ethanol, dimethyl sulfoxide (DMSO),
methanol, and acetone [19]. Curcumin displays a maximum ultraviolet (UV)-absorption
(λmax) peak at 430 nm, which is due to the two feruloyl aromatic ring structure [19].
Curcumin has two molecular configurations, bis-keto and enolate. Its bis-keto form pre-
dominates under acidic, neutral, and solid phase conditions, whereas its enolic form is
predominantly found under alkaline conditions [20].

Documented biological activities of curcumin include antimicrobial, antioxidant, anti-
inflammatory, neuroprotective, anticancer, and immuno-modulatory activities [20]. Due to
its various biological activities, curcumin has been used extensively in traditional medicine
for the treatment of various illnesses including autoimmune, neurological, diabetic, cardio-
vascular, and infectious disease [5,21]. In the proceeding discussions, we elaborate on the
antibacterial activities of curcumin, its mechanism of action, and barriers associated with
its clinical application as an antibiotic therapy.
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3. Antibacterial Activity of Curcumin

In 1949, Schraufstatter and colleagues were the first to report the antibacterial prop-
erties of curcumin [22]. In the past seventy years, there have been several studies of the
broad-spectrum inhibitory effect that curcumin exhibits against various Gram-negative
and Gram-positive bacteria, including A. baumannii, E. faecalis, K. pneumoniae, P. aerugi-
nosa, Bacillus subtilis (B. subtilis), Staphylococcus epidermidis, Bacillus cereus (B. cereus), Liste-
ria innocua, Streptococcus pyogenes, S. aureus, Helicobacter pylori (H. pylori), Escherichia coli
(E. coli), Salmonella enterica serotype Typhimurium, and Streptococcus mutans (Details shown
in Table 1) [6,8,10,23,24]. Importantly, curcumin also exhibits marked antibacterial activities
against MDR-isolates, such as polymyxin-resistant K. pneumoniae and MRSA [9,10,24]. A
recent study by Batista de Andrade Neto et al., reported that minimum inhibitory concen-
tration (MIC) values for curcumin against clinical isolates of MRSA were in the range of
125–500 µg/mL [25]. Another study by Yasbolaghi Sharahi et al., reported that MICs of
curcumin against MDR-A. baumannii, P. aeruginosa and K. pneumoniae were in the range of
128–512 µg/mL [8]. Notably, there were significant differences in the MICs of curcumin
against certain stains reported by different research groups [26]. This may be due to the
difference in solubility of curcumin in the different vehicles (e.g., water, DMSO, and ethanol)
used by each research group [26]. In addition, these differences may be related to the MIC
test methodology, impact of the vehicle against the bacterial outer membrane, and purity
of the curcumin used in the study [27].

Table 1. Documented antibacterial activities of curcumin.

Bacteria Type Antibacterial Activity References

Staphylococcus aureus Growth inhibition, inhibition of cell division or
biofilm formation inhibition [28–30]

Staphylococcus epidermidis Growth inhibition or biofilm formation inhibition [31]

Streptococcus pyogenes Growth inhibition [32]

Bacillus subtilis Growth inhibition, or cell division inhibition [23,28,30,33]

Bacillus cereus Growth inhibition, or biofilm formation inhibition [34,35]

Listeria innocua Growth inhibition [36]

Helicobacter pylori Growth inhibition [37–39]

Pseudomonas aeruginosa Growth inhibition, biofilm formation inhibition, or
inhibition of cell division [28–30,33]

Escherichia coli Growth inhibition, biofilm formation inhibition, or
inhibition of cell division [8,28,30,33]

Streptococcus mutans Adhesion inhibition, biofilm formation inhibition [40]

Salmonella enterica serotype Typhmurium Growth inhibition, or inhibition of surface motility [41,42]

Klebsiella pneumoniae Growth inhibition [8,9,33]

Acinetobacter baumannii Growth inhibition, biofilm formation inhibition or
inhibition of the surface motility [8,43]

Enterococcus faecium Growth inhibition [8,28,33]

Mycobacterium abscessus Growth inhibition, or biofilm formation inhibition [44]

Porphyromonas gingivalis Growth inhibition, or biofilm formation inhibition [45]

Clostridium difficile Growth inhibition [46]

4. Mechanisms of the Antibacterial Action of Curcumin
4.1. Cell Membrane Disruption

Curcumin and its two analogs, DMC and BDMC, have been shown to possess antibac-
terial activity against a wide range of bacteria [23]. Studies have shown that curcumin can
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damage the permeability and integrity of bacterial cell membranes in both Gram-positive
and -negative bacteria, finally leading to bacterial cell death [47]. Curcumin’s lipophilic
structure allows it to directly insert into liposome bilayers, which in turn enhances the
bilayer permeability [47]. Solid-state nuclear magnetic resonance (NMR) spectroscopy stud-
ies revealed that curcumin can insert deep into the membrane in a trans-bilayer orientation,
resulting in disordering 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) membranes
and influencing exocytotic and membrane fusion processes [48]. Tyagi et al., demonstrated
that curcumin at a concentration of 100 µM can induce permeabilization of both S. aureus
and E. coli cell walls [49]. This membrane permeabilization property could account for the
direct bacterial killing effect of curcumin against Gram-positive and -negative bacteria [49].
Indeed, the increase in membrane permeabilization of bacteria caused by curcumin could
increase the uptake of other drugs [50]. This is a critical mechanism to explain the synergis-
tic effect of curcumin combination therapy with other antibiotic drugs or natural products,
as discussed in detail below.

