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Increasing rates of antimicrobial-resistant organisms have focused attention on sink drainage systems as reservoirs for hospital-
acquired Gammaproteobacteria colonization and infection. We aimed to assess the quality of evidence for transmission from this 
reservoir. We searched 8 databases and identified 52 studies implicating sink drainage systems in acute care hospitals as a reservoir 
for Gammaproteobacterial colonization/infection. We used a causality tool to summarize the quality of evidence. Included studies 
provided evidence of co-occurrence of contaminated sink drainage systems and colonization/infection, temporal sequencing com-
patible with sink drainage reservoirs, some steps in potential causal pathways, and relatedness between bacteria from sink drainage 
systems and patients. Some studies provided convincing evidence of reduced risk of organism acquisition following interventions. 
No single study provided convincing evidence across all causality domains, and the attributable fraction of infections related to sink 
drainage systems remains unknown. These results may help to guide conduct and reporting in future studies.
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Gammaproteobacteria are members of a bacterial class that in-
cludes the Enterobacteriaceae, Pseudomonas species, and other 
nonfermenting gram-negative bacilli [1]. These organisms 
thrive in moist or wet environments and are an important cause 
of health care–associated infections [2–5].

Guidelines for health care facility design mandate that 
sinks be placed in acute care facilities to promote hand hy-
giene and protect patients from hospital-acquired infections 
[6–8].

It has become accepted that Legionella species in potable 
water and other Gammaproteobacteria contaminating sink 
faucets in hospitals may pose risk to patients [9–12]. There are 
also decades of studies that document an association between 
Gammaproteobacteria from sink drainage systems (including 
from sink drains, traps, drainpipes, and/or air samples above 
sink drainage outflow) and hospital-acquired colonization 

or infection of patients or health care workers [13–21]. The 
first suggestions to heat sink traps or modify sink construc-
tion to reduce splashing were made more than 40  years ago 
[22]. Despite this, it is only the increasing transmission of 
carbapenem-resistant organisms in hospitals that has refocused 
attention on the possible role of sink drainage systems as a res-
ervoir [20, 21, 23, 24]. Some hospitals have become convinced 
of the importance of sinks as a reservoir for hospital-acquired 
Gammaproteobacterial infections and have removed them en-
tirely from their intensive care units [25]. However, much of the 
evidence suggesting that sink drainage systems are reservoirs is 
circumstantial, and directionality of contamination of sinks and 
colonization or infection of patients is challenging to establish 
[25–28].

RATIONALE

The quality of evidence for causality of sink drainage systems as 
reservoirs for hospital-acquired Gammaproteobacterial coloni-
zation or infection has not been objectively evaluated.

OBJECTIVES

The objective of this study was to systematically assess the 
quality of evidence that Gammaproteobacteria in sink drainage 
systems represent a reservoir for colonization or infection of pa-
tients or health care workers in acute care hospitals.
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METHODS

Protocol and Registration

This systematic review was prospectively registered with 
PROSPERO (CRD42015027811). The original protocol can 
be accessed at https://www.crd.york.ac.uk/prospero/display_
record.php?RecordID=27811.

Eligibility Criteria

Studies of any design were included if the authors presented 
data that led them to conclude that sink drainage systems in 
patient care areas of acute care hospitals were a reservoir for 
hospital-acquired Gammaproteobacteria colonization or infec-
tion of patients or health care workers. Studies that reported 
only on fungi, mycobacteria, or Legionella species were ex-
cluded, because the ecology of these organisms differs from that 
of other Gammaproteobacteria [27, 29]. Studies that focused 
only on water sources other than sink drainage systems were 
also excluded.

Search Strategies

A professional librarian (E.U.) ran searches in MEDLINE 
and EMBASE (OvidSP), CINAHL (EBSCOHost), Cochrane 
(Wiley), Aqualine (ProQuest), Scopus (ScienceDirect), BIOSIS, 
and Web of Science (Thomson Reuters) on October 6, 2016. 
Reference lists were reviewed to identify relevant citations. We 
used both subject headings and text words to search for articles 
on (bacteria or infection terms) AND (hospital departments) 
AND (sink or plumbing or hand hygiene terms). The results 
were not limited by language or publication year. Search strat-
egies are listed in the Supplementary Data.

Study Selection

One reviewer assessed eligibility by title, and 2 independent 
reviewers screened English, French, German, and Spanish ab-
stracts and full-text articles for eligibility (see the Supplementary 
Data for screening questions). Abstracts and full-text articles in 
other languages were read by 1 reviewer and discussed with an-
other investigator (C.V.). A third reviewer was used if consensus 
was not achieved among the first 2 reviewers. Reviewers were 
not blinded to author, institution, or journal.

Data Collection Process

Data were extracted independently from included articles by 2 
authors. For studies published between 2007 and 2016 where it 
was unclear which sink structure was cultured or implicated as 
causal in patient or health care worker colonization or infection, 
authors were contacted to try to obtain this information; studies 
were included if it was confirmed that criteria were met.

Data Items

Data were collected on study and population characteristics, 
sink design, sampling of sinks and other potential reservoirs, 

microbiologic methods, patient or health care worker colo-
nization or infection, sink drainage system interventions and 
co-interventions, and potential causal pathways for transmis-
sion of Gammaproteobacteria from sink drainage systems to 
patients and/or health care workers.

Quality Assessment

During data extraction, 2 reviewers applied the Modified 
CADDIS Tool for Causality Assessment of Sink Drains as 
a Reservoir for Hospital-Acquired Gammaproteobacterial 
Infection or Colonization (Supplementary Table 1) to assess 
the quality of evidence for causality of sink drainage systems 
as reservoirs. This tool was modified from a US Environmental 
Protection Agency online causality application using a modi-
fied Delphi process with experts in infection control and hos-
pital epidemiology [30, 31].

