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Osteosarcoma (OS) is the most common type of primary bone tumor in children and adults. Dangshen (Codonopsis pilosula) is a
traditional Chinese medicine commonly used in the treatment of OS worldwide. However, the molecular mechanisms of
Dangshen in OS remain unclear. Hence, in this study, we aimed to systematically explore the underlyingmechanisms of Dangshen
in the treatment of OS. Our study adopted a network pharmacology approach, focusing on the identification of active ingredients,
drug target prediction, gene collection, gene ontology (GO) enrichment, Kyoto Encyclopedia of Genes and Genomes (KEGG)
enrichment, and other network tools. )e network analysis identified 15 active compounds in Dangshen that were linked to 48
possible therapeutic targets related to OS.)e results of the gene enrichment analysis show that Dangshen produces a therapeutic
effect in OS likely by regulating multiple pathways associated with DNA damage, cell proliferation, apoptosis, invasion, and
migration. Based on the network pharmacology approach, we successfully predicted the active compounds and their respective
targets. In addition, we illustrated the molecular mechanisms that mediate the therapeutic effect of Dangshen in OS. )ese
findings may aid in the development of novel targeted therapies for OS in the future.

1. Introduction

Osteosarcoma (OS) is the most common type of cancer of
the bones. It is a malignant tumor that primarily affects the
long bones (e.g., legs), but it can also start in other bones. OS
is rarely diagnosed in patients under five years of age, and the
bimodal age-incidence curve peaks during the second de-
cade of life (10–20 years old) and late adulthood (>40 years
old) [1, 2]. As of 2019, approximately 560 children and
adolescents are affected each year in the United States [1, 3],
with a global incidence of 3.4 cases per one million people.
Most OS patients present with metastatic disease, which
contributes to its high morbidity and mortality rates
worldwide. As of 2020, the standard treatment for OS is
systemic chemotherapy [4], as the tumor is often resistant to
radiation therapy. Surgical resection may be an option for

patients diagnosed with locally noninvasive disease [5]. Most
patients undergo multifaceted treatments that include
preoperative chemotherapy, postoperative chemotherapy,
surgical resection, and radiation therapy in rare cases [6].
Detectable metastases are present in only 20% of patients,
andmost of the remaining 80% of patients have undetectable
micrometastases [7]. )is makes it challenging to monitor
disease progression and treatment response, which is why
many physicians rely on long-term systemic chemotherapy
[8]. However, the systemic chemotherapeutics needed to
control the disease have serious adverse effects that further
hinder the effective treatment of patients in the clinic [9].

In recent years, some hospitals have assessed the efficacy
of traditional Chinese medicines as long-term treatments for
OS. In some cases, orally administered Shenqi could de-
crease the growth, metastasis, and the number of
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chemotherapy-related side effects significantly in patients,
especially those who received systemic chemotherapy
[10, 11]. )e major component of the Shenqi oral prepa-
ration is Dangshen, also known as (Codonopsis pilosula).
Dangshen belongs to the family of Campanulaceae, a pre-
cious plant that grows at altitudes of 2000meters in southern
China [12]. )e dry roots of this plant have been used for
thousands of years in traditional Chinesemedicine to treat qi
and blood deficiencies, the loss of appetite, respiratory
symptoms (e.g., cough, asthma, and shortness of breath),
and cardiovascular problems (e.g., palpitations) [13].
Dangshen displays a variety of pharmacological effects on
the circulatory system, immune system, digestive system,
endocrine system, and reproductive system [14]. Dangshen
has been shown to inhibit cancer growth in S180 tumor-
bearing mice, while enhancing the immune response, in-
creasing spleen weight, promoting lymphocyte proliferation,
and increasing natural killer (NK) cell activity [15, 16].

