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School of Human Sciences, The University of Western Australia, Perron Institute for Neurological and Translational Science,
Perth, WA, Australia

The human species possesses two complementary, yet distinct, universal
communication systems—language and music. Functional imaging studies have
revealed that some core elements of these two systems are processed in closely
related brain regions, but there are also clear differences in brain circuitry that likely
underlie differences in functionality. Music affects many aspects of human behavior,
especially in encouraging prosocial interactions and promoting trust and cooperation
within groups of culturally compatible but not necessarily genetically related individuals.
Music, presumably via its impact on the limbic system, is also rewarding and motivating,
and music can facilitate aspects of learning and memory. In this review these special
characteristics of music are considered in light of recent research on the neuroscience
of the peptide oxytocin, a hormone that has both peripheral and central actions, that
plays a role in many complex human behaviors, and whose expression has recently
been reported to be affected by music-related activities. I will first briefly discuss
what is currently known about the peptide’s physiological actions on neurons and its
interactions with other neuromodulator systems, then summarize recent advances in
our knowledge of the distribution of oxytocin and its receptor (OXTR) in the human brain.
Next, the complex links between oxytocin and various social behaviors in humans are
considered. First, how endogenous oxytocin levels relate to individual personality traits,
and then how exogenous, intranasal application of oxytocin affects behaviors such as
trust, empathy, reciprocity, group conformity, anxiety, and overall social decision making
under different environmental conditions. It is argued that many of these characteristics
of oxytocin biology closely mirror the diverse effects that music has on human cognition
and emotion, providing a link to the important role music has played throughout human
evolutionary history and helping to explain why music remains a special prosocial human
asset. Finally, it is suggested that there is a potential synergy in combining oxytocin- and
music-based strategies to improve general health and aid in the treatment of various
neurological dysfunctions.
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INTRODUCTION

The human species has evolved two universal systems of
inter-personal communication, language, and music. These
communication streams possess some common elements, for
example, a requirement for processing certain aspects of pitch,
rhythm, and syntax; however, there are also well-established
differences in neural circuitry that are linked to differences
in functionality. The possible evolutionary origin of musical
behaviors in our species has been discussed elsewhere (e.g.,
Brown, 2000; Mithen, 2005; Fitch, 2006; Patel, 2008; Morley,
2013; Richter and Ostovar, 2016; Harvey, 2017) and is not
considered in detail here. Language plays an essential role
in cognition; it is the primary means by which modern
humans communicate thoughts and ideas, it facilitates the
sharing of learned information and knowledge within and
between generations, it permits intuitive reasoning, foresight, and
planning, and it likely co-evolved with our capacity to imagine
times and places not personally experienced in our lifetime
(Harvey, 2017). Language and the emergence and continued
development of human culture seem to be closely intertwined,
but then why do we also communicate and enjoy music and its
partner dance? Why does music continue as a human universal
and what is its significance to the species?

Music affects many aspects of human behavior, behaviors
that may have had (and still have) adaptive benefits that
presumably contribute to the ongoing existence of musicality
in humans (e.g., Cross, 2009; Harvey, 2018). These benefits,
which are by no means mutually exclusive, are thought to
include the attraction and selection of mates, the facilitation
of attachment between caregivers and preverbal infants, aiding
the development of perceptual, cognitive and motor skills, and
encouraging trust, social bonding, and mutual cooperation. In a
group context music-related activities, including dance (Laland
et al., 2016; Richter and Ostovar, 2016), encourage the formation
of bigger social networks, help to define cultural identity,
and may represent a ‘‘safe haven’’ in which individuals can
interact and share experiences without revealing their innermost
thoughts and fears. Evidence supporting the important role that
music plays in promoting the development and maintenance
of cooperative, prosocial behaviors comes from an increasing
number of studies in children and in adults (Freeman, 2000;
Kirschner and Tomasello, 2009; Tarr et al., 2014; Pearce et al.,
2015; Schellenberg et al., 2015). Music, via its impact on
various regions within the limbic system, is also rewarding,
motivating, and facilitates aspects of learning and memory
(Zatorre and Salimpoor, 2013; Koelsch, 2018). Lastly, and
no less important, it is increasingly appreciated that musical
activities are useful therapeutic tools, aiding in the treatment of
some developmental disorders (Quintin, 2019), and capable of
ameliorating behavioral and psychological symptoms in several
neurodegenerative conditions (e.g., Abraha et al., 2017; Zhang
et al., 2017; Särkämö and Sihvonen, 2018; Groussard et al., 2019;
Pereira et al., 2019).

In this review article, these special characteristics of music
are considered in light of recent research on the neurobiology
of the peptide oxytocin. Oxytocin is a hormone, synthesized in

the hypothalamus that has both peripheral and central actions.
Peripherally, oxytocin has important roles before and after
childbirth, acting on the uterus during labor and stimulating
lactation. Centrally, oxytocinergic systems are thought to
influence many complex human social behaviors including,
for example, pair bonding, attachment and social memory,
emotional empathy, trust and generosity, and suppression of
anxiety. The first part of the review focuses on what is currently
known about the physiological actions of oxytocin on cells in
the mammalian central nervous system (CNS) and the peptide’s
interactions with other neuromodulator systems including the
closely related pituitary hormone arginine vasopressin (AVP),
the stress-related hormone cortisol, and neurotransmitters such
as dopamine and serotonin. The second section summarizes
recent advances in our knowledge of the distribution of the
peptide and its receptor in the human brain, the relationship
between endogenous oxytocin levels and complex behavioral
traits typical of Homo sapiens, and then reviews the diverse
effects of intranasal oxytocin administration on human behavior.
The final section discusses links between music-related activities
and oxytocin expression, documenting the similarities between
the generally prosocial behaviors engendered by oxytocin and
the many positive effects that music has on human cognition,
memory, and mental health. Oxytocin and music can also have
beneficial effects on cardiovascular and immune systems, and it is
argued that a better understanding of the multiple actions of the
oxytocinergic systemmay lead to its synergistic use with music in
a range of therapeutic applications in psychology and neurology.

THE NEUROSCIENCE OF
OXYTOCIN—ANIMAL STUDIES

Oxytocin is a nine amino-acid peptide that is enzymatically
derived from a larger peptide precursor made from the
oxytocin gene. This peptide, or closely related versions of it, is
involved in reproductive functions across almost all vertebrate
species (Carter, 2014; Ebitz and Platt, 2014; Grinevich et al.,
2016; Feldman, 2017; Jurek and Neumann, 2018) and its
peripheral and central actions have been the subject of increasing
interest in recent years (Jurek and Neumann, 2018)—as of 1st
April 2020 there were more than 27,000 articles, including
3,700 reviews, listed on the NIH PubMed search engine.