The Modified CADDIS tool includes 6 domains of evidence 
to evaluate the likelihood of a causal relationship: Spatial/
Temporal Co-occurrence, Temporal Sequence, Stressor–
Response Relationship, Causal Pathway, Evidence of Exposure 
and Biological Specificity, and Manipulation of Exposure. 
Within each domain, the scoring system contains phrasing that 
describes how evidence/findings influence the likelihood of cau-
sality of sink drainage systems in hospital-acquired infection or 
colonization (organism acquisition), with corresponding scores 
rated as (+++)/convincingly supports, (++)/strongly supports, 
(+)/somewhat supports, (0)/neither supports nor weakens, (-)/
somewhat weakens, (--)/strongly weakens, (---)/convincingly 
weakens, or (R)/refutes causality.

Synthesis of Results

Characteristics of studies were entered in duplicate, cleaned, 
and analyzed in Microsoft Excel using descriptive statistics. 
The quality of evidence to determine causality was summar-
ized using the Modified CADDIS tool scores and narrative de-
scription. Investigators’ hypotheses regarding potential causal 
pathways and the success of attempts to manipulate exposure 
to sink drainage systems and reduce organism acquisition were 
summarized.

RESULTS

We screened 39511 records and identified 52 studies that met 
the inclusion criteria (Figure  1) [13–23, 32–72]. The charac-
teristics of these studies are summarized in Table 1. All studies 
were conducted in acute care hospitals; 35/48 (73%) [13, 15, 
17–23, 33, 36–39, 41, 43, 45, 48, 49, 51, 52, 54–58, 60–62, 64, 65, 
69–72] were identified as tertiary care or university/teaching 
hospitals. Over half of studies (35/52, 67%) included intensive 
care units (ICUs) [14–19, 21–23, 32–34, 36, 38, 39, 41, 43, 45, 
48, 49, 51, 52, 54, 56–58, 60, 63, 64, 67–72].

The most common organisms involved were Pseudomonas 
aeruginosa (pyocyanea; 31/52, 60%) [14–18, 22, 34–36, 38, 
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41–50, 53, 54, 57, 58, 60, 61, 65, 66, 69, 70, 72] and Klebsiella 
pneumoniae (7/52, 13%) [21, 23, 39, 55, 62, 64, 67]. Reduced 
susceptibility or resistance of implicated bacteria to at least 1 
carbapenem antibiotic was reported in 21/52 (40%) studies [18, 
20, 21, 23, 33, 34, 39, 48, 51–53, 55, 58, 60, 62, 65, 67–70, 72], 
and carbapenemase production was reported in 12/52 (23%) 
[20, 21, 23, 33, 39, 55, 62, 65, 67–70].

The number of patients colonized or infected with 
Gammaproteobacteria that were also cultured from sink 
drainage systems was not consistently reported. Patients under-
went some screening for carriage, most commonly from rectal 
(19/52 studies, 37%) [15, 19, 21, 23, 36, 38, 39, 43–45, 50, 52, 55, 
56, 62, 68, 70–72], throat (14/52, 27%) [13, 15, 17, 22, 36, 37, 43, 

44, 50, 52, 56, 68, 70, 71], feces (8/52, 15%) [17, 35, 37, 40, 42, 46, 
67, 70], nasal (8/52, 15%) [13, 38, 39, 41, 42, 44, 50, 72], wound 
(7/52, 13%) [14, 36, 43, 47, 55, 60, 65], or sputum (7/52, 13%) 
[17, 22, 37, 44, 49, 65, 71] specimens. In the 16 studies that re-
ported numerator and denominator data for screening, 411/5932 
(6.9%) [14, 15, 17, 22, 23, 35, 37, 38, 40, 42–44, 55, 67, 68, 72] 
patients were colonized with the same Gammaproteobacterial 
species found in sink drainage systems, with a median (range) 
of 13.5% (0.01%–68.8%). However, not all cases were attributed 
to sink drainage systems. The mean or median time from admis-
sion or exposure to colonization or infection was reported by 
only 8 studies and ranged from 8 to 53 days (median, 17 days) 
[14, 23, 34, 50, 53, 55, 62, 68].

53 031 records identified
through MEDLINE and
EMBASE (OvidSP), CINAHL
(EBSCOHost, Cochrane
(Wiley), Aqualine (ProQuest),
Scopus (ScienceDirect),
BIOSIS and Web of  Science
(Thomson Reuters)

46 additional records
identified from references

39 511 records in title
screening

273 full texts assessed for
eligibility

244 English
10 German
3 French
8 Italian
3 Russian
2 Spanish
2 Chinese
1 Japanese

*Reasons for
exclusion by study
can be found in
Supplementary
Table 2

52 full texts included in review
(2 from screened references)

37 722 records excluded

1516 records excluded
1789 records in abstract
screening

1785 English
2 Italian
2 Russian

221 full-text articles excluded*:
Sink structure not specified (n = 60)
No sinks or unclear (n = 44)
Not specifically blamed (n = 42)
Other sink structure (n = 29)
No colonization/infection data (n = 12)
No positive sink cultures (n = 12)
Water only (n = 6)
Not in-patient setting (n = 5)
Unclear or no sink data (n = 4)
Same/similar data (n = 3)
Other water source (n = 1)
Unclear water source (n =1 )
Other language not reviewed (n = 1)
Letter (n = 1)