DNA damaging therapies are widely used as trigger
molecules to study the signaling pathways of OS [17]. )ere
has been a remarkable undertaking of investigations into the
different signaling pathways involved in the pathogenesis of
OS. Many signaling pathways, such as Wnt, PI3K/AKT, and
JAK/STAT, reflect their specific roles in OS [18]. However,
conventional research methods have been unable to fully
elucidate the mechanisms of action. Nevertheless, the in-
tegration of bioinformatics and network pharmacology
provides a practical approach to explore and verify the
mechanisms of action [19]. Network pharmacology can
systematically reveal the active components in drug mole-
cules. In addition, network pharmacology can be used to
predict the relationship between drug components and gene
targets [20]. )erefore, in this study, we aimed to use net-
work pharmacology to uncover the mechanisms by which
Dangshen produces therapeutic effects in patients with OS,
along with the associated signaling pathways.

2. Materials and Methods

2.1. Chemical Compounds in Dangshen. A flowchart of the
study design is shown in Figure 1. )e components of
Dangshen were searched in the Traditional Chinese Medi-
cine Systems Pharmacology (TCMSP) (http://tcmspw.com/
tcmsp.php) database [21] and Traditional ChineseMedicines
Integrated Database (TCMID) (http://www.megabionet.
org/tcmid/) [22]. TCMSP provides comprehensive infor-
mation about components in Chinese herbs, while TCMID
provides information on all aspects of traditional Chinese
medicines, including herbs and herbal ingredients. Oral
bioavailability (OB), which is the percentage of an orally
administered drug that reaches the systemic circulation,
reflects the degree of absorption and utilization of drugs in
the body [23]. )e drug-likeness (DL) value reflects the
structural similarity between the compound and drug
molecule, so the DL compounds are more likely to display
suitable pharmacodynamic and pharmacokinetic properties
[24]. )erefore, we selected the candidate compounds based
on OB and DL properties. As suggested by the TCMSP
database, OB≥ 30% and DL≥ 0.18 were used as the

screening criteria, and the compounds whose OB≥ 30% and
DL≥ 0.18 were selected for subsequent experiments [25].We
searched the oral bioavailability of all the compounds of
Dangshen on PubMed. If the OB data of some compounds
were previously reported in related experiments, the real-
world data of OB were used instead of silicon data, and the
highest reported OB value was adopted. Otherwise, silicon
data were used for OB. )e TCMSP database calculated OB
values by using OBioavail1.1. )is model shows good po-
tential in facilitating the prediction of oral bioavailability and
can be applied in drug design.

2.2. Compounds of Dangshen and �eir Targets. PubChem
(https://pubchem.ncbi.nlm.nih.gov/) is an open chemistry
database of the National Institutes of Health (NIH) [26].)is
database serves as an important source of chemical infor-
mation, including chemical structures, biological activities,
chemical and physical properties, and safety [27]. We im-
ported the compounds filtered from Dangshen into Pub-
Chem and obtained their 3Dmolecular structure files in SDF
format. Structural information is necessary for predicting
the targets of compounds, so the compounds without precise
structural details were removed from the analysis.

PharmMapper (http://www.lilab-ecust.cn/pharmm
apper/check.html) is a freely accessed web server that uses
the pharmacophore mapping approach to identify potential
small-molecule targets [28, 29]. We imported the 3D
structural files in SDF format into PharmMapper and se-
lected the pharmacophore model with a pKd value≥ 6.0. In
our study, the top matched 50 targets were selected as the
potential targets of each compound.

2.3. Collection of Gene Targets in OS. )e human genes as-
sociated with OS were gathered from OMIM (Online
Mendelian Inheritance in Man, https://omim.org/) and
GeneCards (https://www.genecards.org/). OMIM is an au-
thoritative and comprehensive database of human genes and
genetic phenotypes [30], while GeneCards is an integrative
database that provides information on all predicted and
annotated human genes [31]. )e search term “osteosar-
coma” was used to retrieve the OS targets from both
databases.

2.4.�erapeutic Targets of Dangshen in OS. We screened the
active compounds of Dangshen and obtained their target
genes. We also gathered the OS-related genes. )e potential
therapeutic targets were identified from the shared genes
mentioned above.