4.2. Inhibition of Bacterial Quorum Sensing System and Biofilm Formation

Quorum sensing (QS) system is a cell–cell communication system that is ubiquitously
used in microbial communities to monitor their population density and adapt to external
environment [51]. To date, there are three main QS systems, (1) the acylhomoserine lactone
(AHL) QS system in Gram-negative bacteria; (2) the autoinducing peptide (AIP) QS system
in Gram-positive bacteria, and (3) the autoinducer-2 (AI-2) QS system, which is in both
Gram-negative and Gram-positive bacteria. It is well-known that QS systems play critical
role in the formation and maturation of bacterial biofilms, which are associated with about
80% microbial infections [52]. Bacteria growing in biofilms are largely protected from
antibiotics or host immune cells, leading to the failure of antimicrobial therapy [52]. QS
systems are the master controllers for the entire process of biofilm formation, including
bacterial adhesion, biofilm development, and maturation. Therefore, the discovery of new
inhibitory compounds targeting bacterial QS systems is an important strategy to control
bacterial biofilm formation and resistance.

Several studies reported that curcumin inhibits bacterial QS systems/biofilm for-
mation and prevents bacterial adhesion to host receptors in various species, including
S. aureus, E. faecalis, E. coli, Streptococcus mutans, Listeria monocytogenes, H. pylori, P.
aeruginosa, Serratia marcescens, Aeromonas hydrophila and A. baumannii [36,38,50,53–55].
We have summarized the QS system’s curcumin targets in various bacteria in Table 2.
In addition, Figure 3 provides an overview of the inhibitory mechanisms of curcumin
against biofilm formation, inhibition of bacterial swimming/clustering behaviors, and
inhibition of virulence [35,36,38,50,53–55]. Interestingly, available data suggest that
the autoxidation of curcumin could also contribute to the inhibition of biofilm forma-
tion [56]. For example, curcumin was shown promote the production of lactate dehy-
drogenase (LDH) in P. aeruginosa, S. aureus, and E. faecalis, wherein the curcumin/LDH
complex exhibited antibacterial and anti-biofilm activities [56]. Clearly, the anti-biofilm
properties of curcumin increase its potential as a tractable anti-infective agent.

Table 2. Targets or action model of curcumin in the inhibition of biofilm in various bacteria.

Bacteria Type Targets or Action Model of Curcumin References

Staphylococcus aureus

By inhibiting the activity of sortase A by
interaction with VAL-168, LEU-169, and GLN-172
sites based on curcumin and its analog methoxyl

group on the benzene ring

[30,57]

Enterococcus faecalis Unclear [54]

Listeria monocytogenes By circumventing the limitations to singlet-oxygen
diffusion imposed by the extracellular matrix [36]

Bacillus cereus Unclear [35]
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Table 2. Cont.

Bacteria Type Targets or Action Model of Curcumin References

Helicobacter pylori By inhibiting biofilm maturation [38]

Pseudomonas aeruginosa

By inhibiting the production of the QS-dependent
factors, such as exopolysaccharide production,
alginate production, swimming, and swarming

motility of uropathogens

[30,58]

Escherichia coli Similar to Pseudomonas aeruginosa [58]

Streptococcus mutans

By inhibiting sortase A activity; suppressing the
expression of genes related to extracellular

polysaccharide synthesis, carbohydrate
metabolism, adherence, and the two-component

transduction system

[59–61]

Serratia marcescens
By inhibiting the production of violacein

production in a QS-independent manner, as well
as swimming and swarming motility.

[55]

Klebsiella pneumoniae Unclear [62]

Acinetobacter baumannii By blocking BfmR, which is a response regulator in
a two-component signal transduction system [43]

Aeromonas hydrophila Inhibition of violacein production and swimming
motility [53,63]

Porphyromonas gingivalis By inhibiting the activities of Arg– and Lys-specific
proteinase (named RGP and KGP, respectively) [45]
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Figure 3. Inhibitory effect of curcumin against the bacterial quorum sensing (QS) system. The
main mechanisms of curcumin in QS inhibition involve (1), destruction of the biofilm structure;
(2) inhibition of bacterial swimming and clustering behavior; (3) inhibition of the expression of biofilm
promotor genes; (4) inhibition of the gene expression of QS-dependent virulence; (5) inhibition of
bacterial cell growth [35,36,38,50,53–55].