39 465 records after
duplicates removed

Figure 1.  Flow diagram results of literature search.
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Table 1.  Characteristics of Included Studies (n = 52)

Author, Country Study Dates Hospital Unit(s) Population Characteristics Bacteria Typing Methodsa

Cabrera [13], USA 1959–1960 Ward Neonatal F. meningosepticum Biotyping, serotyping

Kohn [50], England 1963–1964 Ward Medical-surgical, burn P. pyocyanea Serotyping, pyocin typing

Thomas [66], England 1970 OR Surgical P. aeruginosa, other gram-neg-
ative bacteria

Serotyping, phage typing

Teres [22], USA 1970–1972 ICU Medical-surgical P. aeruginosa Pyocin typing

Edmonds [14], USA 1971-1971 ICU Medical-surgical, burn P. aeruginosa Serotyping, pyocin typing, 
phage typing

Riser [59], England 1971–1976 Ward Medical-surgical K. aerogenes Serotyping

Breitfellner [35], Austria 1973–1974 Ward Neonatal, obstetric E. coli, P. aeruginosa Antibiotic susceptibility, 
serotyping

Brown [36], USA NS (pre-1977) ICU Neonatal P. aeruginosa Pyocin typing

Cooke [40], England NS (pre-1979) Ward Medical-surgical, neonatal K. aerogenes Serotyping

Gunther [47], Germany NS (pre-1980) Ward Medical, pediatric P. aeruginosa Pyocin typing

Levin [15], USA NS (pre-1984) ICU Medical-surgical P. aeruginosa Serotyping

Döring [43], Germany 1988–1989 ICU Medical-surgical P. aeruginosa Exotoxin A probing

Döring [42], Germany 1989–1989 Ward Medical, pediatric, immuno-
compromised

P. aeruginosa Exotoxin A probing

Döring [44], Germany 1992–1992 Ward Medical P. aeruginosa, B. cepacia PFGE

Kerr [16], Ireland 1993-1993 ICU Medical P. aeruginosa RAPD PCR

Bert [34], France 1995–1997 ICU Surgical P. aeruginosa PFGE

Berthelot [17], France 1995–1996 ICU Medical-surgical, mechanically 
ventilated

P. aeruginosa PFGE

Pitten [58], Germany 1997–1998 ICU, ward Medical-surgical P. aeruginosa PFGE

Gillespie [46], Scotland 1997–1998 Ward Medical, immunocompromised P. aeruginosa PFGE

Lowe [19], Canada 1997–2011 ICU, ward Medical-surgical K. oxytoca PFGE

Orrett [57], Trinadad 1998–1998 ICU Surgical, neonatal P. aeruginosa Antibiotic susceptibility

Ahmad [32], Pakistan 1998–2002 ICU, ward Medical, pediatric B. cepacia Antibiotic susceptibility

Sissoko [63], Germany 2002–2004 ICU Medical Gram-negative bacteria Typing not reported

Hota [18], Canada 2004–2006 ICU Medical-surgical, immunocom-
promised

P. aeruginosa PFGE

La Forgia [51], USA 2004–2008 ICU Medical-surgical A. baumanii Restriction endonuclease 
of genomic DNA

Johansson [49], Sweden 2004–2009 ICU, ward Medical-surgical, immunocom-
promised

P. aeruginosa PFGE, MLVA

Schneider [61], Germany 2004–2010 Ward Medical, pediatric, immuno-
compromised

P. aeruginosa RAPD PCR

Cholley [38], France 2006–2006 ICU Medical-surgical P. aeruginosa PFGE

Longtin [54], Switzerland 2006–2008 ICU Medical-surgical P. aeruginosa PFGE

Inglis [48], Australia 2006–2008 ICU, ward Medical-surgical P. aeruginosa PFGE

Tofteland [67], Norway 2007–2010 ICU Medical-surgical K. pneumoniae PFGE

Maltezou [56], Greece 2007–2010 ICU Neonatal S. marscecens PFGE

Salimi [60], Iran 2008–2008 ICU Medical-surgical, burn P. aeruginosa PFGE

Landelle [52], France 2008–2009 ICU, ward Medical-surgical A. baumanii PFGE

Stjarne Aspelund [65], 
Sweden

2008–2015 Ward Medical P. aeruginosa PFGE

Ling [53], Singapore 2009–2009 Ward Medical, immunocompromised P. aeruginosa PFGE

Vergara Lopez [68], Spain 2009–2011 ICU Medical-surgical K. oxytoca PFGE

Kotsanas [23], Australia 2009–2012 ICU Medical-surgical S. marscecens, 
K. pneumoniae, E.cloacae, 
E. coli

PFGE

Willmann [70], Germany 2009–2013 ICU, ward Medical, immunocompromised P. aeruginosa WGS

Starlander [64], Sweden 2010 ICU Surgical K. pneumoniae PFGE

Zhou [72], China 2011–2011 ICU Surgical P. aeruginosa PFGE

Amoureux [33], France 2011–2012 ICU, ward Medical-surgical, pediatric A. xylosoxidans PFGE

Wolf [71], the Netherlands 2011–2012 ICU NS ESBL-producing  
gram-negative bacilli