In the mammalian brain, oxytocin is synthesized
predominantly by magnocellular neurons in the supraoptic
(SON) and paraventricular (PVN) nuclei of the hypothalamus,
by some parvocellular neurons in PVN, and in accessory
magnocellular nuclei of the hypothalamus. There is also some
expression in peripheral tissues such as the gonads, kidney, and
pancreas although the oxytocin generated there is unlikely to
enter the CNS (Jirikowski, 2019). Many oxytocin-expressing
neurons likely bifurcate, with a ‘‘traditional’’ endocrine-related
projection to the posterior pituitary for systemic release into
the bloodstream and a second central branch projecting to
about 50 brain regions, including the sensory and prefrontal
cortex, nucleus accumbens in the ventral striatum, amygdala,
hippocampus, hypothalamus and ventral tegmentum (Grinevich
and Stoop, 2018). In the circulation, oxytocin has a half-life
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of only a few minutes before it is metabolized in the liver and
kidneys. This is an important point that will be returned to later
in this review when discussing how best to measure and interpret
peripheral oxytocin levels in humans.

In animal models, a variety of methods have been used to
investigate the molecular and cellular properties of oxytocin
and its receptor (OXTR), and to better understand the nature
of the relationship between the physiology and pharmacology
of oxytocin signaling and overt behavior (Jurek and Neumann,
2018; Mitre et al., 2018; Cilz et al., 2019; Neumann and Landgraf,
2019; Tan et al., 2019; Raam, 2020). These methods include
neuroanatomical pathway tracing, immunohistochemistry,
electron microscopy. receptor autoradiography, in situ
hybridization, electrophysiology, microdialysis, and functional
magnetic resonance imaging (fMRI). Experimental interventions
have also been used to perturb the oxytocinergic system such
as intracerebral infusion of the peptide, the use of receptor
agonists or antagonists, antisense methods, optogenetic and
chemogenetic stimulation of oxytocinergic neurons, conditional
deletion of OXTR, and the use of genetically engineered
reporter mice.

The Oxytocin Receptor
Oxytocin binds with high affinity to its specific receptor OXTR
and can initiate an array of intracellular signaling cascades
and transcriptional events (Chatterjee et al., 2016; Busnelli
and Chini, 2017; Jurek and Neumann, 2018). There is also
significant crosstalk with structurally related AVP receptors,
most particularly the AVP1a receptor (AVPR1a; Bakos et al.,
2018; Grinevich and Stoop, 2018; Song andAlbers, 2018). In turn,
AVP can also bind to OXTR, however, the specificity of action
largely remains, probably due to differences in the distribution
of oxytocin vs. AVP containing axons (Grinevich and Stoop,
2018; Rogers et al., 2018; Song and Albers, 2018; Pekarek et al.,
2020). Nonetheless, there are potential sites of interaction in
some brain regions (Smith et al., 2019), and there is evidence of
functionally relevant spillover of oxytocin into the extracellular
space beyond traditional synaptic sites (Busnelli and Chini, 2017;
Chini et al., 2017; Song and Albers, 2018). OXTRs are widely
distributed and found in many neuronal types, expressed on cell
bodies, dendrites, and axon terminals, and the receptor is also
expressed by astrocytes (Wang et al., 2017; Bakos et al., 2018;
Young and Song, 2020). In different species, the receptor seems
to be specifically enriched in those sensory/perceptual systems
that are most relevant to conspecific maternal as well as more
general socially interactive behaviors (Grinevich and Stoop, 2018;
Pekarek et al., 2020).

The Physiology of Oxytocin
In the CNS, oxytocin can affect various ion channels, increase
intracellular calcium ion concentrations, alter membrane
excitability and enhance long-term potentiation (LTP) in
neurons (Tomizawa et al., 2003; Lee et al., 2015; Lin and Hsu,
2018; Tirko et al., 2018). Oxytocin signaling also increases
the expression of neurotrophic factors such as brain-derived
neurotrophic factor (BDNF; Bakos et al., 2018; Zhang et al.,
2020), of relevance to later discussion focussed on oxytocin,

social learning/memory, and hippocampal function. The
peptide can also act presynaptically to affect neurotransmitter
secretion (Dölen et al., 2013; Bakos et al., 2018). Overall, from
a physiological perspective, oxytocin influences cell viability,
synaptic and structural plasticity in neurons (Bakos et al., 2018;
Jurek and Neumann, 2018; Pekarek et al., 2020), and modulates
the balance of excitatory and inhibitory activity in regions such
as the cerebral cortex and hippocampus (e.g., Mitre et al., 2016;
Grinevich and Stoop, 2018; Lin and Hsu, 2018; Lopatina et al.,
2018; Tirko et al., 2018; Cilz et al., 2019; Maniezzi et al., 2019;
Tan et al., 2019), amygdala (Crane et al., 2020), and nucleus
accumbens (Moaddab et al., 2015; Cox et al., 2017). Rodents
lacking oxytocin or OXTR display impaired sociability and social
memory (Ferguson et al., 2000). and conditional deletion of
OXTR in the hippocampus negatively affects LTP and impairs
long-term social recognition memory (Lin et al., 2018).

Likely increasing its diversity of action, oxytocin also interacts
with several other receptors and neuromodulatory systems.
For example, the peptide: (i) potentiates excitatory dopamine-
mediated synaptic transmission (Li et al., 2020); (ii) interacts
with a class of serotonin receptor (Chruścicka et al., 2019) and
affects serotonin release (Yoshida et al., 2009); (iii) modulates
signaling mediated by opioid receptors (dal Monte et al.,
2017; Meguro et al., 2018; Salighedar et al., 2019); and (iv)
activates TRPV2 channels (Van den Burg et al., 2015). There
are also dynamic interactions with steroids (Jirikowski et al.,
2018) and oxytocin levels are negatively correlated with cortisol,
significantly modifying responses to stress (Lee et al., 2015;
Schladt et al., 2017; Latt et al., 2018; Masis-Calvo et al., 2018;
Neumann and Landgraf, 2019).

The foregoing section has, of necessity, over-simplified the
physiological effects of oxytocin on neural tissue in animals, and
more in-depth reviews are available (e.g., Bakos et al., 2018; Jurek
and Neumann, 2018; Mitre et al., 2018; Neumann and Landgraf,
2019). However, some discussion of animal-based research is
warranted because, given that the peptide is highly conserved
in evolution it is likely that similar wide-ranging molecular and
cellular mechanisms are operative in the human brain (see also
Grinevich and Neumann, 2020). From a behavioral perspective,
animal studies reveal that oxytocin has an important role in
pair-bonding and maternal attachment, in moderating affiliative
behaviors and conspecific social recognition, and in modulating
the formation and maintenance of episodic memories, whether
they be positive or negative. The next section will show that
oxytocin has generally similar effects on human social behavior,
but these effects would seem to be more subtle and complex in
cognitively advanced members of Homo sapiens, extending to
personality traits, emotional empathy, trust, altruism, reciprocity,
group conformity, social decision making and so on.