4.3. Inhibition of Cell Division

Inhibition of bacterial cell division is an important mechanism of curcumin’s antibacte-
rial activity [23,64]. Filament temperature-sensitive protein Z (FtsZ) is shown to be essential
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for bacterial cell division [64,65]. It consists of an N-terminal polymerization domain
connected to a highly conserved C-terminal peptide (CCTP) of ~eight amino acids by an
intrinsically disordered linker region of variable length (50 amino acids in E. coli). FtsZ
associates in a GTP-dependent manner to form polymers [64]. This process is coupled to the
conversion between closed and open conformations of FtsZ and plays a critical role in the
formation of the Z ring of FtsZ. The polymerized FtsZ filaments attach to the cytoplasmic
membrane through membrane anchors ZipA and FtsA, mediated by the CCTP of FtsZ
(Figure 4). Rai et al., showed that curcumin blocks the formation of the cytokinetic Z ring
through direct interaction with FtsZ in B. subtilis and E.coli [64]. In addition, curcumin also
increased the GTPase activity of FtsZ, which in turn aborted the polymerization process [64].
Molecular docking of curcumin to the E. coli FtsZ structure suggests binding occurs within
the GTPase catalytic pocket, with the curcumin molecule making key contacts with Gly20,
Gly21, Gly109, Thr132, and Asn165 and residues at the sites of Gly21, Gly22, Gly72, Thr133,
and Asn166 in B. subtilis FtsZ (Figure 4) [66]. More recently, Morão et al., showed that a
molecular simplified version of curcumin where its β-diketone moiety had been substi-
tuted with a monocarbonyl group could disrupt the divisional septum of B. subtilis without
exerting a direct inhibition of FtsZ. These findings suggest that the simplified curcumin
exerts its antibacterial action largely through membrane permeabilization, with disruption
of the membrane potential necessary for FtsZ intra-cellular localization [23].
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Figure 4. Curcumin inhibits the bacterial division by blocking FtsZ assembly. (A), working model of
curcumin for the inhibition of bacterial division. (B), curcumin can activate the activity of GTP and
interact with FtsZ, blocking the FtsZ assembly [65]. (C,D), the interaction site of FtsZ with curcumin
in E. coli and B. subtilis strains, respectively [66].

4.4. Induction of Oxidative Stress and Programmed Cell Death

Traditionally, programmed cell death (PCD) is an important biological and patholog-
ical process in the life-cycle of eukaryotic multicellular organisms [67]. Similarly, mono-
cellular organism such as bacteria can activate signaling pathways, leading to cell death
within a colony. In bacteria, many factors, including stress response, developmental
phase, genetic transformation, and biofilm formation contribute to the induction of bacte-
rial programmed apoptotic-like death processes [67]. The physiological and biochemical
hallmarks of apoptotic-like death in terminally stressed E. coli involve the production
of reactive oxygen species (ROS), chromosomal condensation, extracellular exposure of
phosphatidylserine, DNA fragmentation, membrane potential (∆Ψ) dissipation, and loss of
structural integrity, all markers of eukaryotic apoptosis [68].
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ROS-mediated cell death results from the damaging effects of the superoxide anions
(O2

•−), hydrogen peroxide (H2O2), and hydroxyl radicals (OH•) on bacterial cellular
components (DNA, membrane lipids, and proteins) [69]. Curcumin at MIC concentrations
induces the production of ROS in bacterial cells, resulting in an apoptosis-like response
in E. coli, including the accumulation of ROS, membrane depolarization, and increase
of Ca2+ influx [50]. At the genetic level, curcumin induced the upregulation of RecA
protein expression, which mediates apoptotic-like death processes in bacteria [50]. In line
with this finding, E. coli RecA knock-outs displayed curcumin resistance, consolidating
the conclusion that curcumin-induced cell death in E. coli is dependent on apoptotic
pathways [50]. In addition, curcumin has been shown to downregulate the expression
of genes that mediate the SOS response in bacteria, which rescues the cell from DNA
damage and is involved in biofilm formation and division [68]. LexA is a DNA-binding
transcriptional repressor that regulates genes involved in the SOS response [70]. Recent
studies indicated that curcumin inhibited the SOS responses caused by UV-induced DNA
damage in Salmonella typhimurium and E. coli by suppressing the expression of LexA. The
inhibitory effects of curcumin on biofilm formation and cell division mentioned above
are likely associated with its inhibitory effects on the bacterial SOS response. Curcumin
has also been shown to directly interact with bacterial DNA to produce a bacteriostatic
effect [50]. We have provided an overview of curcumin-induced bacterial cell death in
Figure 5.
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Figure 5. Curcumin induces oxidative stress, DNA damage, and apoptotic-like death in bacterial
cells. Stress caused by drugs or other factors in bacterial cells could induce the production of ROS
or DNA damage, following by activating the expression of RecA, DNA fragmentation, decreased
membrane potential (∆Ψ), and formation of filamentation, finally leading to cell death. In response
to this stress, the SOS response network is usually activated and plays a protective role in bacterial
survival [68].

4.5. Phototoxicity

Curcumin absorbs blue light in the range of 455–460 nm and can be employed as an
effective photosensitizer to promote the success of photodynamic processing [19]. This
photosensitizing property has been exploited to induce phototoxicity in Gram-positive
and -negative bacterial cells under blue light irradiation [50,71]. It is noteworthy to men-
tion that Gram-positive bacteria are known to be more sensitive and are easily killed by
photosensitizers compared to Gram-negative bacteria [50]. This difference may be related
to the more robust outer membrane structure of Gram-negative bacteria compared to the
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more porous cytoplasmic membrane structure of Gram-positive cells in which allowed
photosensitizers more easily penetrate into cells [72]. Recently, it was found that ethylene
diamine tetraacetic acid (EDTA), which permeabilizes the cell membrane, could signifi-
cantly enhance the antibacterial effect of blue light-activated curcumin in S. aureus and
S. mutans cells [73].