AFLP

Lowe [55], Canada 2011–2012 Ward Medical-surgical K. pneumoniae PFGE

Chapuis [37], France 2011–2013 Ward Medical, immunocompromised E. cloacae PFGE

Leitner [20], Austria 2011–2013 Ward Medical K. oxytoca MLST, rep-PCR

Fusch [45], Canada 2011–2013 ICU Neonatal P. aeruginosa Typing not reported
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Health care workers were screened for carriage of 
Gammaproteobacteria from hands in 11 (21%) [13, 14, 22, 36, 
40, 42, 44, 48, 57, 58, 72], throat in 5 (10%) [13, 50, 56, 66, 68], 
nose in 4 (8%) [13, 42, 50, 66], rectum in 2 (4%) [56, 68], feces 
in 2 (4%) [35, 42], hair in 1 (2%) [14], and nasopharynx in 1 
(2%) [14] of 52 studies. Where the anatomical site was specified, 
cultures were positive for the same Gammaproteobacteria spe-
cies found in sink drainage systems from hands in 5/11 (45%) 
[22, 36, 40, 42, 44], stool in 1/2 (50%) [42], and 1 nasopharyn-
geal swab in a single study [14]. However, methods of sampling 
and timing relative to handwashing varied, and only 1 study 
used adequately discriminatory typing (pulsed field gel electro-
phoresis) to determine that the strain of P. aeruginosa cultured 
from health care worker hands matched that sampled from sink 
drainage systems [44]. These cultures were obtained after hand 
disinfection and then washing in sinks known to be contamin-
ated [44].

Most studies implicated more than 1 sink in transmission, 
though a single sink was deemed the culprit in 12 of 52 (23%) 
studies [13, 21, 32, 39, 41, 51, 55, 57, 60, 62, 64, 68]. Bacterial 
cultures were performed of drains in 37 (71%) [14–16, 18–21, 
23, 32, 33, 36, 37, 40–44, 46–49, 51, 53–56, 58–61, 64–69, 71], 
traps in 21 (40%) [13, 17, 18, 22, 34, 35, 38, 39, 47, 48, 50–52, 
57, 61–63, 66, 68, 70, 72], drainpipes in 2 (4%) [65, 68], and 
adjacent air in 4 (8%) [22, 43, 45, 63] of 52 studies. In 32 (62%) 
[14–20, 23, 32, 35, 36, 39–41, 46–48, 50–56, 58, 59, 65, 66,  
68–70, 72] studies, at least 1 other sink structure was sampled, 
including (with number and percentage of studies with at least 
1 positive culture) the adjacent rim or counter (3/3, 100%) [19, 
59, 69], splash-backs (1/1, 100%) [41], sink basins (6/7, 86%) 
[14, 19, 35, 50, 51, 68, 70], overflows (3/4, 75%) [17, 20, 47, 68], 
faucets (6/20, 30%) [14, 18, 23, 32, 39, 46–48, 50–56, 58, 65, 66, 
68, 72], and/or faucet aerators (2/6, 33%) [15, 19, 39, 41, 48, 65]. 
Water was sampled from the faucet in 19/52 (37%) studies and 
was culture positive in 26% (5/19) [17–19, 34, 37–39, 45, 49, 52, 
54, 56–58, 60, 65, 68, 69, 72].

Environmental sampling of potential sources other than 
sinks was reported in 45/52 (87%) studies [13–23, 32–37,  
39–44, 46, 47, 49–62, 66–70, 72], and 1 or more of these were 

found to be positive in 26 (58%) studies [13–16, 18, 20, 22,  
33–35, 37, 40, 42, 46, 47, 49, 50, 52, 58, 59, 62, 66, 68–70, 72]. 
The following nonsink sites were sampled in at least 5 studies, 
and their percent positivity for implicated bacteria was as fol-
lows: showers (9/12, 75%) [18, 20, 33, 37, 42, 44, 46, 49, 53, 58, 
62, 70], air or settle plates not described in relation to sinks (3/6, 
50%) [13, 14, 36, 40, 50, 52], toilets (3/9, 33%) [22, 33, 35, 37, 
42–44, 46, 70], trolleys/carts, table/countertops, or desks (3/10, 
30%) [14, 17, 18, 21, 32, 37, 52, 55, 69, 72], disinfectants or their 
dispensers (2/8, 25%) [19, 32, 35, 54, 56, 60, 61, 66], ventilatory 
apparatus (3/11, 27%) [16, 18, 21, 22, 51, 52, 54, 55, 57, 58, 68], 
other respiratory equipment (3/15, 20%) [14–19, 32, 36, 40, 52, 
54, 56–58, 68], beds or bedrails (2/10, 20%) [14, 15, 17, 21, 22, 
32, 37, 52, 55, 72], and intravenous monitors or poles (0/5, 0%) 
[15, 18, 52, 55, 72].

There were limited data on sink design features considered 
to influence transmission of Gammaproteobacteria from sink 
drainage systems to patients. Six studies reported that water 
outflow from faucets was directed onto the drain [18, 20, 23, 
37, 61, 65], 2 studies reported shallow sink basins [18, 23], and 
6 studies described the use of aerators in faucets [15, 19, 39, 41, 
48, 65].

Causality Assessment 
Spatial/Temporal Co-occurrence
All 52 studies provided some evidence in support of a spatial or 
temporal co-occurrence of contaminated sink drainage systems 
and organism acquisition (Table  2). Thirty-six (69%) studies 
reported on specific sink locations [13, 16–21, 33–39, 42–47, 
51, 53, 55, 58, 59, 61, 63–72], which in 32 (89%) included sinks 
located directly within the patient room [16–21, 33–39, 42–47, 
51, 53, 55, 58, 63–65, 67–72].

Temporal Sequence
Twenty (38%) studies provided some evidence that patient or 
health care worker exposure to contaminated sink drainage 
systems was present before they were found to be colonized 
or infected with the implicated organism. Most studies did 
not collect or report adequate data to establish a temporal 
sequence.

