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Motivated by experiments employing optogenetic stimulation of cortical regions, we
consider spike control strategies for ensembles of uncoupled integrate and fire neurons
with a common conductance input. We construct strategies for control of spike patterns,
that is, multineuron trains of action potentials, up to some maximal spike rate determined
by the neural biophysics. We emphasize a constructive role for parameter heterogeneity,
and find a simple rule for controllability in pairs of neurons. In particular, we determine
parameters for which common drive is not limited to inducing synchronous spiking. For
large ensembles, we determine how the number of controllable neurons varies with the
number of observed (recorded) neurons, and what collateral spiking occurs in the full
ensemble during control of the subensemble. While complete control of spiking in every
neuron is not possible with a single input, we find that a degree of subensemble control is
made possible by exploiting dynamical heterogeneity. As most available technologies for
neural stimulation are underactuated, in the sense that the number of target neurons far
exceeds the number of independent channels of stimulation, these results suggest partial
control strategies that may be important in the development of sensory neuroprosthetics
and other neurocontrol applications.
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1. INTRODUCTION
Neurocontrol underlies an expanding range of applications, espe-
cially in the development of neuroprosthetics (Shenoy et al.,
2003). By “neurocontrol” we here mean control of neural sys-
tems, as distinct from control of external devices via decoding
of recordings of neural activity, as is most common in brain
machine interfaces (Lebedev and Nicolelis, 2006). Neurocontrol,
in principle, is the application of established control theory to
the stimulation of neural tissue (Khalil, 2002; Danzl et al., 2009;
Schiff, 2009; Liu et al., 2010; Ahmadian et al., 2011; Dasanayake
and Li, 2011). However, the scale and complexity of nervous sys-
tems, coupled with the stochastic nature of biological function,
suggests that a different attitude and problem definition from tra-
ditional control theory may be appropriate. Most notably, the
dynamics in neuronal networks are highly non-linear and com-
plex, involving a large number of neurons, so that generically
we expect radical underactuation: there are orders of magnitude
fewer independent control inputs than degrees of freedom in the
system.

Compared to electrical microstimulation, optogenetic stimu-
lation (Zhang et al., 2009; Anikeeva et al., 2011; Deisseroth, 2011;
Peron and Svoboda, 2011; Siegle et al., 2011; Yizhar et al., 2011)
does not overcome the underactuation issue, but does provide
some new opportunities in control design. One is cell-type speci-
ficity, which allows for distinct control of different components of
a neural circuit, raising the question of which target best controls

the overall network behavior. Optogenetics also employs a dif-
ferent mechanism of perturbation, namely modulation of ion
channel conductance rather than direct current injection, and
can provide hyperpolarizing as well as depolarizing stimulation.
A somewhat less appreciated aspect of optogenetic stimulation is
that broader areas may be activated per input than with electri-
cal microstimulation, due to the ability to illuminate larger tissue
volumes. In the context of a single or small number of illumina-
tion sources, common in experiments using chronic implants in
behaving animals, stimulation might be thought to produce only
bulk, synchronous firing: a mass of action potentials induced with
each stimulating pulse.

In classical control theory, the notion of controllability relates
to the ability to determine the exact trajectory of a dynami-
cal system (Khalil, 2002). Given the challenges outlined above,
for a neuronal system this objective is clearly difficult. The
goal of this paper is to consider weaker controllability goals,
which we believe are more applicable to underactuated neuro-
control situations. We use the simple integrate and fire model
to determine conditions for spike sequence controllability in
pairs of neurons, driven by a common light source, and use
the pairwise results to understand the limits of control in large
uncoupled ensembles under bulk illumination. In particular,
we argue that although independent control of individual neu-
rons is limited, exploitation of cellular heterogeneity in mem-
brane charging rates and optogenetic expression nevertheless
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allows a significant degree of independence in imposed spike
patterning.

2. RESULTS
2.1. CONTROL FORMULATION APPROPRIATE FOR ENSEMBLE

STIMULATION
Massive underactuation is typical of neurocontrol problems. At
the heart of the challenge is the inability to “address” individ-
ual neurons with separate time varying control inputs. Within
a domain surrounding a single stimulating electrode, there may
be hundreds or more of neurons, of different cell types, and
in typical optogenetic settings, e.g., with a large (200 μm) fiber
sitting hundreds of micrometers away from the target popula-
tion, illumination can spread over even larger regions (Figure 1).
Possible improvements, such as laser scanning systems, are lim-
ited by requirements to immobilize the head, and preferentially
actuate shallow tissue depths due to light absorption and scatter-
ing (Peron and Svoboda, 2011; Yizhar et al., 2011). Compounding
the difficulty are constraints on the input form—light intensity
can be modulated to induce different levels of ChR2 activa-
tion, but a negative input requires a distinct genetic manip-
ulation, such as insertion of Halorhodopsin or ArchT (Fenno
et al., 2011). An additional complication in experimental appli-
cations is that the spiking activity of only a fraction of neurons
in a given area is directly observed, so control strategies for a
large ensemble treats recorded neurons as proxies for the general
network.