OXYTOCIN IN HUMANS

Oxytocinergic Networks
In humans, immunoreactive oxytocinergic fibers are sparse but
present in all cortical layers of the orbitofrontal cortex and
anterior cingulate (Rogers et al., 2018). The fibers were found
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to have large varicosities usually associated with en passant
boutons—likely sites of oxytocin release into the surrounding
neuropil (Busnelli and Chini, 2017; Chini et al., 2017; Song
and Albers, 2018). Fibers immunoreactive for AVP were also
seen in these cortical regions and in the insular and olfactory
cortices. Using antibodies to the receptor, OXTR was first
identified in parts of the amygdala, anterior cingulate cortex,
hypothalamus, and preoptic area, olfactory nucleus, and some
brainstem nuclei (Boccia et al., 2013). A more recent extensive
survey of the oxytocin system analyzed the distribution of the
gene encoding OXTR as well as the gene encoding the oxytocin
prepropeptide and the gene encoding CD38, a transmembrane
protein needed for oxytocin secretion (Quintana et al., 2019).
OXTR gene expression was widespread throughout the brain,
significantly higher in olfactory bulbs, but also higher in the
caudate, putamen, pallidum, and hypothalamus; levels were
also greater than average in the hippocampus, parahippocampal
region, amygdala, parts of the temporal lobe and anterior
cingulate cortex. Expression of the gene was ‘‘reproducible,
regardless of individual differences, such as ethnicity and sex’’
(Quintana et al., 2019).

The pattern of expression was essentially similar for
the CD38 gene, with significantly increased expression in
caudate, putamen, pallidum, thalamus, and anterior cingulum.
For both genes, expression was significantly lower in the
cerebellum. Interestingly, there was co-expression with several
genes involved in dopaminergic and muscarinic cholinergic
signaling, suggesting potential pathway interactions perhaps
similar to those suggested for the opioids (dal Monte et al.,
2017). Co-expression with genes involved in the regulation of
metabolism and appetite was also seen. According to Quintana
et al. (2019), ‘‘the oxytocin pathway gene maps correspond with
the processing of anticipatory, appetitive, and aversive cognitive
states.’’ Interaction with dopaminergic and cholinergic systems
is likely to add to the broad impact of oxytocin on social
behaviors, motivation, reward, desire, anxiety, and the processing
of emotions.

Receptor Polymorphisms and Behavior
In children, adolescents, and adults, genetic variants of the
OXTR gene are linked to an individual’s response to stress
(Rodrigues et al., 2009) and altered prosocial/affiliative behaviors
and empathy. The need for pleasant social company is increased
after a stressful event, a need that varies depending on which
alleles of OXTR are present (Sicorello et al., 2020). Anatomically,
there are subtle changes in structure and inter-connectivity of
hypothalamus and parts of the limbic system, and mutations
have been implicated in a range of highlymaladaptive, sometimes
psychopathic traits (e.g., Israel et al., 2008; Tost et al., 2010;
Dadds et al., 2014; Aspé-Sánchez et al., 2016; Feldman et al.,
2016; Gedeon et al., 2019; Poore and Waldman, 2020). A recent
neuroimaging study examining the effect of OXTR alleles on
resting-state networks reported that receptor genotype affected
connectivity between the right hippocampus, medial prefrontal
cortex, dorsal anterior cingulate cortex, amygdala, basal ganglia
and thalamus (Luo et al., 2020). The functional impact that alleles
of OXTR have on social behavior is however complex and not

always consistent across studies, and is affected by factors such as
gender, age, upbringing, and culture (Tost et al., 2010; Feldman
et al., 2016; Fujiwara et al., 2019; Plasencia et al., 2019; Poore
and Waldman, 2020). Environmental epigenetic influences on
the OXTR function that influence social interactions must also be
considered (Chen et al., 2020), and as described earlier there may
be differential interactions with other neuromodulatory systems
such as AVP, the opioids, steroids, and various catecholamines.

Measurement of Endogenous Oxytocin
As yet it has not proved possible to measure oxytocin levels in the
living human brain, thus endogenous oxytocin measurements
are obtained from either plasma, saliva, or urine. Interpretation
of these peripheral measures of oxytocin is however difficult for
several reasons (Ebstein et al., 2012; Leng and Ludwig, 2016;
Mitre et al., 2016; Valstad et al., 2017; Jurek and Neumann,
2018). First, peripheral oxytocin levels are related to the release
of the peptide from the posterior pituitary and do not necessarily
reflect levels of the peptide within specific regions of the brain
that contain neurons expressing OXTR. Second, even when
undertaking peripheral measurements, compared to saliva there
is, in animals at least, a more consistent relationship between
blood plasma levels of oxytocin and levels of the peptide found
in cerebrospinal fluid (Valstad et al., 2017). Third, as pointed out
by Jurek and Neumann (2018): ‘‘basal plasma or brain oxytocin
levels might strongly depend on individual events occurring
within the last hour(s) before sampling (e.g., fear of hospital
or laboratory, prior eating, rushing to the laboratory, or sex)
or on the time of the day.’’ And all is compounded by the
fact that circulating levels of oxytocin are normally low, even
exogenous peptide is rapidly eliminated 1–2 h after intranasal
delivery, and to measure native (unbound) oxytocin levels
requires sophisticated techniques for specificity and accuracy of
analysis (Franke et al., 2019, 2020). Nonetheless, and given these
caveats, some intriguing and important observations have come
from peripheral endogenous oxytocin measurements in humans.

Nurturing and Bonding
Plasma and/or salivary oxytocin levels rise postpartum when
mothers interact and bond with their infants (Matthiesen et al.,
2001; Feldman et al., 2007; Feldman, 2012; Gordon et al.,
2010). These interactive behaviors include gaze, facial expression,
vocalizing using the preverbal maternal-infant communication
known as ‘‘motherese,’’ affectionate touch, and so on (Kerr et al.,
2019). The increase in serum oxytocin when mothers interact
and bond with their own smiling/happy infants is higher in
mothers rated as having ‘‘secure’’ attachment to their offspring
(Strathearn et al., 2009) and with a sensitive temperament
(Strathearn et al., 2012). In these mothers, fMRI revealed greater
activity in the hypothalamus/pituitary region and in reward
centers in the ventral striatum. The rise in oxytocin is, at least
in part, related to the amount of maternal gaze directed towards
the child (Kim et al., 2014). Intranasal oxytocin also increases a
father’s neural response to images of their young children, with
increased activity in caudate, anterior cingulate, and visual cortex
(Li et al., 2017a).
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Lullabies are a universal way of soothing infants (Mehr et al.,
2018), and it is thus of interest that vocalization by mothers
increases levels of salivary oxytocin (and reduces cortisol) in their
children, although admittedly these were older girls aged between
7 and 12 years old (Seltzer et al., 2010). In comparingmaternal vs.
paternal changes in endogenous oxytocin during early parent-
infant bonding, both mothers and fathers showed increases but
there were dimorphic differences that depended on the type of
interaction (Gordon et al., 2010). The development of affiliative
behaviors between caregiver and infant, linked especially to
oxytocin, leads to plasticity and adaptations in both the parent
and infant (Feldman, 2015). Remarkably, the basal level of
oxytocin measured in the saliva, and certain polymorphisms in
the OXTR gene, are transgenerationally associated with the type
of parental care that is given, influencing affiliative and social
behaviors across as many as three generations within a family
(Fujiwara et al., 2019).