In the past 10 years, researchers have developed a working understanding of the
molecular mechanisms of curcumin-induced phototoxicity, although the precise molecular
mechanism is still unclear [19]. It has been demonstrated that the antibacterial effect of blue
light-activated curcumin involves an autoxidation to generate ROS, which in turn damage
lipids, protein, and DNA, finally leading to bacterial cell death [50]. Jiang et al., showed that
blue light-activated curcumin could significantly increase the levels of intracellular ROS
and membrane damage in S. aureus [74]. A recent study showed that curcumin-mediated
phototoxicity involves the direct induction of DNA damage and protein degradation,
eradication of biofilms and inhibition of virulence genes (e.g., inlA, hlyA, and plcA) in
Listeria monocytogenes [75]. Chen et al., showed that the process of curcumin-mediated
phototoxicity is temperature dependent [76]. Very recently, it was reported that curcumin
could be employed as a coating on the surface of the endotracheal tube, (which was
considered the primary cause of ventilator-associated pneumonia), capable of a robust
photodynamic inactivation under blue light activation (at 450 nm) against E. coli, S. aureus,
and P. aeruginosa [77]. This photodynamic activity of curcumin provided a novel application
in avoiding ventilator-associated pneumonia in patients.

4.6. Curcumin Perturbs Bacterial Cell Metabolism

Many antibiotics, such as β-lactams, aminoglycosides, and quinolones, have been
widely used in clinical practice, and the primary mechanisms of action have been well-
established [1]. However, more recent metabolomics studies from high-throughput tech-
nologies have indicated that, in addition to these distinct mechanisms, subsequent metabolic
changes that occur downstream of the interaction of the antibiotics with their primary
targets also play an important role in their antibacterial-killing mechanism [78]. It has been
reported that L-serine supplementation could sensitize E. coli to gentamicin by promoting
the production of NADH and ROS production, which also mediated the bacterial killing of
curcumin [79]. Adeyemi et al., reported that curcumin treatment of S. aureus impacts the
levels of kynurenine, nitric oxide, and total thiol levels, indicating that perturbations in the
aforementioned metabiotic pathways contribute to the antibacterial killing mechanism of
curcumin [80]. The activation of the kynurenine pathway likely produces a decrease in the
cellular L-tryptophan pool available to support bacterial growth, thereby starving bacterial
cells of an essential nutrient [80].

4.7. Curcumin Regulates Intracellular Bacterial Proliferation

Curcumin is a powerful immune-regulator, with a proven ability to modulate host
defenses against intracellular bacterial infections [81]. Marathe et al., showed that pre-
treatment of macrophages with curcumin attenuated Listeria monocytogenes and Shigella
flexneri intracellular infection, albeit the pre-treatment had the opposite effect on infection
by Salmonella enterica serovar Typhimurium, S. aureus, and Yersinia enterocolitica, which were
aggravated by curcumin [81]. This differential effect may be attributed to the membrane-
stabilizing effect of curcumin wherein S. enterica serovar Typhimurium, S. aureus, and Y.
enterocolitica have acquired machinery that inhibits the fusion of the pathogen-containing
vacuole with lysosomes [82]. By contrast, Listeria monocytogenes and S. flexneri in the host
cells can escape into the cytosol and prevent lysosomal degradation [83]. Recent studies also
indicated that curcumin can protect human macrophages against Mycobacterium tuberculosis
infection by inducing apoptosis, autophagy, and the activation of nuclear factor-kappa
B (NF-κB) [84]. To date, the key targets of curcumin in the host that governs the growth
and proliferation of intracellular pathogens are still unclear, and the precise molecular
mechanisms require further investigation.
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5. Synergistic Antibacterial Effects of Curcumin with Antibacterial or
Non-Antibacterial Agents

Synergistic antibacterial effects between antibiotics are strictly defined microbiological
phenomena, requiring two bioactive agents to exhibit a greater effect in bacterial killing
than the added effects of each constituent [85].

Several studies have shown that curcumin exhibits synergistic antibacterial effects
when combined with traditional antibacterial agents (e.g., polymyxins, meropenem, oxacillin,
tetracycline, ciprofloxacin, ampicillin, norfloxacin), natural products (e.g., epigallocatechin
gallate, berberine) or metals (e.g., Cu2+, Zn2+, and Fe3+) [86–89]. In the proceeding discus-
sion, we summarized these potential combinations and discussed their various mechanisms
of action.

5.1. Synergistic Effect between Curcumin and Antibacterial Agents
5.1.1. Curcumin and Polypeptide Antibacterial Drugs

In the clinic, vancomycin and polymyxins (including polymyxin B and E, also called
colistin) are commonly employed as antibacterial drugs against MDR Gram-negative and
Gram-positive bacteria, respectively [90]. The emergence of polymyxin- and vancomycin-
resistant bacteria has posed a huge challenge and medical burden.