Author, Country Study Dates Hospital Unit(s) Population Characteristics Bacteria Typing Methodsa

Wendel [69], Germany 2011–2014 ICU, ward Medical-surgical P. aeruginosa PFGE

Clarivet [39], France 2012–2014 ICU Medical-surgical K. pneumoniae PFGE, rep-PCR

Pantel [21], France 2012–2014 ICU, OR NS K. pneumoniae MLST, rep-PCR

Seara [62], Spain 2013–2014 NS Medical-surgical K. pneumoniae PFGE

Davis [41], Australia 2013–2014 ICU Neonatal P. aeruginosa WGS

Abbreviations: ESBL, extended-spectrum beta lactamase; ICU, intensive care unit; NS, not specified; OR, operating room.
aTyping method examples and their relative discriminatory power based on consensus evaluation by microbiologists and infection control practitioners: Adequately discriminatory: PFGE, 
pulsed field gel electrophoresis; RAPD PCR, random amplified polymorphic DNA polymerase chain reaction; RFLP, restriction fragment length polymorphism; WGS, whole-genome 
sequencing. Less discriminatory: AFLP, amplified fragment length polymorphism; ERIC PCR, enterobacterial repetitive intergenic consensus polymerase chain reaction; MLEE, multilocus 
enzyme electrophoresis; MLST, multilocus sequence typing; MLVA, multiple locus variable number tandem repeat analysis; rep-PCR, repetitive element palindromic polymerase chain reac-
tion; VNTR, variable number tandem repeat. Inadequate: phage typing, biotyping, antibiotic susceptibility pattern, pyocin typing.

Table 1.  Continued
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Table 2.  Summary Table of Scores for 2 Raters Applying the Modified CADDIS to 52 Articles Included in a Systematic Review

Study
Spatial/Temporal 
Co-occurrence

Temporal 
Sequence

Stressor–Response 
Relationship Causal Pathwaya

Evidence of Exposure and 
Biological Specificityb

Manipulation of 
Exposure

Hota [18] + 0 0 + ++ +++ 

Bert [34] + 0 0 + ++ +++

Schneider [61] + 0 0 0 ++ +++

Stjarne Aspelund [65] + 0 0 0 ++ +++

Tofteland [67] + 0 0 0 ++ +++

Vergara Lopez [68] + 0 0 0 ++ +++

Wolf [71] + ++ 0 0 0 +++

Sissoko [63] + 0 0 + 0 +++

Cabrera [13] + ++ 0 + 0 +++

Chapuis [37] + ++ 0 0 ++ +

Clarivet [39] + ++ 0 0 ++ +

Longtin [54] + ++ 0 0 ++ +

Lowe [19] + ++ 0 0 ++ +

Lowe [55] + ++ 0 0 ++ +

Davis [41] + 0 0 + ++ +

Landelle [52] + 0 0 + ++ +

Starlander [64] + 0 0 + ++ +

Wendel [69] + 0 0 + ++ +

Gillespie [46] + 0 0 0 ++ +

Johansson [49] + 0 0 0 ++ +

La Forgia [51] + 0 0 0 ++ +

Ling [53] + 0 0 0 ++ +

Maltezou [56] + 0 0 0 ++ +

Pitten [58] + 0 0 0 ++ +

Seara [62] + 0 0 0 ++ +

Willmann [70] + 0 0 0 ++ +

Leitner [20] + 0 0 0 + +

Pantel [21] + 0 0 0 + +

Riser [59] + 0 0 + 0 +

Thomas [66] + 0 0 + 0 +

Ahmad [32] + 0 0 0 0 +

Breitfellner [35] + 0 0 0 0 +

Fusch [45] + 0 0 + 0 +

Orrett [57] + 0 0 0 0 +

Döring [44] + ++ 0 + ++ 0

Berthelot [17] + ++ 0 0 ++ +

Zhou [72] + ++ 0 0 ++ 0

Cholley [38] +  ++ 0 0 ++ 0

Amoureux [33] + 0 0 0 ++ 0

Inglis [48] + 0 0 0 ++ 0

Kerr [16] + 0 0 0 ++ 0

Kotsanas [23] + 0 0 0 ++ 0

Salimi [60] + 0 0 0 ++ 0

Döring [42] + ++ 0 + + 0

Brown [36] + ++ 0 + 0 0

Cooke [40] + ++ 0 + 0 0

Döring [43] + ++ 0 + + 0

Teres [22] + ++ 0 + 0 0

Edmonds [14] + ++ 0 0 0 0

Gunther [47] + ++ 0 0 0 0

Levin [15] + ++ 0 0 0 0

Kohn [50] + ++ 0 0 0 0

*The original Causal Analysis/Diagnosis Decision Information System (CADDIS) Summary Table of Scores can be found at https://www.epa.gov/caddis-vol1/summary-tables-scores [31].

+++ convincingly supports, ++ strongly supports, + somewhat supports, 0 neither supports nor weakens, - somewhat weakens, -- strongly weakens, --- convincingly weakens, or (R)/
refutes causality.
aCausal pathway example: bacterial transmission from sinks splashing onto health care workers’ hands, and then to patients. See Döring et al. [44].
bEvidence of Exposure and Biological Specificity is based on adequacy of typing methods employed (Supplementary Table 1).

https://www.epa.gov/caddis-vol1/summary-tables-scores
http://academic.oup.com/ofid/article-lookup/doi/10.1093/ofid/ofaa590#supplementary-data
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Stressor–Response Relationship
No study presented clear evidence that the likelihood of or-
ganism acquisition differs in relation to duration of exposure or 
degree of sink drainage system contamination, with the excep-
tion of those where differences appeared to be due to a direct 
effect of manipulation of exposure (see below).