Oxytocin in Adolescents and Adults
Endogenous plasma oxytocin concentrations vary with age and
there are differences between males and females, young women
having the highest and old men the lowest levels (Plasencia et al.,
2019). Experimentally, levels of salivary oxytocin were higher
when female subjects were confronted with a novel situation,
associated with reduced stress and greater trust, compared with
a later familiarization session (Tops et al., 2013). Higher levels
of plasma oxytocin in women but not men were linked to
indicators of relationship stress and attachment anxiety (Taylor
et al., 2010; Weisman et al., 2013; Moons et al., 2014). In young
males, lower urinary oxytocin (but not AVP) levels were linked
to lower measures of empathy and trust, presumably associated
with a greater propensity for aggressive behavior (Malik et al.,
2012; Weisman et al., 2013; de Jong and Neumann, 2018;
Berends et al., 2019), and in males social cognitive ability was
correlated with plasma oxytocin concentrations (Deuse et al.,
2019; Strauss et al., 2019).

Effects of Exogenous Administration of
Oxytocin
Exogenous delivery of oxytocin affects neural processing and has
consistently been reported to influence a wide range of interactive
human behaviors. These behaviors have been described in
different ways and using different terminologies. They include
pair bonding, attachment, and social learning/memory, social
salience and emotional empathy, recognition and interpretation
of emotions, behavioral synchrony, familiarization and within
group co-operation, altruism, generosity and trust, reward
sensitivity, calmness and reduction of stress, and amelioration of
anxiety (anxiolytic effects; e.g., Kosfeld et al., 2005; Baumgartner
et al., 2008; Ditzen et al., 2009; Strathearn et al., 2009; Hurlemann
et al., 2010; De Dreu, 2012; Fischer-Shofty et al., 2012; Tops
et al., 2013; Bethlehem et al., 2014; Preckel et al., 2014; Shamay-
Tsoory and Abu-Akel, 2016; Feldman, 2017; Fineberg and Ross,
2017; Leppanen et al., 2017; Wang et al., 2017; Ellenbogen,
2018; Geng et al., 2018; Jurek and Neumann, 2018; Rilling
et al., 2018; Alos-Ferrer and Farolfi, 2019; Liu et al., 2019;
Tillman et al., 2019; Sicorello et al., 2020; Wu et al., 2020).

Analyses of the impact of oxytocin on neural activity imaged
in the brains of healthy subjects generally reflect this, with
altered activity in interconnected structures associated with
valence, salience, trust, prosocial behavior and mentalizing,
including the amygdala, insula, nucleus accumbens, lateral
septum, anterior cingulate, hippocampus, caudate, tempero-
parietal cortex, dorsomedial and dorsolateral prefrontal cortex
(e.g., Kirsch et al., 2005; Rilling and Sanfey, 2011; Bethlehem
et al., 2013; Eckstein et al., 2017; Wang et al., 2017;
Rilling et al., 2018; Kumar et al., 2020; Wu et al., 2020).

The great majority of studies emphasize positive, prosocial
behavioral outcomes after exogenous oxytocin administration;
however, it is important to emphasize that not all studies describe
these effects (Keech et al., 2018; Tabak et al., 2019; Erdozain
and Peñagarikano, 2020) and some antisocial outcomes have
been reported, including increased competitive and aggressive
tendencies, particularly in males (Fischer-Shofty et al., 2012;
Alcorn et al., 2015; Ne’eman et al., 2016; de Jong and Neumann,
2018; Gedeon et al., 2019). Others have also reported differential
effects of exogenous oxytocin on women compared to men (e.g.,
Rilling et al., 2012, 2018; Preckel et al., 2014; Feng et al., 2015;
Chen et al., 2016; Bredewold and Veenema, 2018; Bartz et al.,
2019; Xu et al., 2020).

Overall, variation in the effects of administered oxytocin
is linked to: (i) gender differences; (ii) whether individuals
possess intrinsic pro- or antisocial personality traits—sometimes
related to polymorphisms in, or the methylation state of, OXTR;
(iii) early environmental experience; and/or (iv) the social cues
and psychological context when testing is undertaken (e.g.,
Guastella and MacLeod, 2012; Evans et al., 2014; Nishina
et al., 2015; Chen et al., 2016; Feldman et al., 2016; Lambert
et al., 2017; Aydogan et al., 2018; de Jong and Neumann,
2018; Wagner and Echterhoff, 2018; Fragkaki and Cima, 2019;
Gedeon et al., 2019; Liu et al., 2019; Sicorello et al., 2020). As
mentioned earlier, oxytocin and AVP can activate each other’s
receptors, although the differential distribution of fibers and
receptors may limit crosstalk (Rogers et al., 2018; Song and
Albers, 2018). There may be little interaction under normal
conditions of endogenous release, but perhaps there is more
crosstalk after intranasal application of higher concentrations of
oxytocin which may contribute to some of the complexity of
behavioral outcomes.

THE LINKS BETWEEN OXYTOCIN AND
MUSIC

Oxytocin is an ancient peptide, in mammals universally involved
in reproductive biology, modulating social learning and affiliative
behaviors, as well as modifying responses to adverse conditions
(Ebitz and Platt, 2014; Feldman et al., 2016; de Jong and
Neumann, 2018). In Homo sapiens, it is conceivable that
the unique prosocial, harmonizing activities of music and
dance incorporated, perhaps even required, elements of this
pre-existing oxytocinergic network. Music encourages affiliative
interactions in infancy and adulthood, aids in the development
of perceptual, cognitive, and motor skills, promotes trust
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and reduces a sense of social vulnerability, is rewarding and
motivating, and has a beneficial effect on aspects of learning and
memory. Music and its evolutionary partner dance (Richter and
Ostovar, 2016) also promote synchrony and social interaction,
contribute to cultural identity, and encourage the formation of
cooperative networks. Based on the experimental work described
above, it should be apparent that many of these musical
influences on human behavior are also characteristic of many
of the psychological and sociological effects of oxytocin. These
associations become even clearer when comparing the neural
networks that are: (i) activated when listening to music perceived
as being rewarding and pleasurable with; (ii) regions that process
behaviors that involve social cooperation, empathy and altruism;
and (iii) the distribution of oxytocinergic fibers and OXTR in the
human brain (Figure 1).

Music Networks
As described in detail elsewhere (Harvey, 2017), and
acknowledging that overlap in activity maps does not, a priori,
mean that the same circuits are involved (Peretz et al., 2015),
some of the basic elements of language and music such as
pitch and rhythm share similar neural substrates, but clearer
differences become apparent when more extended processing
networks are considered. In right-handers at least, there is a
left hemisphere bias for language and speech while the right
hemisphere is biased more for music, and separate processing
areas specific for these two communication streams have now
been identified within secondary auditory regions in the superior
temporal gyrus (Angulo-Perkins et al., 2014; Norman-Haignere
et al., 2015). Most relevant to the present discussion are the
limbic pathways and multiple cortical regions known to be
activated by the overall subjective experience and emotional
impact of music (Koelsch, 2018).