The well-accepted primary mechanism of action of polymyxins is through spatially
displacing the cations (e.g., Ca2+ and Mg2+) in the Gram-negative outer membrane and
binding to the lipid A component of the lipopolysaccharide (LPS), subsequently disrupt-
ing the stability of both the outer and inner membranes, ultimately leading to bacterial
cell lysis [91]. Recent studies also indicated that polymyxins can also induce the produc-
tion of excessive ROS (i.e., OH•) in bacterial cells, leading to oxidative stress-dependent
cell death [92]. Polymyxin B in combination with curcumin showed a marked synergetic
effect against polymyxin-susceptible and -resistant Gram-positive (e.g., Enterococcus, S.
aureus, and Streptococcus) and Gram-negative (e.g., A. baumannii, E. coli, P. aeruginosa,
and S. maltophilia) bacterial isolates associated isolated from traumatic wound infec-
tions [32]. This synergistic effect may be due to curcumin’s ability to permeabilize the
outer membrane, which facilitates the entry of the secondary agent to enter the bacterial
cells and cause cell death [24]. In addition, this synergistic effect could be attributed to
the inhibitory effect of curcumin on the activities of efflux pumps [9,24]. Curcumin and
polymyxin combination treatment for bacterial infections may have another advantage,
i.e., significant improvement in the therapeutic index of polymyxins by additionally
inhibiting polymyxin-induced cytotoxicity, neurotoxicity, and nephrotoxicity, which is
beyond antibacterial activity [93]. This combination may have a powerful application
in clinical practice and warrants clinical trials.

Vancomycin is a glycopeptide antibiotic that inhibits a specific step in the synthesis
of the peptidoglycan layer in Gram-positive bacteria. It has been reported that curcumin
combined with vancomycin showed a synergistic effect against MDR clinical K. pneumoniae
isolates [94]. This potential mechanism may be dependent on the synergistic effect of
cell membrane permeability [94]. Moreover, curcumin could also attenuate vancomycin-
induced nephrotoxicity by inhibiting oxidative stress and the inflammation response in a
rat model [94].

5.1.2. Curcumin and β- Lactam Antibacterial Drugs

β-lactam antibiotics are the most widely used antibacterial agents worldwide. β-
lactamases confer significant antibiotic resistance to their bacterial hosts by hydrolyzing
the amide bond of the four-membered β-lactam ring of β-lactam antibiotics, which include
four classes of drugs, i.e., penams (penicillins), cephems (cephalosporins), monobactams,
and carbapenems [95]. It has reported that a curcumin and meropenem combination dis-
played markedly synergistic or additive effects against antibiotic-susceptible and -resistant
Gram-positive (E. faecalis) and carbapenem-associated MDR A. baumannii, P. aeruginosa, and
K. pneumoniae isolates via the observation of MICs [86]. A report by Yadav et al., showed
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that a water-soluble curcumin derivative could reverse meropenem resistance by targeting
the activity of carbapenemases and the AcrAB-TolC multidrug efflux pump system [96].
Mun et al. showed that a curcumin combination with oxacillin and ampicillin exhibited
a marked synergistic effect against S. aureus ATCC (American Type Culture Collection)
25,923 (methicillin-sensitive strain) [97]. Similarly, in another study, BDMC in combi-
nation with oxacillin showed a marked synergistic effect against S. aureus ATCC 33,591
(methicillin-resistant strain) and clinical MRSA isolates [98]. The potential mechanism may
be dependent on the expression of the mecA gene that encodes penicillin-binding protein
2a (PBP2a), which governs the resistance of MRSA isolates to β-lactam antibiotics [98].
Sasidharan et al. found that curcumin in combination with third-generation cephalosporins
(e.g., cefaclor, cefodizime, and cefotaxime) showed marked synergistic effect against S.
aureus, B. subtilis, and E. coli, which are also associated with infectious diarrhea [87]. There
was no increased toxic effects between these combinations [87]. These results indicated
curcumin and cephalosporin combination are promising therapeutic options for infectious
diarrhea disease.

5.1.3. Curcumin and Aminoglycoside Antibacterial Drugs

Aminoglycosides are potent, broad-spectrum antibiotics that act through inhibition
of protein synthesis by irreversibly binding to 30S ribosomal subunits [99]. A report by
Teow et al., stated that curcumin in combination with two aminoglycoside antibiotics
(e.g., amikacin and gentamicin) showed a powerful synergistic effect against S. aureus
strains, and these synergistic effects were stronger than that of curcumin in combination
with ciprofloxacin [100]. Notably, this difference in synergistic effect may be related to
the difference in the primary targets between quinolone and aminoglycosides against
bacteria [101]. The potential action mechanism is related to the inhibition of biofilm
formation, which was evident by the significant inhibition of their combination of the
swarming motilities and the mRNA expression of several key QS regulatory genes (e.g.,
lasI, lasR, rhlI, and rhlR) [100]. In addition, it has been reported that curcumin can also
attenuate gentamicin-induced nephrotoxicity and neurotoxicity by inhibiting oxidative
stress and cell apoptosis in a rat model [102]. Therefore, the combination between curcumin
and aminoglycosides can not only improve the antibacterial effectiveness but can also
decrease the toxic effects of gentamicin.