2.5. Protein-Protein Interaction (PPI) Data. )e therapeutic
targets were imported into the STRING database to obtain
their interaction relationship. STRING (https://string-db.
org/, version 11.0) is a database that contains known and
predicted protein-protein interactions, and it collects the
information using bioinformatics strategies [32].)e species
were limited to “Homo sapiens,” and the PPIs with confi-
dence scores >0.4 were selected for this study.
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2.6. Target Organs. Data about the organ targets were col-
lected from the BioGPS (http://biogps.org) database.
BioGPS is an extensible and customizable genetic annotation
portal that enables researchers to acquire distributed genetic
annotation resources [33]. To reveal the underlying mech-
anisms of Dangshen in OS, median gene expression levels
were used as the standard to screen for organs with high
expression of the therapeutic targets.

2.7. Network Construction. )e network of active com-
pounds and therapeutic targets was constructed by linking
the compounds and therapeutic targets to understand the
complex interactions between the compounds of Dangshen
and the therapeutic targets of OS. )e network of thera-
peutic targets and organs was established by linking ther-
apeutic targets and their distribution in organs to clarify the
relationship between the therapeutic targets and organs with

�erapeutic target’s
PPI network

�erapeutic target-
organs network

Network of active
compound-therapeutic

targetes

GO enrichment analysis KEGG enrichment analysis

Figure 1: Schematic illustration showing the network pharmacology study of Dangshen (Codonopsis pilosula) for the treatment of
osteosarcoma (OS).
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increased expression of the target. )e therapeutic targets’
PPI network was built by linking the therapeutic targets to
their interacting targets. Next, Cytoscape version 3.7.2
(http://www.cytoscape.org/) was used to present the net-
works mentioned above, which is a software program for
network visualization [34]. Lastly, NetworkAnalyzer [35]
was used to calculate three topological parameters of each
node in the network, including the degree, betweenness
centrality, and closeness centrality [36].

2.8. GO and KEGG Pathway Enrichment Analysis. To learn
more about the role of therapeutic targets involved in the
biological process (BP), cell component (CC), and molecular
function (MF), we used the Gene Ontology (GO) database
(http://geneontology.org/) to clarify the possible biological
mechanisms [37]. )e Kyoto Encyclopedia of Genes and
Genomes (KEGG) (https://www.kegg.jp/) is a database for
extracting biological information about functional classifi-
cation, annotation, and enriched pathways of various genes
[38]. In this study, we used an R-package-Bioconductor
clusterProfiler to perform the GO and KEGG enrichment
analysis. )e R-package-Bioconductor clusterProfiler is
widely used to automate the biological term classification
and enrichment analysis of gene clusters [39].

3. Results

3.1. Chemical Compounds of Dangshen. Using the keyword
search in TCMSP and TCMID, a total of 134 components of
Dangshen were identified, including flavonoids, steroids,
alkaloids, glycosides, and triterpenes. According to the OB
and DL characteristics of the ingredients, 25 screened
compounds were chosen for the next experiments. As
structural information is essential for predicting the targets
of a compound, ten compounds without 3D structural in-
formation were discarded. Finally, 15 compounds were
determined as possible active compounds whose charac-
teristics are listed in Table 1.

3.2. Dangshen Compound Targets. We obtained the top 50
matched targets for each potential active compound from
PharmMapper. )ese targets were regarded as the potential
targets of Dangshen (Supplementary Table S1).

3.3. Collection of Gene Targets for OS. “Osteosarcoma” was
used as the keyword to retrieve the OS targets from OMIM
and GeneCards databases. A total of 2,079 genes were re-
trieved from the two databases (Supplementary Table S2).

3.4. �erapeutic Targets of Dangshen for OS. )e targeted
genes of Dangshen and OS were obtained. Using the shared
genes described above, 48 possible therapeutic targets were
obtained, and the features are listed in Table 2.