The limbic system, which includes the hippocampus,
parahippocampal gyrus, amygdala, and cingulate cortex, is
involved in several functions including learning, memory,
motivation and emotional responsiveness. Music can induce
activity in all these regions, while music that is perceived as
arousing and is appreciated also drives dopaminergic activity in
nucleus accumbens in the ventral striatum, an anticipatory and
reward center (Blood and Zatorre, 2001; Menon and Levitin,
2005; Boso et al., 2006; Salimpoor et al., 2011; Zatorre and
Salimpoor, 2013; Mueller et al., 2015; Ferreri et al., 2019; Gold
et al., 2019; Shany et al., 2019). Music that evokes strong
emotional valence is associated with altered activity not only
in the superior temporal gyrus but also in the caudate nucleus,
insula, thalamus, cingulate cortex, orbitofrontal, dorsomedial,
dorsolateral and ventromedial prefrontal cortex, inferior frontal
cortex and supplementary motor area (e.g., Blood and Zatorre,
2001; Koelsch et al., 2006; Mitterschiffthaler et al., 2007; Chapin
et al., 2010; Brattico et al., 2011; Pereira et al., 2011; Khant
et al., 2012; Altenmüller et al., 2014; Koelsch, 2018; Särkämö and
Sihvonen, 2018; Sachs et al., 2019). Of course, music involves
more than just listening, and imaging of people—alone or with
others—creating and improvising jazz, rap or rockmusic has also
revealed increased neural activity in the medial frontal lobe and
altered, usually decreased, activity in the dorsolateral prefrontal

FIGURE 1 | Two schematic views of the brain showing many of the regions
in common that are reported to be involved in: (i) processing
subjective/arousing/rewarding/emotional aspects of human musicality; (ii)
performing or responding to a range of interactive social tasks; and (iii)
oxytocinergic processing. Two other potentially relevant regions are shown in
italics. Amygdala not shown. PFC, the prefrontal cortex. Both diagrams
modified from Harvey (2017).

cortex when compared to the same subjects playing or singing
‘‘formulaic sequences’’ (Limb and Braun, 2008; Liu et al., 2012;
Donnay et al., 2014; Tachibana et al., 2019).

Behavioral Networks
Numerous studies have used fMRI to image healthy subjects
performing and responding to interactive social tasks that may
involve altruism, empathy, trust and cooperation, norm-abiding
behavior, mentalizing, and/or an appreciation of nuanced
social context (Figure 1). These studies generally find increased
functional activity in the nucleus accumbens, amygdala,
parahippocampal gyrus, caudate nucleus, insula, anterior
cingulate cortex, superior temporal cortex, tempero-parietal
junction, and several regions in the prefrontal cortex (medial
orbitofrontal, medial prefrontal, ventromedial, dorsolateral,
dorsomedial; e.g., O’Doherty, 2004; Völlm et al., 2006; Rilling
et al., 2008; Cooper et al., 2010; Rilling and Sanfey, 2011;
Rushworth et al., 2011; Carter et al., 2012; Korn et al., 2012;
Fukuda et al., 2019).

Oxytocinergic Systems
Oxytocin fibers have been identified in the orbitofrontal cortex
and anterior cingulate cortex (Rogers et al., 2018), and there
are high levels of the receptor in the olfactory bulb, amygdala,
hippocampus, parahippocampal gyrus, regions in the temporal
lobe, anterior cingulate cortex, hypothalamus and preoptic area,
and some brainstem nuclei (Boccia et al., 2013; Quintana
et al., 2019). Intranasal oxytocin administration alters neural
activity in structures such as the amygdala, insula, nucleus
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accumbens, anterior cingulate cortex, hippocampus, caudate,
tempero-parietal cortex, dorsomedial and dorsolateral prefrontal
cortex (e.g., Kirsch et al., 2005; Lischke et al., 2012; Bethlehem
et al., 2013; Eckstein et al., 2017; Wang et al., 2017; Rilling
et al., 2018; Kumar et al., 2020; Wu et al., 2020). Finally,
altered OXTR genotypes have been found to correlate with
altered local network metrics and functional connectivity
between the hippocampus, medial prefrontal cortex, dorsal
anterior cingulate cortex, amygdala, basal ganglia and thalamus
(Luo et al., 2020).

Clearly then, musicality, cooperative prosocial interactions,
and the oxytocinergic system are linked to neural activity
in several common regions and interconnected networks in
the brain of modern humans; the most consistently involved
components being the hippocampus, parahippocampal gyrus,
amygdala and anterior cingulate cortex, the caudate nucleus
and nucleus accumbens, insula, superior temporal gyrus
and orbitofrontal, ventromedial, dorsomedial and dorsolateral
prefrontal cortex (Figure 1). Numerous examples of the
close interrelationship between oxytocin and prosocial human
behaviors have been presented, promoting group empathy and
the participation in collective decision making, all involving
a shift from personal concerns to more communal interests,
including a willingness to learn from others (Zak and Berroza,
2013; Shalvi and De Dreu, 2014; De Dreu and Kret, 2016; De
Wilde et al., 2017; Ten Velden et al., 2017; Schiller et al., 2020;
Xu et al., 2020). But to what extent does oxytocin provide
a nexus between these behaviors and music? What impact
does music have on peripheral oxytocin release and OXTR
expressing networks in the human brain, and can exogenous
oxytocin administration synergistically affect performance and
responsiveness to music?

Experimental Studies on Music and
Oxytocin
Only a few studies have directly examined the impact of
music on oxytocin expression, in solo or ensemble settings. As
described earlier, comforting maternal vocalizations—which can
have music-like properties—by themselves have been shown to
increase oxytocin levels and reduce cortisol in young daughters
(Seltzer et al., 2010). It was recently reported that salivary
oxytocin levels are reduced in maltreated children (Suzuki et al.,
2020) and it is therefore of interest that, following a program of
group drumming sessions for ‘‘emotionally disturbed’’ children,
salivary oxytocin concentrations were increased in both boys
and girls, significantly so when comparing practice and free
play sessions performed by boys aged 8–12 years (Yuhi et al.,
2017). In adults, salivary oxytocin levels were also found to
be raised after a singing lesson, amateur singers, in particular,
expressing a heightened sense of well-being (Grape et al., 2003),
and raised levels were also reported after choral singing (Kreutz,
2014). In one sensory study, it was found that listening to
slow relaxing music was associated with raised salivary oxytocin
levels and lower heart rate, whereas fast music had little impact
on oxytocin but reduced cortisol levels and increased arousal
(Ooishi et al., 2017). The effect of relaxing music on moderating

salivary cortisol levels after the stress has also been noted
(Khalfa et al., 2003).

The nature of the musical activity is important because
an increase in plasma oxytocin levels in members of a vocal
jazz group was only recorded when singers were improvising
together (Keeler et al., 2015), likely due to altered activity in
the prefrontal cortex and enhanced affiliative and prosocial
interactions (Limb and Braun, 2008; Liu et al., 2012; Donnay
et al., 2014; Tachibana et al., 2019). Schladt et al. (2017)
reported that salivary oxytocin levels slightly increased when
subjects were solo singing but were decreased when singing
in a choir. In that same study, cortisol levels were reduced in
both situations, but choral participants described greater feelings
of happiness and reduced worry. Of course, performing music
can be stressful, perhaps especially in a solo compared to an
ensemble/choral situation. Indeed, the intranasal application
of oxytocin has recently been shown to increase positive
interactions between performers and reduce performance
anxiety (Sabino et al., 2020). The reported variability inmeasured
levels of oxytocin and markers of stress such as cortisol reflects
the complex, and highly interactive, sexually dimorphic systems
that are involved (Brown et al., 2016). The other issue that
should be borne in mind, discussed in detail earlier, is that
measurement of salivary or urinary oxytocin levels do not
necessarily reflect the concentration of the peptide in OXTR
expressing regions in the brain (Leng and Ludwig, 2016; Jurek
and Neumann, 2018), although there is a closer relationship
between plasma oxytocin levels and those in cerebrospinal fluid
(Valstad et al., 2017).