5.1.4. Curcumin and Macrolide Antibacterial Drugs

Azithromycin is a macrolide antibiotic, which can exhibit a good antibacterial effect
by inhibiting bacterial protein synthesis, quorum-sensing, and the formation of biofilms.
In clinical practice, azithromycin has been used in treating respiratory, urogenital, dermal,
and other bacterial infections [103]. Bahari et al., found that curcumin in combination with
azithromycin showed a synergistic effect against P. aeruginosa PAO1, and the value of FICI
was 0.25 [100]. The potential action mechanism may be similar to the above-mentioned
combination of curcumin and gentamicin [100]. Erythromycin is in a class of medications
called macrolide antibiotics. The action mechanism involves the blockade of bacterial
growth. In a rat model, oral administration of curcumin (50 mg/kg) and erythromycin
(20 mg/kg) significantly inhibited the growth of MRSA isolates in bone tissue compared
to either administered alone [11]. The curcumin and erythromycin combination also
significantly alleviated bone infection and the inflammatory response [11].

5.1.5. Curcumin and Quinolone Antibacterial Drugs

There was a marked synergistic effect in curcumin combination with two quinolone
antibiotics (e.g., ciprofloxacin and norfloxacin) against the S. aureus ATCC 33,591 strain and
clinical MRSA isolates [97]. On the contrary, curcumin treatment reduced the antimicrobial
activity of ciprofloxacin against Salmonella typhimurium and Salmonella typhi [97]. This may
be related to the antioxidant property of curcumin and its inhibition of the expression of
interferon γ (IFNγ) in vitro and in a mouse model [97].
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5.2. Curcumin and Natural Products
5.2.1. Curcumin and Berberine

Berberine is a benzylisoquinoline alkaloid compound and has antimicrobial properties
against both Gram-negative and Gram-positive bacteria [104]. Berberine has been widely
used in traditional Chinese and native American medicines. FtsZ protein is an important
target of berberine in inhibiting bacterial division [105]. Interesting, co-encapsulation of
berberine and curcumin in liposomes decreased their MICs against MRSA by 87% and 96%,
respectively, as compared to their free forms, with an FICI of 0.13, indicating a synergistic
effect [88]. However, the synergistic effect in their combination in native form was not
detected. In addition, co-treatment of berberine and curcumin in liposomes also signifi-
cantly improved intracellular infection and the inflammation response in macrophages
following MRSA infection. Mechanically, the synergistic effect between curcumin and
berberine is partly dependent on the inhibition of biofilm formation and improvement of
their solubilities [88]. Additionally, similar to curcumin, berberine is also an FtsZ inhibitor
and inhibits bacterial cell division [104]. Therefore, this synergistic effect between curcumin
and berberine may also be partly dependent on the inhibition of FtsZ assembly.

5.2.2. Curcumin and Epigallocatechin Gallate

Epigallocatechin-3-gallate (EGCG) is a polyphenol found in green tea, which, sim-
ilar to curcumin, has been linked with health benefits and has significant antimicrobial
activity against some MDR pathogens, including MDR S. maltophilia, A. baumannii, and S.
aureus [106]. In vitro, it has been found that curcumin in combination with EGCG exhibited
a marked synergistic effect against MDR A. baumannii [107]. A possible explanation for
the synergy between curcumin and EGCG could be disruption of the outer membrane and
facilitation of curcumin to enter bacterial cells [108]. In another study, it was suggested that
inhibition of acylhomoserine lactone-mediated biofilm formation may contribute to this
synergistic effect, and investigations of precise mechanisms are still required [109].

5.3. Curcumin and Metals

Many metals have been used as antimicrobial agents due to the antiquity and potential
molecular mechanism involved in oxidative stress, protein dysfunction or membrane
damage in bacterial cells [110]. A copper (II) sulfate pentahydrate–curcumin complex (Cu-
CUR), iron (III) nitrate nonahydrate–curcumin complex (Fe-CUR), and zinc (II) chloride–
curcumin complex (Zn-CUR) all significantly inhibited cell growth in P. aeruginosa PAO1
compared to curcumin treatment alone [111,112]. Furthermore, the authors found that the
Cu–CUR complex significantly inhibited the formation of the biofilm and the production
of QS-related virulence factors of P. aeruginosa PAO1 [89]. Consistently, the synergistic
activity of curcumin and silver/copper nanoparticles (NPs) was detected against the cell
growth and biofilm formation of S. aureus and P. aeruginosa compared to curcumin, AgNPs
or CuNPs alone [113]. These marked synergistic effects may be related to the improvement
of curcumin or intracellular uptake of curcumin [114].