Causal Pathway
Hypothetical causal pathways were mentioned in 36 of 52 
(69%) studies, most commonly involving splash-back of drain 
contents to health care worker hands, fomites, or surroundings 
(Table 3). Seventeen (47%) of these studies demonstrated 1 or 
more potential steps in corresponding causal pathway(s) [13, 
18, 22, 34, 36, 40–45, 52, 59, 63, 64, 66, 69]. These included pos-
itive cultures from health care worker hands (n  =  5) [36, 40, 
42–44], positive water cultures from contaminated sinks used 
for patient care (n  =  1) [34], or findings that suggest splash, 
aerosolization, or leak of bacteria from contaminated sink 
drainage systems onto taps, surroundings, or fomites (n = 12) 
[13, 18, 22, 40, 41, 45, 52, 59, 63, 64, 66, 69].

Evidence of Exposure and Biological Specificity
Thirty-two (62%) studies utilized adequately discriminatory 
typing methods (based on consensus evaluation by microbiol-
ogists and infection control practitioners) (Supplementary Table 1) 
to identify that the organisms cultured from sink drainage systems 
and colonized or infected patients or health care workers were the 
same or closely related [16–19, 23, 33, 34, 37–39, 41, 44, 46, 48, 49, 
51–56, 58, 60–62, 64, 65, 67–70, 72]. Among these, 2 used whole-
genome sequencing [41, 70]. None of the 10 studies published be-
fore 1990 used adequately discriminatory typing methods.

There were 319 colonized or infected patients with isolates 
reported as matching those recovered from sink drainage sys-
tems in the 35 (67%) studies that provided these data. In the 13 
studies that used adequately discriminatory typing methods to 
determine the proportion of colonization or infection related to 
sink drainage systems, a median (range) of 75% (7%–100%) of 

colonized or infected patients had isolates matched to bacteria 
from contaminated sink drainage.

Manipulation of Exposure
Attempts to manipulate exposure to sink drainage systems were 
made in 40 (77%) studies (Table  4; Supplementary Table 3), 
most commonly by cleaning or replacing some or all parts of 
the sink or its drainage system [13, 17–23, 32, 34, 35, 37, 39, 
41, 42, 45, 46, 48–59, 61–71]. In 9 (23%) of these studies, or-
ganism acquisition appeared to be affected by the manipula-
tion, and there were no reported co-interventions (“+++” under 
Manipulation of Exposure in Table 2) [13, 18, 34, 61, 63, 65, 67, 
68, 71]. In 26 (65%) of these studies, 1 or more sink drainage 
system interventions were reported to be successful, but there 
were co-interventions rendering assessment of effect chal-
lenging, or the evidence was not convincing because too few 
data were presented (“+” under Manipulation of Exposure in 
Table  2) [17, 19–21, 32, 35, 37, 39, 41, 45, 46, 49, 51–59, 62, 
64, 66, 69, 70]. In 1 study, all trialed interventions were unsuc-
cessful [23], and in another the effect of sink drainage system 
manipulation was unclear [48]. In 3 other studies the authors 
reported some success in reducing drain contamination, but 
data to support a reduction in organism acquisition were not 
provided [22, 42, 50]. In addition to frequent co-interventions, 
short or unclear duration of follow-up in many studies limited 
interpretation of findings.

DISCUSSION

Summary of Evidence

When applying the Modified CADDIS tool to the 52 included 
studies, for each domain other than the stressor response domain 
there was >1 study with evidence supporting causality of sink 
drainage systems in hospital-acquired Gammaproteobacterial 
colonization or infection. However, even after excluding the 
stressor response domain, no single study provided supporting 
evidence for all remaining Modified CADDIS domains. As each 

Table 3.  Hypothetical Causal Pathways Between Sink Drainage and Patient or Health Care Worker Colonization or Infection

Hypothetical Causal Pathways
Number of Studies That Mention This 

Causal Pathway (References)

Number of Studies That Demonstrate 1 or 
More Potential Steps in This Causal Pathway 

(References)

Direct patient use of sinks with contaminated drains 6 [20, 33, 37, 42, 53, 61]  

Water from sinks with contaminated drains used in relation to 
patient care activity

1 [34] 1 [34]

Contamination of health care personnel hands or gowns during 
use of sinks with contaminated drains, and subsequent trans-
mission to patients

24 [13, 15, 17, 18, 22, 23, 32, 33, 35–37, 
39, 40, 42–44, 50, 51, 63, 66, 67, 71, 72]

5 [36, 40, 42–44]

Splash or aerosolization of bacteria from contaminated sink drains 
into taps

1 [66] 1 [66]

Splash, aerosolization, or leak of bacteria from contaminated sink 
drains onto surroundings/fomites

19 [13, 14, 17, 18, 23, 32, 37, 40, 41, 45, 
51, 52, 59, 62–64, 67–69, 71, 72]

11 [13, 18, 22, 40, 41, 45, 52, 59, 63, 64, 69]

Splash or aerosolization of bacteria from contaminated sink drains 
directly onto patients

3 [18, 35, 39]  

http://academic.oup.com/ofid/article-lookup/doi/10.1093/ofid/ofaa590#supplementary-data
http://academic.oup.com/ofid/article-lookup/doi/10.1093/ofid/ofaa590#supplementary-data
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domain is necessary but not sufficient to assess causality, this 
limits the overall causality assessment.