Overall, whilst there is a clear trend for increased endogenous
oxytocin and reduced cortisol in subjects involved in musical
activities, more controlled trials are needed in this area because
communal music experiences are prime examples of human
social engagement. From a physiological and psychosocial
perspective, group music-making such as choral singing
increases connectedness, heightens empathy, reduces depression
and improves mood, is arousing and stimulates cognition,
and has systemic health benefits including improved immune
competency, reduced cytokine and inflammatory markers,
lowered blood pressure and reduced cortisol and ACTH levels
(Kuhn, 2002; Khalfa et al., 2003; Kreutz et al., 2004; Dunbar
et al., 2012; Fancourt et al., 2014; Keeler et al., 2015; Pearce
et al., 2015; Stewart and Lonsdale, 2016; Johnson et al., 2017;
Ooishi et al., 2017; Finn and Fancourt, 2018; Kang et al., 2018;
Moss et al., 2018; Perkins et al., 2018; Walker et al., 2019).
The impact of exogenous oxytocin is relevant here because of
the positive effect that it has on individual stress levels and
the promotion of group empathy, reciprocal trust and collective
social decision making, all involving a shift from personal to
group agency (Zak and Berroza, 2013; Chen et al., 2016; De Dreu
and Kret, 2016; De Wilde et al., 2017; Ten Velden et al., 2017;
Sicorello et al., 2020; Xu et al., 2020). Music and the community
associated with it may be especially important to individuals
who are lonely and/or who have lower emotional empathy
and exhibit fewer prosocial traits (e.g., Berends et al., 2019;
Fragkaki and Cima, 2019; Liu et al., 2019; Johnson et al., 2020;
Schiller et al., 2020).

Frontiers in Human Neuroscience | www.frontiersin.org 7 August 2020 | Volume 14 | Article 350

https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/human-neuroscience#articles


Harvey Oxytocin and Human Musicality

Links to Other Neuromodulatory Systems
Rhythm in music induces bodily movement and akin to
music, dance is a universal human behavior (Levitin et al.,
2018). From an evolutionary perspective, it has been argued
that dance advantages humans ‘‘by contributing to sexual
reproduction signaling, cooperation, social bonding, infant care,
violence avoidance as well as embodied individual and social
communication andmemorization’’ (Richter andOstovar, 2016).
To my knowledge, there have not, to date, been any substantive
reports on how oxytocin levels are affected by solo or group
dance. Yet the impact of dance, especially in a coordinated
group context, on increased empathy (Gujing et al., 2019) social
bonding (Tarr et al., 2015, 2016), cognitive performance, general
fitness and well-being (Kattenstroth et al., 2010, 2013; Zilidou
et al., 2018; Douka et al., 2019) is clear. Choral singing and
dance have both been reported to increase pain threshold, viewed
as a surrogate for levels of circulating β-endorphin (Dunbar
et al., 2012; Tarr et al., 2015; Weinstein et al., 2016). This
peptide binds to µ-opioid receptors and plays a role in social
networking and maintaining social bonds (Pearce et al., 2017).
These observations are important, but it should be noted that
many other factors can influence the perception and processing
of pain (Millan, 2002), including oxytocin (Gamal-Eltrabily
et al., 2020; Hilfiger et al., 2020; Schneider et al., 2020), which
as described earlier positively modulates signaling mediated
by opioid receptors (dal Monte et al., 2017; Meguro et al.,
2018; Salighedar et al., 2019). Furthermore, depending on age
and health status, the perception of pain does not necessarily
reflect circulating β-endorphin levels (Bruehl et al., 2017;
Ahn et al., 2019).

AVP is also thought to influence human behavior in many
ways (Neumann and Landgraf, 2012; Benarroch, 2013) although
significant effects are not always evident (Tabak et al., 2019).
AVP and oxytocin may interact with each other to influence
prosocial vs. antisocial behaviors, trust vs. aggression, fear and
so on (Huber et al., 2005; Veenema and Neumann, 2018; Ebstein
et al., 2012; Rilling et al., 2012; Jurek and Neumann, 2018;
Song and Albers, 2018; Berends et al., 2019), at least some
of which are sexually dimorphic (Rilling et al., 2014; Feng
et al., 2015; Bredewold and Veenema, 2018). Comparison of
endogenous AVP and oxytocin levels in plasma from young
and old men and women revealed a negative correlation
between all groups, higher AVP levels associated with greater
‘‘attachment anxiety’’ (Plasencia et al., 2019) and pair-bond
distress in men (Taylor et al., 2010). Polymorphisms in the
AVPR1a receptor have been linked to variability in aggression,
response to stress, trust, and altruistic behaviors (Israel et al.,
2008; Moons et al., 2014; Aspé-Sánchez et al., 2016; Nishina
et al., 2019). Whilst there is as yet no evidence that endogenous
levels of circulating AVP are altered by musical activity, AVPR1a
receptor polymorphisms have been linked to musical aptitude
(Pulli et al., 2008; Ukkola et al., 2009; Liu et al., 2016;
Mariath et al., 2017), memory (Granot et al., 2007, 2013) and
appreciation (Ukkola-Vuoti et al., 2011), as well as music and
dance creativity (Bachner-Melman et al., 2005; Israel et al.,
2008; Oikkonen et al., 2016). On the other hand, receptor
polymorphisms were not more common in choral singers

compared with people designated as non-musicians (Morley
et al., 2012).

Anxiety, Extinction, and PTSD
Participation in music is rewarding; it encourages prosocial
interactions, facilitates social cognition, and promotes
cooperation within groups of culturally compatible but not
necessarily genetically related individuals. Ensemble music-
making, and communal choral and dance activities, involve
synchronized and coordinated activity with the special attribute
of allowing individuals to be subsumed within a greater, living
whole. Perhaps most importantly, the generally ambiguous,
non-propositional nature of music provides a safe, usually
risk-free space where individual thoughts and emotions,
personal autobiographical memories and ambitions, can exist
in a cooperative and interactive social context. Participation in
musical activities can help individuals who lack self-confidence,
who lack trust and may feel socially excluded, reduces fear
and a sense of vulnerability, and can diminish potential
conflict: ‘‘Music allows participants to explore the prospective
consequences of their actions and attitudes toward others
within a temporal framework that promotes the alignment of
participants’ sense of goals’’ (Cross, 2009).