6. Safety of Curcumin

Curcumin has been proven to be safe and tolerable across various animal studies as
well as clinical trials [115–117]. Orally administered curcumin at the dose of 50, 250, 480, and
1300 mg/kg body weight for 13 weeks did not exhibit acute toxicity in rats [118]. However,
some abnormal effects including increased liver weight, stained fur, discolored faces, and
hyperplasia of mucosal epithelium in the cecum and colon were observed in animals
from the highest dosage group (2600 mg/kg body weight). Orally administered curcumin
at 100, 200 or 400 mg/kg/day has been shown to effectively inhibit acute liver damage,
nephrotoxicity, and nerve damage caused by colistin, aflatoxin B1, carbon tetrachloride, and
cadmium [21,119–122] in rat or mouse models. In an infection model, oral administration
of curcumin at 25 or 50 mg/kg body weight for two weeks could significantly ameliorate
the H. pylori infection-induced inflammation response in gastric tissues of mice [123]. A
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phase I human trial showed that oral administration of curcumin in some cancer patients at
a dose of 8 g/day for three months did not show any adverse effects, albeit some adverse
effects were detected when the patients were administered a higher dose of 12 g/day [124].
The results of a 4-month phase I clinical trial in cancer patients showed that oral curcumin
at a dose of 3.6 g/day significantly inhibited levels of serum prostaglandin E 2 (PGE2)
production, a biomarker of the inflammatory response. Notably, no adverse effects were
reported in the curcumin treatment cohort [125]. Consistently, a triple blinded clinical trial
showed that a combination of 500 mg curcumin (equal to 8.33 mg/kg body weight) and
40 mg famotidine daily for one month significantly decreased the rate of H. pylori infection
in patients [126]. Collectively, these studies indicated that the therapeutic dose of curcumin
is far lower than the dosages at which toxicity is observed, thus giving curcumin a good
therapeutic index.

7. Nano-Formulations of Curcumin

Curcumin has low water solubility (about 11 ng/mL), which results in its poor bioavail-
ability under oral consumption [127]. Additionally, curcumin degrades rapidly, resulting
in low concentrations in the blood or organs of the body, making it difficult to reach
the effective concentration to treat the bacterial infection in the liver, lungs, or other or-
gans [128]. To overcome this insufficiency of bioavailability, scientists have developed vari-
ous nan-formulations of curcumin, such as lipid-based nanocarriers (e.g., liposomes, solid
lipid nanoparticles, nanostructured lipid carriers, and nano-emulsion), biopolymers (e.g.,
nanocomposite, polymeric nanoparticles, hydrogel, and polymeric micelles), technique-
based nanoparticles (e.g., spray-dried nano-formulation of curcumin, and nanofibers), and
other miscellaneous types of nanocurcumin (curcumin nanocrystals, quantum dots, and
graphene oxide) [18,129–132]. In addition, nanomaterial-based combinations of curcumin
with other anti-bacterial agents that are effective against bacteria were also developed.
Most of them are used in cancer therapy [133]. Here, we summarized the main types of
nanocurcumin that are applied due to their antibacterial effect, as shown in Table 3. Their
special characteristics and antibacterial activities have been well-described and addressed
(see Sharifi et al.’s review paper) [132]. It is notable that there was no clinical trial to test the
effectiveness of these various nano-formulations of curcumin, although they exhibited a
better antibacterial effect in vitro and animal experiments by improving the solubility and
biocompatibility. Therefore, more clinical trials are still required.

In addition, beyond the development of nano-formulations, other types of new
formulations (e.g., inclusion technology, solid dispersion technology, microspheres, and
microcapsules) were also developed to improve the solubility and bioavailability of
curcumin. For example, Yaday et al. found that various cyclodextrin (CD) complexes of
curcumin could enhance the solubility of curcumin > 100-fold compared with curcumin
per se in water [134]. However, similar to the nano-formulations, the development of
these new formulations of curcumin remains at the laboratory research stage, and there
are no necessary clinical studies.

Table 3. Nano-formulations of curcumin and their antibacterial effects.

Type (or Name Present in
Published Literatures)

Preparation and
Characterizations

Improvement in Antibacterial Activity
(Accessed by MICs or Biofilm Formation) Reference

Curcumin nanoparticles
(curc-np)

Curcumin was encapsulated
into a silane-hydrogel

nanoparticle vehicle. Average
hydrodynamic diameter at the

range of 222 ± 14 nm.

In vitro, curc-np significantly inhibited the
growth of MRSA and P. aeruginosa isolates

compared to native curcumin. In a mouse model:
significantly reduced bacterial burden in

MRSA-infected burn wounds compared to
native curcumin administration.

[29]
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Table 3. Cont.

Type (or Name Present in
Published Literatures)

Preparation and
Characterizations

Improvement in Antibacterial Activity
(Accessed by MICs or Biofilm Formation) Reference

Nanoparticles of curcumin
(nanocurcumin)

A wet-milling technique was
used to make the particle size

of curcumin 2–40 nm, and
nanocurcumin was freely

dispersible in water.

The MICs of nanocurcumin in water were
100 µg/mL, 75 µg/mL, 250 µg/mL, 200 µg/mL,
350 µg/mL against S. aureus, B. subtilis, E. coli, P.

aeruginosa, A. niger, much higher than native
curcumin in DMSO (the corresponding MICs

were 150, 100, 300, 250 and 400 µg/mL).

[28,130]

Microcapsule curcumin

Microcapsule curcumin could
be prepared with gelatin and

porous starch as a wall system
by a spray-drying method.
The size was not reported.