It is not surprising that there was evidence of a spatial and/
or temporal co-occurrence of contaminated sink drainage sys-
tems and acquisition of Gammaproteobacteria in studies that 
implicate sink drainage systems, although many studies did not 
report the specific sink location. While some studies have docu-
mented splash distance from sinks, the risk to patients in rela-
tion to sink proximity is not known and presumably depends 
on the causal pathway responsible for transmission. Among the 
other domains, changes in rates of organism acquisition with 
manipulation of sink drainage systems, typing to ensure organ-
isms in sink drainage and patients are the same or closely re-
lated, and demonstration of a temporal sequence of exposure to 
contaminated sink drainage systems before organism acquisi-
tion would seem likely to provide the most support for causality 
when present. However, no single study provided evidence that 

strongly or convincingly supported causality of sink drainage 
systems across all of these important domains.

Evidence for a temporal sequence of sink drainage system 
contamination before organism acquisition by a patient or 
health care worker may be lacking in many studies because 
most institutions do not perform routine screening for bac-
teria in sink drainage systems, and once they are a suspected 
reservoir, investigators are unwilling to allow persistent risk 
of transmission from sink drainage systems to patients while 
better evidence is collected. Stressor response data are difficult 
to collect because measures of increased exposure, which might 
for instance include concentration in drains and the number 
of drains that are contaminated, have not been established or 
validated. Measurement of causal pathways is fraught with 
challenges in measurement (eg, lack of standard methods to 
culture sink surroundings or fomites), an inherent temporal 
component, and the fact that more than 1 causal pathway for 

Table 4.  Manipulationsa of Exposure to Sink Drainage Systems in Effort to Reduce Patient or Health Care Worker Colonization or Infection

Intervention Type
No. of 

Studies 

No. (%) of 
Studies With 
Elimination 

or Reduction 
in Organism 
Acquisition 

Proportion (%) 
of Successful 

Studies Reporting 
Co-intervention(s)

Durabilityb of Success 
in Studies Reporting 
Elimination or Re-
duction in Organism 
Acquisition, Duration, 
No. (%) of Studies

No. (%) of Studies With 
Reduction in Sink Drain 
Contamination but no 
Data on Impact on Or-
ganism Acquisition Be-

fore Other Interventions

No. (%) of Studies 
Reporting Unsuc-

cessful Attempts to 
Reduce Sink Drain 

Contamination or Or-
ganism Acquisition

Additional sink cleaningc 17 8 (47)d 6 (75) >6 mo: 4 (50%)  
<6 mo: 1 (13%)  

Uncertain: 3 (38%)

3 (18)e 5 (29)f

Repair or replacement of all or part of sink 
drainage

10 8 (80) 7 (88) <6 mo: 1 (13%)  
>6 mo: 2 (25%)  

Uncertain: 5 (63%)

 2 (20)

Installation of heater–vibrator trap devices 6 4 (67) 1 (25) >6 mo: 3 (75%)  
Uncertain: 1 (25%)

2 (33)  

Replacement, cleaning, or disinfection of 
taps thought contaminated from drain

1 1 (100) 1 (100) >6 mo: 1 (100%)   

Sink removal, relocation, or closure of unit 
not otherwise detailed

3 3 (100) 2 (67) >6 mo: 1 (33%)  
Uncertain: 2 (67%)

  

Additional sink cleaning, repair, or replace-
ment of all or part of sink drainage

8 8 (100) 5 (63) <6 mo: 1 (13%)  
>6 mo: 3 38%)  

Uncertain: 4 (50%)

  

Installation of heater–vibrator trap devices, 
taps redirected away from drain

1 1 (100) 0 >6 mo: 1 (100%)   

Replacement of traps, distance and barrier 
between drain and workspace or pa-
tient, taps redirected away from drain, 
water pressure reduced

1 1 (100) 0 >6 mo: 1 (100%)   

Exchange and disinfection of traps, use of 
sink for patient care or placement of ma-
terials adjacent to sink forbidden, use of 
reusable hair wash basins stopped

1 1 (100) 1 (100) >6 mo: 1 (100%)   

aAdditional details and references provided in Supplementary Table 3.
bDurability of successful reduction in organism acquisition by patients or health care workers determined based on reported periods with significantly reduced or no new cases of coloniza-
tion or infection attributed to sinks, or time to manuscript submission/receipt in those who had reported sustained effect.
cUnclear effect of manipulation of exposure for 1 study with additional cleaning (disinfectant poured down drains).
dAdditional sink drain cleaning that was reported to result in some success without structural sink intervention included the use of chlorine or bleach products (n = 4), formalin (n = 1), or 
acetic acid (n = 1) with or without dismantling and physical cleaning, sink disinfection or cleaning not further specified (n = 2).
eAdditional sink drain cleaning that without structural sink intervention was reported to result in some reduction in drain contamination but not patient acquisition: accelerated H2O2 gel 
poured into drains and weekly cleaning with a sodium hypochlorite solution (n = 1), use of phenolics or paracetic acid (n = 1), use of bleach or chlorine and sodium hydroxide and alkyldimethyl 
amine oxide with steam cleaning (n = 1).
fAdditional sink drain cleaning that without structural sink intervention was reported unsuccessful included the use of bleach products with mechanical brushing (n = 1) or with phenolic 
flushing (n = 1), or with steam cleaning (n = 1), or the use of hydrogen peroxide (n = 1), or sink cleaning not further specified (n = 1).

http://academic.oup.com/ofid/article-lookup/doi/10.1093/ofid/ofaa590#supplementary-data
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transmission of Gammaproteobacteria between contamin-
ated sink drainage systems and patients or health care workers 
may exist.