3.5. Active Compound-�erapeutic Target Network. )e ac-
tive compound-therapeutic target network is depicted in
Figure 2. )is network demonstrates the complicated

relationship between the compounds and therapeutic tar-
gets, including 65 total nodes (15 compound nodes, 48
therapeutic target nodes, one Dangshen node, and one OS
node) and 204 edges. In Figure 2, the therapeutic targets are
represented by green ovals, Dangshen is represented by a
blue quadrangle, OS is represented by a red hexagon, active
compounds are represented by yellow triangles, and the sizes
of compound nodes were proportional to their degree. )e
three with the highest degree of the compound nodes were
Frutinone A (degree� 16), Perlolyrine (degree� 14), and
Glycitein (degree� 13). )e three compounds were more
likely to show significant therapeutic activity against OS.

3.6.�erapeuticTarget-PPINetwork. )e PPI network of the
therapeutic targets is shown in Figure 3, including 48 nodes
and 304 edges. NetworkAnalyzer was employed to calculate
three topological features of the 48 targets to identify the key
nodes in the network (Table 2). )e median values of the
degree, node betweenness, and closeness were 10, 0.047, and
0.549, respectively. )e nodes with “degree >10,” “node
betweenness >0.047,” and “node closeness >0.63” were
considered to be the key targets. Hence, 20 genes were
identified as central targets of Dangshen against OS, in-
cluding TP53, HSP90AA1, CCND1, AR, ERBB2, MDM2,
IGF1R, DICER1, CCNE1, SOD2, among others.

3.7. �erapeutic Target-Organ Network. )e organs with
high expression of each therapeutic target were collected via
BioGPS (Supplementary Table S3). )e therapeutic target-
organ network, shown in Figure 4, is used to delineate the
relationship between therapeutic targets and the organs that
highly express these targets, including 132 nodes (58 ther-
apeutic target nodes and 84 organ nodes) and 2,031 edges.
)e color shade of the organ node is proportional to its
degree, as shown in Figure 4. )ese findings demonstrate
that many therapeutic targets are highly expressed in tissues,
such as the thyroid, retina, pituitary, and pineal gland, and
on the surface of antigens, including CD33, CD34, and
CD56.

3.8. GO and KEGG Pathway Enrichment. To illuminate the
complex mechanisms of Dangshen against OS, we con-
ducted analyses of the GO biological process (BP), cell
component (CC), and molecular function (MF) for the 48
therapeutic targets. )e top ten biological processes, cell
components, and molecular functions are shown in
Figures 5(a), 6(a), and 7(a), respectively. )e relationship
between the genes and biological processes, cell component,
and molecular function targets is depicted in Figures 5(b),
6(b), and 7(b), respectively. )e details of the GO enrich-
ment analysis of BP, CC, andMF are listed in Supplementary
Tables S4–S6, respectively.

KEGG pathway enrichment analysis was performed to
explore the underlying mechanisms of Dangshen against OS
further. As shown in Supplementary Table S7 and Figure 8,
there are 69 primary pathways that participate in Dangshen
against OS with p< 0.05. )ese 69 pathways involve human
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Table 1: Characteristics of the active ingredients.

Compound MF Structure MW OB (%) DL HL
Stigmasterol C29H48O fx1 412.77 43.83 0.76 5.57
Stigmast-7-enol C29H50O fx2 414.79 37.42 0.75 6.28
Luteolin C15H10O6 fx3 286.25 32.00 0.25 15.94
11-Hydroxyrankinidine C20H24N2O4 fx4 356.46 40.00 0.66 10.80
Perlolyrine C16H12N2O2 fx5 264.30 65.95 0.27 12.62
Glycitein C16H12O5 fx6 284.28 50.48 0.24 16.32
Spinasterol C29H48O fx7 412.77 42.98 0.76 5.32
Frutinone A C16H8O4 fx8 264.24 65.90 0.34 19.10
Poriferasta-7,22E-dien-3beta-ol C29H48O fx9 412.77 42.98 0.76 5.48
7-Methoxy-2-methyl isoflavone C17H14O3 fx10 266.31 42.56 0.20 16.89
5-α-Stigmastan-3,6-dione C29H48O2 fx11 428.77 33.12 0.79 5.19
3-β-Hydroxymethyllenetanshiquinone C18H14O4 fx12 294.32 32.16 0.41 22.51
Zinc03978781 C29H48O fx13 412.77 43.83 0.76 5.79
Taraxerol C30H50O fx14 426.80 38.40 0.77 2.07
Stigmasterone C29H46O fx15 410.75 45.40 0.76 5.65

Table 2: Characteristics of the 48 therapeutic targets.