We thus posit that few, if any, neuronal networks will be
controllable under the classical engineering definition that all
states (leading to spike sequences) are reachable from any start-
ing condition under a physically realizable control (Khalil, 2002).

FIGURE 1 | Schematic of the motivating application, typical of chronic

implants in freely moving animals. An optical fiber is chronically
implanted above a cortical area containing hundreds to thousands of
neurons with varying degree of ChR2 expression (gray shading). Responses
to stimulation are heterogeneous due to these expression differences, as
well as their location relative to the fiber, cell properties such as electrotonic
size and other channel densities, etc. Multiple electrodes penetrate into a
broad region illuminated by the fiber, permitting observation of a small
subset of neurons. See (Siegle et al., 2011) for example methodology.

With such a definition, it might be thought that controllability
is simply not attainable. To some extent this is true, as we show
with a severely limiting necessary condition below. We instead
look for less restrictive notions of controllability that are still
sufficiently useful in neural applications. We use the following
definitions:

Definition 1 (Spike pattern). Consider an ensemble of N neurons,
labeled {1, 2, . . . , N}. A sequence of pairs of labels and times,

�� = {(s1, t1) , (s2, t2) , . . . , (sM, tM)},

where

sk ∈ {1, 2, . . . , N}, and t1 ≤ t2 ≤ . . . ≤ tM are real numbers,

is a spike pattern. A pair (sk, tk) represents a spike from neuron sk at
time tk.

Definition 2 (Spike sequence). For the same ensemble, a sequence
of labels without timing information,

� = {s1, s2, . . . , sM},

is a spike sequence.

Definition 3 (Controllability). An ensemble is sequence/pattern
controllable if all possible sequences/patterns can be achieved. That
is, for any sequence/pattern � and any initial conditions, there exists
an input that results in � .

An important special case of sequence controllability is the
ability to control which neurons spike following a baseline con-
dition, for example at trial onsets in a behavioral experiment. We
are here defining only deterministic spiking control, but consider
noise in simulation below.

The definitions suggest at least three ways in which the notion
of controllability could be relaxed in underactuated applications:
(i) we accept that some spike sequences or patterns are not achiev-
able, and concentrate only on an achievable subclass (with the
hope that this class contains a large enough set of sequences of
functional relevance); (ii) we accept that in a typical ensemble,
some fraction of the neurons will not be controllable, and concen-
trate on a subensemble of neurons that is (and check if activity in
the uncontrolled neurons disrupts the function we are attempting
to control); or (iii) we accept that there will be limits to the pre-
cision of the temporal structure we can attain, but try to achieve
patterns “close” to desired patterns.

Previous studies (McIntyre and Grill, 1999; Liu et al., 2010,
2011; Ahmadian et al., 2011) mainly focus on option (iii) and
try to limit how bad “close” can be. We here concentrate on the
first two options, starting with sequence controllability, without
concern for timing. It is inherent to underactuated systems that
spike patterns that are too fast will not be achievable. However,
if the desired spike timing is slow enough, sequence controllabil-
ity is sufficient for pattern controllability, and the issue becomes
a quantitative and application specific question of what counts
as fast enough (see Discussion). In many cases, it may be more
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important to selectively activate subsets of neurons rather than
sequences per se. Again thinking of a behavioral task, if the
ensemble is sequence controllable, then it is also possible to acti-
vate different neurons according to trial type, for example to
assess the animal’s perceptual sensitivity to different subpopu-
lations [contrasted with assessing sensitivity only to the total
number of activated neurons (Huber et al., 2008)]. We stress
that, in contrast to approaches minimizing an objective func-
tion that combines spike timing precision with errors for added
or missed spikes (Ahmadian et al., 2011), our approach is to
accept the existence of a maximum spike rate, and achieve con-
trollability below this rate, consistent with approach (i). Once
this rate is determined, it is sufficient to establish sequence con-
trollability. We address (ii) by determining what conditions are
required for a neuron pair to be controllable, and how the pair-
wise result constrains controllable subensembles within a large
population.