While more studies found support for the Evidence of 
Exposure and Biological Specificity domain than for other do-
mains, early studies were limited by the lack of specificity in 
typing systems. When adequate typing methods are employed, 
directionality is difficult to determine, and few studies were 
able to convincingly document acquisition of organisms from 
sink drainage as compared with other sources. While some 
studies provided data on the proportion of cases of acquired 
Gammaproteobacteria that were matched, or in some cases at-
tributed, to sink drainage system contamination, the methods 
used to ascertain this were inconsistent.

Evidence for successful interventions on contaminated sink 
drainage systems was often confounded by co-intervention 
and unclear or short duration of follow-up measurement of 
clinical cultures. Few studies reported a sustained decrease in 
organism acquisition attributed to additional cleaning of sink 
drainage systems, but heterogeneity of agents and regimens 
limits interpretation.

Installation of self-cleaning traps that use a combination of 
heat and vibration appeared to have a beneficial and durable 
effect, but the limited number and size of studies suggest that 
further data are needed before broad implementation of this 
intervention [45, 61, 63, 70, 71]. However, a recent 2-armed 
nonrandomized intervention trial of traps with similar proper-
ties compared with a new polyvinylchloride trap showed a sig-
nificant reduction in sink drain and patient colonization with 
multidrug-resistant (MDR) Pseudomonas aeruginosa as com-
pared with baseline rates [73].

It was noted during the review process that there was varia-
tion in sink structures sampled and in how authors determined 
the most likely source of acquired Gammaproteobacteria. Bert 
et al. blamed tap water from contaminated faucets for transmis-
sion of Gammaproteobacteria to patients, but they also impli-
cated bacterial persistence in sink drains/traps, and an outbreak 
was only controlled after sinks were replaced and sink trap dis-
infection commenced [34]. An article we excluded identified 
faucet aerators as a common source reservoir in an outbreak of 
MDR P. aeruginosa [74]. However, in a recently published fol-
low-up study, investigators identified the sink drainage system 
as the reservoir and reported a significant reduction in patient 
colonization with installation of self-disinfecting traps [73].

The data reported in studies included in this review were het-
erogenous, and we were unable to perform a meta-analysis. The 
strengths of this review lie in the broad search of 8 databases 
without date or language restrictions and in the use of a standard-
ized causality tool. While there are no absolute criteria that can 
be used to determine causality, the Modified CADDIS is based 
on the fundamental principles of causal analysis, and use of the 
tool provided a more objective and transparent means to assess 

the quality of evidence for acquisition of Gammaproteobacteria 
from sink drainage systems in acute care settings.

Selection of only studies that implicate sink drainage systems 
in organism acquisition may be interpreted to introduce bias 
toward favoring these as causal. However, bacteria are acquired 
from multiple sources in hospitals. Inclusion of studies in which 
sink drainage systems were not blamed would be unlikely to 
change the assessment of the quality of published evidence for 
causality of sink drainage systems.

In summary, the studies included in this review provide ev-
idence that sink drainage systems are a reservoir for hospital-
acquired Gammaproteobacterial colonization or infection. 
However, these data do not assist in quantifying the attributable 
fraction of hospital-acquired Gammaproteobacterial infections 
acquired from sink drainage systems and are of limited value 
in understanding the causal pathways for infection or optimal 
mitigation strategies. Ideally more studies will be performed 
outside of outbreak settings and include prospective screening 
of patients and the environment with consideration of poten-
tial causal pathways, documentation of patient proximity and 
duration of stay relative to sinks with contaminated drainage 
systems, attempts to standardize methods and quantify envi-
ronmental cultures, use of whole-genome sequencing, and be-
fore–after or cluster randomization studies of interventions.

Context

The literature regarding waste water drainage systems as reser-
voirs for Gammaproteobacterial infection is expanding rapidly. 
However, both individual publications and reviews have usu-
ally focused on outbreaks and carbapenem-resistant organisms 
and have taken at face value author conclusions about whether 
sinks and/or drains were the relevant reservoir for the outbreak 
[75–79]. In these reviews, the findings regarding organism and 
species distribution and difficulties in sustaining drain decol-
onization with different interventions were similar to ours. 
However, as might be expected, outbreaks of carbapenem-
resistant organisms were found more commonly in ICUs and 
immunocompromised patients, while our review suggests that 
acquisition of infection from sink drains may be more wide-
spread in in-patients [75, 77]. Other studies have either failed 
to detect or did not report health care worker hand coloniza-
tion, which was identified in 10% of our reports, supporting the 
possibility of this route of sink-to-patient transmission in some 
cases. Our review was also able to describe presumed modes of 
sink-to-patient transmission, as well as time from patient ad-
mission to colonization/infection.

More recently, the introduction of whole-genome sequencing 
and a systematic approach to culturing and sequencing in waste 
water drainage systems resulted in the ability to define sink-to-
patient directionality in a single infection due to E. coli, though 
even here the spatial association was not clear (the patient 
was housed in the same ward where the sink drain isolate was 
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recovered) [80]. More experimental work is also being done to 
investigate how bacteria from sink drainage systems may make 
their way into the environment where they pose risk to patients, 
as well as sink features that may be associated with this dispersal 
[81–85]. Further work is needed to define the burden of infec-
tion associated with endemic hospital-acquired infections from 
sink drain reservoirs.

Supplementary Data
Supplementary materials are available at Open Forum Infectious Diseases 
online. Consisting of data provided by the authors to benefit the reader, 
the posted materials are not copyedited and are the sole responsibility 
of the authors, so questions or comments should be addressed to the 
corresponding author.
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