Target Name Degree Betweenness centrality Closeness centrality
TP53 Cellular tumor antigen p53 40 0.19161047 0.87037037
HSP90AA1 Heat shock protein HSP 90-alpha 33 0.08748708 0.77049180
CCND1 G1/S-specific cyclin-D1 30 0.05438164 0.73437500
AR Androgen receptor 29 0.08088557 0.72307692
MDM2 E3 ubiquitin-protein ligase Mdm2 28 0.05726816 0.70149254
ERBB2 Receptor tyrosine-protein kinase erbB-2 28 0.05040772 0.71212121
IGF1R Insulin-like growth factor-1 receptor 27 0.04394018 0.70149254
DICER1 Endoribonuclease Dicer 24 0.03867798 0.66197183
CCNE1 G1/S-specific cyclin-E1 19 0.01018846 0.61842105
THBS1 )rombospondin-1 19 0.01547887 0.61038961
SOD2 Superoxide dismutase [Mn], mitochondrial 18 0.01677310 0.61038961
XRCC6 ATP-dependent DNA helicase 2 subunit 1 16 0.02818547 0.59493671
MAPK9 Mitogen-activated protein kinase 9 16 0.01100001 0.59493671
E2F1 Transcription factor E2F1 15 0.00460006 0.58750000
MUC1 Mucin-1 15 0.01251038 0.58024691
CUL1 Cullin-1 14 0.02049293 0.56626506
RAC1 Ras-related C3 botulinum toxin substrate 1 14 0.04760817 0.58750000
B2M Beta-2-microglobulin 14 0.01143842 0.58024691
MPO Myeloperoxidase 14 0.01314265 0.57317073
HDAC6 Histone deacetylase 6 12 0.00411776 0.56626506
MAP2K2 Dual specificity mitogen-activated protein kinase kinase 2 12 0.00552768 0.55294118
EZR Ezrin 12 0.00234926 0.57317073
PAX6 Paired box protein Pax-6 12 0.00636814 0.55952381
TP73 Tumor protein p73 10 0.00045360 0.54022989
BMPR2 Bone morphogenetic protein receptor type 2 10 0.00217280 0.55294118
RPS3 40S ribosomal protein S3 9 0.00443058 0.53409091
HDAC8 Histone deacetylase 8 9 0.00168382 0.54022989
POLB DNA polymerase β 9 0.00620249 0.54651163
FOLH1 Glutamate carboxypeptidase 2 9 0.00471413 0.54651163
SMAD1 Mothers against decapentaplegic homolog 1 8 0.00048566 0.52808989
ATIC Bifunctional purine biosynthesis protein PURH 8 0.00650462 0.52222222
S100A6 Protein S100-A6 8 0.00018501 0.53409091
NR3C2 Mineralocorticoid receptor 7 0.00397370 0.52808989
EIF2AK2 Interferon-induced, double-stranded RNA-activated protein kinase 7 0.00917844 0.52808989
RPA1 Replication protein A 70 kDa DNA-binding subunit 6 0.00034097 0.51648352
SATB2 DNA-binding protein SATB2 5 0.00026981 0.49473684
CDCA8 Borealin 5 0 0.49473684
FLI1 Friend leukemia integration 1 transcription factor 5 0.00061402 0.50000000
NHP2L1 Human recombinant protein P01 4 0.00020331 0.47000000
CAMK2A Calcium/calmodulin-dependent protein kinase type II α chain 4 0 0.46078431

Evidence-Based Complementary and Alternative Medicine 5



Table 2: Continued.