2.2. IAF NEURAL MODEL
We will consider ensembles for which we have a single one dimen-
sional control input, although the effect of this input on each
cell may differ in magnitude or algebraic form. Our choice is
motivated by experiments (Figure 1) in which we deliver illu-
mination to a cortical region through a single, fixed optical
fiber, driving a population of hundreds to thousands of neu-
rons expressing Channelrhodopsin-2 (ChR2) (Deisseroth, 2011;
Siegle et al., 2011). To focus on ensemble properties, we analyze
a highly simplified neuron model, the Integrate and Fire neuron
(IAF) (Dayan and Abbott, 2005). Consider a noiseless, uncoupled
ensemble where the kth neuron is described by the IAF differential
equation:

dvk

dt
= −αkvk + gC(t)βk (E − vk) (1)

where vk is the membrane potential, and αk is the decay rate of the
neuron (the reciprocal of the passive membrane time constant).
Coupled to Equation (1) is a reset mechanism whereby a spike
is elicited when the membrane potential reaches some threshold,
vk = vT , and the state is reset to vk = 0. The optogenetic control
input is the conductance gC(t), which must be non-negative, in
the second term. For ChR2 we assume E > vT , and E takes the
same value across all neurons.

The critical assumption is that gC(t) is the same for all cells in
the network, capturing the experimental configuration of a sin-
gle optical fiber illuminating a relatively large number of cells
(Figure 1). Variation in responsiveness to the light is captured
by the parameters βk, which will depend on the neuron’s loca-
tion relative to the light source, expression levels of ChR2, and
other factors. We will find by analysis of the dynamics that the
limitation of common temporal input is to some degree over-
come by the heterogeneity of parameters (βk, αk). The simplicity
of the model will make derivation of controllability conditions
and extension to larger ensembles straightforward. Equation (1)
defines a bilinear control problem, for which some general results
are available (see Discussion). We will follow a more direct, con-
structive approach without attempting to find an optimal control
solution.

2.3. SEQUENCE CONTROLLABILITY IN TWO NEURONS
We first consider pairwise control of spike sequences. We assume
a heterogeneous pair, that is, α1 �= α2 and β1 �= β2. We choose to
label the neurons such that α1 > α2, meaning neuron 1 is more
“leaky” than neuron 2. We start with the clear proposition that if
one cell is both more weakly driven and more leaky, then (out-
side a small set of initial conditions) it cannot be made to spike
without first inducing a spike in the other cell.

Proposition 1. (Necessary condition) The ensemble Equation (1)
with N = 2 is sequence controllable only if

α1 − α2

β1 − β2
> 0. (2)

Given our αk label assumption, this condition is equivalent to
β1 > β2. In other words, the differences in decay rates and opto-
genetic drive must have the same sign.

Suppose otherwise. Then if at any time v1 = v∗ = v2, for some
0 ≤ v∗ < E, we have for all gC ≥ 0,

dv1

dt
<

dv2

dt
.

Hence, there is no non-negative control gC(t) that allows v1 to
“cross” v2 from a lower to higher voltage. This crossing is required
in any sequence of the form

� = {s1, s2, . . . , sk, 1, 1, sk + 1, . . .} ,

that is, in any sequence in which there are two or more spikes from
cell 1 without a spike from cell 2 in-between.

Proposition 1 provides a necessary condition for sequence con-
trollability, and suggests a pessimistic outcome for even mild
underactuation. For a large set of parameters, arbitrary sequences
are not achievable. If pairs are selected randomly from a heteroge-
neous ensemble, the probability that the pair is controllable could
be anywhere from zero to one depending on the joint distribution
of α and β. For generic distributions, the probability should be
near 1/2, given the symmetry of Equation (2). Much of our later
ensemble analysis is motivated by what is achievable in spite of
this negative condition. To further explore these limits, we estab-
lish specific control strategies. In the positive direction, we have

Proposition 2. (Sufficient condition) The ensemble Equation (1)
with N = 2 is sequence controllable if, in addition to Equation (2),

α1

β1
>

α2

β2
(3)

The proof of the sufficient condition is more involved than for
the necessary condition, and we follow a constructive approach,
without specifically seeking an optimal control. We first simplify
the analysis by re-scaling the equations with the substitutions
t = α1τ, β̂ = β2/β1, α̂ = α2/α1, and g(t) = (β1/α1)gC(t) to get

dv1

dτ
= −v1 + g(τ)(E − v1) (4)

dv2

dτ
= −α̂v2 + β̂g(τ)(E − v2). (5)
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We proceed with a quasi-static phase plane analysis, as illustrated
in Figure 2.