This putative ‘‘safe haven’’ aspect of human musicality is
similar to some of the behavioral effects elicited by oxytocin
and further supports the proposed close links between music
and oxytocinergic systems. Although not evident in all trials
(Donadon et al., 2018), many studies have reported that
exogenous delivery of oxytocin has anxiolytic and calming effects
on human behavior (Neumann and Slattery, 2016; Wang et al.,
2017; Lancaster et al., 2018; Yoon and Kim, 2020), enhancing
the detection of threat (Lischke et al., 2012; Bredewold and
Veenema, 2018) and facilitating the extinction of fearful or
distressing memories (Kirsch et al., 2005; Hu et al., 2019; Koch
et al., 2019; Triana-Del Río et al., 2019). Indeed, endogenous
oxytocin levels are reduced in individuals with emotional trauma
and in sufferers of posttraumatic stress disorder (PTSD; e.g.,
Frijling et al., 2015) and the administration of oxytocin may
prove to be a useful therapeutic strategy (Giovanna et al., 2020).
The acquisition and processing of autobiographical experiences,
including fear and extinction, involves the hippocampus and
ventromedial prefrontal cortex (Bonnici and Maguire, 2018;
Dunsmoor et al., 2019) as well as interactions with the amygdala
(Dunsmoor et al., 2019; Hasan et al., 2019). Activity in all
these regions is associated with aspects of both musical and
oxytocinergic processing. Concerning extinction, reducing the
emotional impact of remembering fearful and threatening events
involves substitution with novel, less impactful memories during
the retrieval and reconsolidation process, a process facilitated
by oxytocin (Hu et al., 2019; Triana-Del Río et al., 2019) and
one that may also be aided by participation in the safe, neutral
andmotivatingmental space evoked by communal music-related
activities. In this context, music therapy has been suggested as
a possible treatment for PTSD (Beck et al., 2018), and its use
in association with oxytocin administration may prove even
more beneficial.
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Of the many endogenous opioids, β-endorphin—which may
be raised by social music-making—has been implicated in
resilience, stress, and PTSD (Bali et al., 2015) as has the
neuropeptide nociceptin (Tollefson et al., 2017; Narendran
et al., 2019). Nociceptin receptor polymorphisms have been
linked to the severity of PTSD, but unlike β-endorphin, no
relationship to music has been examined. Finally. there is
also evidence of an important role for dopamine in the
pathophysiology of PTSD (Lee et al., 2017; Torrisi et al., 2019)
with potential interaction with oxytocinergic systems (Zhang
et al., 2019), further strengthening the suggestion about the
potential usefulness of music therapy given the known impact
that music has on dopaminergic motivation and reward systems
in the human brain (Chanda and Levitin, 2013; Zatorre and
Salimpoor, 2013; Ferreri et al., 2019).

Learning, Social Memory, and
Hippocampal Plasticity
In children, some degree of music training has a significant
impact on brain structure and plasticity as well as having a
positive influence on social, empathic, cognitive and academic
development (e.g., Schlaug et al., 2009; Kirschner and Tomasello,
2009; Schellenberg et al., 2015; Habibi et al., 2018; Sachs
et al., 2018; de Manzano and Ullén, 2018; Guhn et al., 2020).
Learning to play an instrument requires the recruitment of
many sensorimotor systems and circuits, and many studies have
reported that music training has beneficial effects on various
executive functions and some types of memory, benefits that are
maintained throughout a person’s lifetime and may be protective
against cognitive decline (Talamini et al., 2017; Mansens et al.,
2018). Once again there are several intriguing and potentially
important links between music training, music-related activities,
and the neuroscience of oxytocin, in this case, the links that are
relevant to memory and aging, with dance and exercise adding
an additional dimension to the discussion. Oxytocin’s effects on
social recognition, learning, and memory are associated with
activity in the hippocampus, amygdala, nucleus accumbens,
and prefrontal cortex (e.g., Ferguson et al., 2002; Hurlemann
et al., 2010; Mitre et al., 2016; Grinevich and Stoop, 2018;
Jurek and Neumann, 2018; Lin and Hsu, 2018; Lin et al., 2018;
Lopatina et al., 2018; Cilz et al., 2019; Tan et al., 2019; Raam,
2020; Xu et al., 2020). In the following discussion, the focus is
primarily on the hippocampus, given its role in consolidating,
integrating and retrieving personal autobiographical memories
(Bonnici and Maguire, 2018; Sheldon et al., 2019). There is
a huge literature on hippocampal connectivity and plasticity
related to these dynamic and transformational processes—the
emphasis here will be limited to several aspects of social learning
and memory perhaps most relevant to a review of music
and oxytocin.

Music activates diverse regions and circuits within the
CNS including, depending on context and emotional valence,
essentially the same limbic structures that are responsive to
oxytocin (Boso et al., 2006; Koelsch, 2014, 2018). Music training
and practice improves memory (Talamini et al., 2017; Mansens
et al., 2018) and affects the architecture and organization of
both gray and white matter in the brain (de Manzano and

Ullén, 2018). Of particular relevance here is the positive effect
that music training has on gray matter volume and plasticity
in the hippocampus (Herdener et al., 2010), and whether
this may be in some way related to increased endogenous
oxytocin and reduced cortisol levels in individuals involved in
musical activities—by what mechanisms could music, memory
and oxytocin be linked? Acting through its receptor, oxytocin
can act both pre-and postsynaptically to enhance LTP, alter
the balance of excitatory and inhibitory activity, and modulate
synaptic plasticity (Tomizawa et al., 2003; Lee et al., 2015;
Bakos et al., 2018; Lin and Hsu, 2018; Tirko et al., 2018),
These are all critical elements during the process of learning,
socialization and memory consolidation (Ferguson et al., 2000;
Lin et al., 2018), and intranasal application of the peptide at low
doses is known to enhance social memory in human subjects
(Jurek and Neumann, 2018).

Neurogenesis
The hippocampal dentate gyrus appears to be one of the few
sites in the adult mammalian CNS where new neurons are born
throughout life (neurogenesis). This ongoing process is thought
to be important in learning and in facilitating the addition of
newmemories onto similar previous experiences and knowledge,
minimizing overlap in the resultant patterns of activity so that
particular events can be discriminated from each other (e.g.,
Conçalves et al., 2016; França et al., 2017; Alam et al., 2018;
Toda and Gage, 2018; Licht et al., 2020). In animals, experimental
disruption of neurogenesis impairs social memory and coping
with stress (Clelland et al., 2009; Garrett et al., 2015; Alam et al.,
2018). Social interactions enhance new neuronal birth (Hsiao
et al., 2014) whereas social isolation and stress-related changes
that include increased cortisol levels lead to a reduction in
neurogenesis (McEwen, 1999; Cinini et al., 2014; Opendak et al.,
2016; Snyder and Drew, 2020), negatively affecting cognition,
learning, and memory (Ouanes and Popp, 2019).