Target Name Degree Betweenness centrality Closeness centrality
HSD11B1 Corticosteroid 11-β-dehydrogenase isozyme 1 4 0.00067245 0.44761905
ASS1 Argininosuccinate synthase 4 0 0.49473684
FAP Seprase 4 0.00011563 0.44339623
CANT1 Soluble calcium-activated nucleotidase 1 3 0.00036617 0.44761905
BCL9 B-cell CLL/lymphoma 9 protein 3 0 0.48453608
CSDE1 Cold shock domain-containing protein E1 3 0.00053191 0.41592920
BRD7 Bromodomain-containing protein 7 2 0 0.47959184
SRGAP2 SLIT-ROBO rho GTPase-activating protein 2 1 0 0.37301587

Figure 2: Active compounds-therapeutic targets network. Yellow triangles represent the active compounds from Dangshen, while green
ovals represent the therapeutic targets. )e size of the triangles is directly proportional to their degree.
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diseases, pathophysiological mechanisms, and signaling
pathways. )e top ten significantly enriched signaling
pathways include the p53 signaling pathway, PI3K-Akt
signaling pathway, neurotrophin signaling pathway, FoxO
signaling pathway, Wnt signaling pathway, ErbB signaling
pathway, TGF-β signaling pathway, HIF-1 signaling path-
way, sphingolipid signaling pathway, and MAPK signaling
pathway. Many therapeutic targets are involved in these
signaling pathways. Figure 9 depicts a concept map con-
taining Dangshen and OS targets in the P53 signaling
pathway, further demonstrating that Dangshen regulates key
targets in this signaling pathway.

4. Discussion

Osteosarcoma (OS) is the most common primary bone tumor
found in the clinic [40]. It is characterized by high metastatic
rates, poor prognoses, and high mortality rates [41].
Dangshen (Codonopsis pilosula) is a well-known herbal
medicine, and traditional Chinese medicine (TCM) prepa-
ration, based on Dangshen, which has shown high efficacy in
the treatment of OS [10, 11]. However, its pharmacological
mechanisms remain unclear. In the present study, we used
network pharmacology to explore the potential active com-
pounds and underlying mechanisms of Dangshen against OS.

Figure 3: PPI network of therapeutic targets. Hexagons represent the therapeutic targets, and the color shade of hexagons is directly
proportional to their degree.

Evidence-Based Complementary and Alternative Medicine 7



After applying the screening methods, we identified 15
active compounds and 48 potential therapeutic targets. )e
active compounds of Dangshen likely treat OS by regulating
these targets. We identified two active compounds, stig-
masterol and luteolin, that have been studied previously for
their efficacy against OS. Stigmasterol is a phytosterol, which
has been shown to exert anticancer, antipyretic, and im-
mune-modulating properties [42–44]. Previously, Trouillas
et al. showed that stigmasterol could decrease the prolif-
eration of OS cells [45]. Luteolin is a flavonoid found in
vegetables and fruits. It can inhibit the proliferation and
induce the apoptosis of OS cells by effectively down-
regulating the expression of BCL-2, caspase-3, and survivin
proteins levels, while upregulating BAX protein levels [46].
In addition, it can induce autophagy in U2OS cells and
enhance the sensitivity of these cells to doxorubicin-medi-
ated autophagy signaling [47].

From the therapeutic target-PPI network, the following
targets showed larger degree values: TP53, HSP90AA1,
CCND1, AR, ERBB2, MDM2, IGF1R, DICER1, CCNE1, and
SOD2.)ese targets may play a major role in the therapeutic
effect of Dangshen against OS. Over 70% of OS cases show
structural variants or mutations in the TP53 gene [48]. TP53
is a transcription factor that stabilizes following genotoxic
stress and induces the transcription of genes associated with
cell apoptosis, cycle arrest, and metabolism; thereby, sup-
pressing the development and progression of tumors
[49, 50]. HSP90AA1, a 90-kDa heat shock protein [51], is an
important target for cancer treatment because it can stabilize
several cancer-related client proteins essential for tumor
progression, such as AKT, PIM1, and HIF1A [52]. Some
studies found that, in tumor biopsies, the absence of
HSP90AA1 may serve as a biomarker of favorable outcomes