The MICs were 250, 250, 62.5, 125, 125, 15,7, 31.3
and 31.3 µg/mL against E.coli, Yersinia

enterocolitica, S. aureus, B. subtilis, B. cereus, A.
niger, P. notatum, and S. cerevisiae. There was no

comparation with native curcumin.

[135]

Sodium carboxylmethyl
cellulose silver nanocomposite

films-curcumin
(SCMC-SNCF-CM)

SCMC-SNCF were developed
from sodium carboxylmethyl

cellulose (SCMC), N,
N1-methylenebisacrylamide

(MBA), and silver nitrate
solution. Curcumin loading

into SCMC–SNCF was
achieved by a diffusion

mechanism. The size was not
reported.

SCMC-SNCF-CM composite showed 86%
inhibition growth against E. coli. There was no

comparation with native curcumin.
[136]

Curcumin Quantum Dots
(CurQDs)

A newer two-step, bottom-up
wet milling approach was
used to prepare curcumin

quantum dots (CurQDs), and
acetone was used as a primary

solvent. Average size was
about 2.5 nm

The MIC of CurQDs significantly decreased to
the range of 1.96–15.65 µg/mL from

175–300 µg/mL for native curcumin against all
tested bacteria, including S. aureus, MRSA, E.

faecalis, K. Pneumoniae, and P. aeruginosa

[137]

Poly-(lactic-co-glycolic acid)
Curcumin

nanocapsules(PLGA-CUR-
NCs)

Curcumin (CUR)
nanocapsules (NCs) were
prepared by the solvent

displacement method with
some modifications. The

detailed information has been
described in a published

paper. The solubility in water
increased to 591–928 µg/mL,

and its solubility could be
regulated by changes in the oil

and water ratio. The sizes
were in the range of

100–1000 nm, dependent on
the ratio of glucose.

The MICs of PLGA-CUR-NCs against E. coli,
Salmonella, and P. aeruginosa decreased from

300 µg/mL to 100 µg/mL, and against S. aureus,
B. sonorensis, and B. licheniformis decreased from

100 µg/mL to 75 µg/mL.

[138]

Nano-sized particles of
curcumin

Colloids of curcumin
nanoparticles with an average

diameter of 20–40 nm were
prepared in accordance with

the method (a wet-milling
technique).

Nano-curcumin could enhance the inhibition of
biofilm formation in P. aeruginosa. [139]
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Table 3. Cont.

Type (or Name Present in
Published Literatures)

Preparation and
Characterizations

Improvement in Antibacterial Activity
(Accessed by MICs or Biofilm Formation) Reference

Cur/PVA/collagen composite
films (CPCF)

A composite film (CPCF)
containing curcumin

nanoparticles, collagen, and
polyvinyl alcohol (PVA). The
diameter and polydispersity

of the Cur/poly(ε-
caprolactone)-poly (ethylene
glycol)-poly(ε-caprolactone)

PCEC nanoparticles were
43.63 ± 13.22 nm and

0.334 ± 0.403 nm,
respectively.

There was no marked change in the MICs. The
cytotoxicity of CPCF significantly decreased in

human skin fibroblasts compared to native
curcumin.

[140]

Curcumin-chitosan-zinc oxide
(CCZ)

Curcumin and chitosan were
layered on a hexagonal ZnO,

and the particles were sized to
about 48 ± 2 nm.

Increased antibacterial activity of the CCZ
against MRSA and E. coli compared to native

curcumin or ZnO.
[141]

Pectin/curcumin/sulfur
nanoparticles films

pH-responsive pectin-based
functional films were

prepared by incorporating
curcumin and sulfur
nanoparticles (SNP).

Curcumin and SNP were
uniformly dispersed in the
pectin to form a composite

film.

The composite film exhibited enhanced
inhibitory effect against E. coli and L.

monocytogenes, with enhanced strong antioxidant
activity.

[131]

8. Conclusions and Perspectives

In the past decades, the potential molecular mechanisms of curcumin’s antibacte-
rial activities have been extensively studied, involving the disruption of the bacterial
membrane, the inhibition of the production of bacterial virulence factors and bacterial
biofilm formation, induction of oxidative stress leading to programmed cell death, bac-
terial metabolic disturbance, and phototoxicity. These characteristics also contribute to
explain how curcumin acts a broad-spectrum antibacterial adjuvant, which was evidenced
by the markedly additively or synergistically effect with various conventional antibiotics
or non-antibiotic compounds, such as antibacterial agents, natural products, and metals.
Animal experiments and human clinical trials reveal that curcumin has high safety. How-
ever, unlike curcumin as a chemotherapy drug in cancer therapy, curcumin as a potential
antibacterial therapy still has many challenges: (1) the critical targets of curcumin alone
or combination in bacteria and precise molecular mechanisms are poorly understood;
(2) the poor solubility, low bioavailability, and rapid degradation in humans or animals
when curcumin was consumed orally; (3) no effective clinical trials. In order to overcome the
poor solubility of curcumin, scientists have developed various curcumin nano-formulations
and they indeed exhibited better solubility and antibacterial activity compared to native
curcumin. However, there is a lack of evidence-based randomized investigation especially
exploring the therapeutic roles of the nanocarrier-based delivery systems in enhancing
anti-bacterial actions; therefore, much needs to be explored.
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