Oxytocin protects the hippocampus from stress-related effects
including the negative impact of corticosterone treatment and
directly induces neurogenesis in the adult rodent dentate gyrus
(Lee et al., 2015; Sánchez-Vidaña et al., 2016; Lin et al., 2017; Lin
and Hsu, 2018). The peptide also promotes the differentiation
and dendritic maturation of these new neurons with associated
effects on social behavior (Sánchez-Vidaña et al., 2016). This
influence of oxytocin on hippocampal neurogenesis and social
learning is indirectly enhanced by the peptide’s actions in
increasing BDNF expression (Dayi et al., 2015; Havranek et al.,
2015; Zhang et al., 2020). This neurotrophin plays a key role
in hippocampal plasticity and neurogenesis (Miranda et al.,
2019). Its expression in the hippocampus is negatively affected
by stress (Bennett and Lagopoulos, 2014; Dayi et al., 2015)
but is significantly increased by physical exercise (Ding et al.,
2011). In animals, increased BDNF levels are correlated with
increased neurogenesis, the greater the amount of exercise the
greater the proliferation of new neurons (reviewed in Liu and
Nusslock, 2018). Indeed, it was recently shown that intense
physical activity releases breakdown products from the muscle
that act on promoters to increase BDNF gene expression and
protein (Sleiman et al., 2016; Stephan and Sleiman, 2019).
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There remains some controversy as to whether new neurons
are born and survive within the adult human dentate gyrus
(Sorrells et al., 2018; Duque and Spector, 2019); however, the
weight of evidence and opinion is that neurogenesis and neuronal
turnover does occur (Spalding et al., 2013; Boldrini et al., 2018;
Kempermann et al., 2018; Kuhn et al., 2018; Cope and Gould,
2019; Horgusluoglu-Moloch et al., 2019; Lima and Gomes-Leal,
2019; Petrik and Encinas, 2019; Tobin et al., 2019; Lucassen
et al., 2020), although estimates of the number of neurons
born each day vary, and numbers may decline with age and
disease (Moreno-Jiménez et al., 2019; Snyder, 2019). It is however
clear that exercise and cardiovascular fitness are correlated with
increased hippocampal volume and improved cognitive function
(Erickson et al., 2011; Stillman et al., 2016). Furthermore, while it
is not yet known if such changes are associated with enhanced
neurogenesis, hippocampal size in humans is correlated with
plasma BDNF levels (Erickson et al., 2011).

It is well established that neural activity in the hippocampus
and other parts of the limbic system is altered by listening to
music. Given this, and what is known about the effects of music
on hormones such as oxytocin and cortisol, it will be of interest to
determine if participation in musical activities influences human
hippocampal neurogenesis (Fukui and Toyoshima, 2008), and
how this might relate to the known beneficial effects of music on
memory and cognition. Such activities should include movement
and dance which are entrained within the diverse neural
networks responsive to music (e.g., Brown et al., 2006; Phillips-
Silver and Trainor, 2007; Nozaradan et al., 2011). Dance not only
increases cooperation and group synchrony (Reddish et al., 2013;
Karpati et al., 2016; Chauvigné et al., 2019) but improves fitness
in the elderly (Douka et al., 2019). Measurement of oxytocin,
cortisol, and BDNF in dancers seems warranted, and it may
well be that, in addition to potential oxytocin-mediated effects,
exercise and cardiovascular fitness associated with dancing are
capable of adding an important extra dimension to the social,
physical and mental health benefits of music appreciation and
music-related activities, perhaps especially in the elderly.

Systemic Effects—Further Links Between
Oxytocin and Musicality
In addition to its physiological effects on CNS function, oxytocin
has been reported to have even broader health benefits. The
peptide decreases the progression of atherosclerosis and protects
against cardiovascular disease (Reiss et al., 2019; Wang et al.,
2019; Buemann and Uvnäs-Moberg, 2020), in association with
social engagement (Ulmer-Yaniv et al., 2016; Walker et al.,
2019) it has beneficial effects on the immune system, and
it lowers cytokine levels and inhibits inflammation (Li et al.,
2017b; Reiss et al., 2019). Oxytocin has also been reported to
regulate appetite and food intake (Lawson et al., 2019; Onaka and
Takayanagi, 2019; Quintana et al., 2019). Associated with these
multiple beneficial effects, the peptide has been found to lower
blood pressure and assist in maintaining glucose homeostasis,
potentially useful as a therapeutic tool in the treatment of type
2 diabetes and obesity (Reiss et al., 2019). Again, many of these
systemic oxytocinergic effects overlap those that can be elicited
by listening to and/or performing music, including a reduction

in blood pressure, the modification of immune responses and
inflammatory markers, reduction of anxiety and stress and a
moderating effect on blood glucose levels (Koelsch and Jäncke,
2015; Finn and Fancourt, 2018; Kang et al., 2018). The potentially
additional benefits of music-related exercises such as dance have
already been alluded to in the preceding paragraphs.

CONCLUSION AND THERAPEUTIC
IMPLICATIONS

Given what is increasingly becoming known about the
neurological and systemic effects of oxytocin, it is important
to analyze further how music and dance influence this peptide
and its downstream pathways, and the extent to which social
musical activities drive some of the interactions between oxytocin
and other neuromodulatory systems such as dopamine, BDNF,
and the various endogenous opioids. From an evolutionary
perspective, it may clarify the extent to which evolving
musical capabilities in modern humans took advantage of the
ancient oxytocinergic network to facilitate prosocial interactions,
promote trust and reciprocal affiliative behaviors, and help
reduce levels of anxiety and individual insecurity throughout
life. It will also contribute to a better understanding of the
mechanisms that underlie the mental and general health benefits
of music, its remarkable emotional and mnemonic power, it’s
capacity to alter brain architecture, and its ability to revitalize
episodic memories (Zhang et al., 2017; Särkämö and Sihvonen,
2018), especially vulnerable in early stages of Alzheimer’s disease
(Groussard et al., 2019; Slattery et al., 2019).

From a therapeutic perspective, dancing is already a useful
tool in the treatment of Parkinson’s disease (Pereira et al.,
2019); perhaps for some dementia sufferers, in addition to
singing, dancing to favorite tunes may be even more beneficial
when promoting social interactions with partners and unlocking
autobiographical memories. Similarly, the use of intranasal
oxytocin as a therapeutic tool in conditions such as PTSD
shows promise (Giovanna et al., 2020) and may be even more
effective when used with other treatments including combination
with appropriate prosocial music-related activities. As another
example, the combined use of music and the anti-nociceptive
properties of oxytocin may enhance the therapeutic efficacy
of strategies aimed at reducing the perception of chronic
(Garza-Villarreal et al., 2017; Hilfiger et al., 2020; Schneider
et al., 2020) or peri-operative pain (Nilsson et al., 2005,
2009; Nilsson, 2009; Van der Heijden et al., 2015). Last but
not least, the use of oxytocin in the treatment of autism
spectrum disorders (Yamasue and Domes, 2018) and other
psychiatric conditions (Peled-Avron et al., 2020) may benefit
from synergistic application with appropriate music-related
therapeutic strategies (Quintin, 2019).

AUTHOR’S NOTE

During revision of this manuscript, a review was published
that emphasized the importance of studying the biology
of oxytocin systems in animals to better understand the
translational potential of this peptide in psychiatry and
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mental health (Grinevich and Neumann, 2020). The
reader is encouraged to access this review to complement
the more focussed emphasis on human musicality
described herein.
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