[53, 54]. CCND1 is a member of the cyclin family that
encodes cyclin-D1. In addition, it plays a key role in cell cycle
regulation [55]. )ere is substantial evidence showing that
CCND1 plays an important role in the development of
human cancers [56], including the migration and metastasis
of OS [57]. )e ERBB family of tyrosine kinases plays an
important role in cell cycle regulation, cell proliferation, and
cell movement [58]. Tumors that overexpress ERBB2 are less
likely to respond to anticancer therapies [59]. Previously,
Abdou et al. reported on the overexpression of ERBB2 in OS
and its adverse prognostic features, including higher tumor
grades [60]. In addition, Wang et al. reported that chimeric
anti-caspase-6 and anti-ERBB2 antibodies reduced the
metastatic potential of human OS cells [61]. )ese findings
suggest that the therapeutic effect of Dangshen against OS is
primarily mediated by cell apoptosis, cell cycle arrest, and
the inhibition of tumor cell migration and metastasis.

Next, we performed the GO enrichment analysis and
KEGG pathway enrichment analysis of the therapeutic
targets. Based on the GO terms, the therapeutic targets
showed a strong correlation with the biological processes,
such as the G1/S transition of mitotic cell cycle, cell cycle G1/
S phase transition, regulation of cell cycle arrest, and the
intrinsic apoptotic signaling pathway; cell components, such
as cell leading edge, ruffle, ruffle membrane, and endocytic
vesicle; and molecular functions, such as p53 binding,
disordered domain specific binding, histone deacetylase
binding, damaged DNA binding, and ATPase binding.
Hence, the mechanism of action for Dangshen may include
biological processes, molecular functions, and various cel-
lular components. For example, imbalanced cell cycle reg-
ulation is characteristic of tumor cells, and functional defects
in cell cycle checkpoints lead to genetic changes that lead to

Figure 4:)erapeutic target-organs network. Red ovals represent the tissues with high expression levels of the targets, and the color shade of
the red ovals is directly proportional to the degree. Green ovals represent therapeutic targets.
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Figure 5: Top ten significant biological process (BP) entries. (a): GO enrichment analysis of therapeutic targets for biological process.
(b): Relationship between the therapeutic targets and biological process.
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Figure 6: Continued.
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Figure 6: Top ten significant cell component (CC entries). (a): GO enrichment analysis of therapeutic targets for cell components.
(b) Relationship between the therapeutic targets and cell components.
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tumor development and progression [62, 63]. In addition,
the G1/S phase transition is the target of many anticancer
drugs [64]. Apoptosis is a form of cell death that occurs upon
receipt of internal or external death signals [65, 66]. In
addition, Chaiyawat et al. reported that reduced expression
of histone deacetylase-2 of HDAC2 is associated with dismal
patient outcomes in OS [67]. Furthermore, Sun et al. re-
ported that histone deacetylase-2 may stimulate the ATM/
p53 pathway, leading to DNA damage-mediated cell death in
human OS cells [68]. In addition, Cao et al. found that
overexpression of histone deacetylase-4 promotes the pro-
liferation and invasion of OS cells [69].

Based on the KEGG terms, the therapeutic targets for
Dangshen against OS were primarily associated with the p53
signaling pathway, PI3K-Akt signaling pathway, FoxO sig-
naling pathway, Wnt signaling pathway, and ErbB signaling
pathway. P53 plays a critical role in cell cycle checkpoints
regulation, DNA damage, and prevention of nonmalignant
cells from developing malignant phenotypes [70, 71]. In
addition, p53 is an essential regulator of epithelial-mesen-
chymal transition (EMT) [72], as it promotes the reversal of
mesenchymal cells to the epithelial cell phenotype, which
reduces the migration and invasion of cells [73]. Many
anticancer drugs regulate the p53 signaling pathway. For
example, theabrownin triggers DNA damage and induces

apoptosis in U2OS cells via p53 signaling activation [74].
Activation of the PI3K-Akt signaling pathway is also as-
sociated with cell proliferation and apoptosis of OS cells
[75, 76], and the downregulation of AKT reduces cyclin-D1
levels, preventing cells from cycling from G1 to S [77]. )e
reduced expression of cyclin-D1 also leads to the inhibition
of cell proliferation [78]. Simultaneously, AKT down-
regulates the expression of two essential proteins responsible
for apoptosis, caspase-3 and caspase-8 [79]. Abnormal Wnt/
β-catenin signaling is closely related to the formation,
metastasis, and apoptosis of many cancers [80]. )e upre-
gulation of Wnt/β-catenin signaling was recently observed
in OS [81]. As such, the WIF-1 protein, encoded by Wnt
inhibitory factor-1 gene, is an important regulatory factor in
the Wnt signaling pathway [82]. )e WIF-1 gene combines
with the Wnt protein to prevent Wnt signaling [83]. Pre-
viously, Li et al. reported on the downregulation of WIF-1 in
OS cells [84]. Hence, the KEGG analysis revealed that
Dangshen produces anticancer effects in OS through the
regulation of several proteins, including MDM2, TP53,
RAC1, ERBB2, and CCND1, which are all important me-
diators of various cellular signaling pathways. In addition,
most therapeutic targets play their roles in multiple signaling
pathways. In addition, most of the therapeutic targets play
essential roles in multiple signaling pathways.

GO Terms
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Hsp90 protein binding
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Ubiquitin protein ligase binding
Histone deacetylase activity
(H3-K14 specific)
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DNA-binding transcription activator activity,
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(b)

Figure 7: Top ten significant molecular function (MF) entries. (a): GO enrichment analysis of therapeutic targets for molecular function.
(b) Relationship between the therapeutic targets and molecular function.
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Network pharmacology is an analytical method still
in development worldwide. However, the method has
some inherent flaws. For example, it heavily relies on
existing resources of the databases, so it cannot analyze
the compounds, targets, or mechanisms that have not

been previously explored. Moreover, its predicted active
ingredients, targets, and mechanisms of action are all
purely theoretical, and there is a lack of experimental
verification. )erefore, further clinical investigations are
needed.
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5. Conclusions

In this study, we explored the therapeutic mechanisms of
Dangshen against OS through a network pharmacology
approach. )e therapeutic properties of Dangshen against
OS arise from the regulation of biological pathways in-
volved in the proliferation, apoptosis, invasion, and mi-
gration of cells, along with DNA damage. We believe these
findings demonstrate the importance of understanding
traditional Chinese medicines. )e current study relied on
data mining and analysis, and further clinical investigations
are needed to verify the therapeutic mechanisms of
Dangshen against OS.
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Description of Supplementary Table S1: the top 50 matched
targets for each potential active compound of Dangshen
were gathered from PharmMapper, and these targets were
regarded as the potential targets of Dangshen. )e rela-
tionship between the compounds and their matched targets
is listed in Supplementary Table S1. Description of Sup-
plementary Table S2: the genes related to osteosarcoma were
collected from GeneCards and OMIM databases. )e genes
related to osteosarcoma are listed in Supplementary Table
S2. Description of Supplementary Table S3: the organs with
high expression of each therapeutic target were collected via
BioGPS. )e relationship between the therapeutic targets
and their high expressed organs is listed in Supplementary
Table S3. Description of Supplementary Table S4: we used
the Gene Ontology (GO) database to clarify the possible
biological mechanisms. )e details of the GO enrichment
analysis of biological process are listed in Supplementary
Table S4. Description of Supplementary Table S5: we used
the Gene Ontology (GO) database to clarify the possible
biological mechanisms. )e details of the GO enrichment
analysis of cell component are listed in Supplementary Table
S5. Description of Supplementary Table S6: we used the
Gene Ontology (GO) database to clarify the possible bio-
logical mechanisms. )e details of the GO enrichment
analysis of molecular function are listed in Supplementary
Table S6. Description of Supplementary Table S7: we used
the Kyoto Encyclopedia of Genes and Genomes (KEGG)
database to extract biological information about functional
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classification, annotation, and enriched pathways of thera-
peutic targets. )e details of the KEGG enrichment analysis
are listed in Supplementary Table S7. . (Supplementary
Materials)
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