For each constant g there exists a unique, stable fixed point of
the ODEs Equations (4)–(5) without reset, at

Veq =
( gE

1 + g
gE

α̂/β + g

)
. (6)

The curve of fixed points Veq(g) runs from (0, 0) to (E, E) as
g increases, above or below the diagonal according to whether
α̂ is less or greater than β̂. When Veq lies outside the square
with corners (0, 0) and (vT, vT), at least one of the neurons
will cross the spiking threshold vT . The conditions α1 > α2 and
Equation (2) yield 0 < α̂, β̂ < 1, while the additional condition
Equation (3) is equivalent to α̂ < β̂. All trajectories converge on
Veq proportional to exp{−(1 + g)τ} in v1 and exp{−(α̂ + β̂g)τ}

in v2. Hence, the fixed point has “fast” horizontal and “slow”
vertical eigenvectors (α̂ + β̂g < 1 + g for all g), and trajectories
converge asymptotically to the fixed point, with trajectory tangent
to the vertical eigenvector. The eigenvector geometry manifests in
concave upward voltage trajectories in the phase plane. It is this
curvature, combined with the fixed point locations relative to the
spike thresholds, that underlies the condition Equation (3).

To see this, we construct an explicit control policy assuming
Equation (3), so that Veq(g) lies above the diagonal (see Figure 2A
right). For an intermediate range of g, the equilibrium voltages
satisfy gE/(1 + g) < vT < gE/(α̂/β̂ + g), and spiking is possible
only for neuron 2. At high enough g, both neurons can spike.
However, for many initial conditions, and in particular with both
neurons starting near rest, the trajectory for high g will cross vT

in the v1 direction before the v2 direction, due to the upward
curvature. If α̂ and β̂ are known, we can therefore construct a sim-
ple control strategy for sequences, employing pulsed g with two

FIGURE 2 | (A) (left) Example of bimodal pulse control in two neurons,
for the target sequence (1, 2, 2, 1, 1, 2), indicated by light blue (neuron 1)
and green (neuron 2) vertical bars [red dashed, v1(t), black, v2(t), gray,
g(t)]. (right) Quasi-static phase plane illustrating bimodal control
trajectories. For each fixed value of g, there exists a unique stable fixed
point Veq lying on a curve (dashed gray) running from (0, 0) to (E, E).
The two chosen values of conductance gk determine if the solution
starting at the origin first hits the threshold for neuron 1 (light blue

trajectory, g1 = 12) or neuron 2 (green trajectory, g2 = 1.5). Trajectories

are continued through reset and return to rest, when g(t) = 0 after the
spike. Also shown (dots) are the fixed points Veq(gk ), and the
trajectories that would be followed without reset if g(t) were held at
the values gk (black dot-dashed curves). (B) (left) Example of synchronous
control. Colors are as in (A). For comparison to the phase plane (right),
the times at which g = (0.3, 1.5, 12) are marked with blue, green, and
light blue dots. At these times, the trajectory from the common voltage
towards Veq(g) is tangent to the diagonal. Parameters chosen for
visualization are α̂ = 0.27, β = 0.9, and E = 1.4.
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different amplitudes: g2 is chosen so that Veq(g2) lies in the region
above v2 = vT but left of v1 = vT . Then g1 > g2 is chosen so that
Veq(g1) is between (vT, vT) and (E, E) and that, in backwards
time, the trajectory through (vT, vT) hits the v2 axis above the
origin. Such a trajectory exists when the slope through (vT, vT) is
less than one, which direct calculation shows is the case for high
enough g1 (when Equation (2) is satisfied). For this choice, any
trajectory starting near rest will hit v1 = vT before hitting v2 =
vT . Thus for the pair of neurons, applying g(t) = gk, k = 1, 2, will
generate a spike from neuron k before a spike in the other neuron.
After the spike, we can apply g(t) = 0 long enough that both neu-
rons return near rest (e.g., for five times the longest decay time
constant), and then apply the appropriate gk for the next spike in
the sequence. This waiting time is what imposes a maximal rate
on our control; in the Discussion we place this rate in the context
of observed time constants in real neurons. Figure 2A provides
an example of this strategy, and illustrates the corresponding
phase plane geometry. Intuitively, we find that the cell with larger
leak (α1) but higher light sensitivity (β1) is activated first by
large, transient light pulses, whereas the cell with lower light sen-
sitivity (β2) but smaller leak (α2) can be activated by longer,
smaller amplitude light pulses that leave neuron 1 subthreshold.
The condition Equation (3) ensures that the quantitative trade-
off between the amount of membrane charging required to reach
threshold and the size of the optogenetic current allows the more
leaky cell to “win the race to threshold” for large pulses (when
both neurons can spike), while in general requiring more light
to reach threshold than neuron 2. This proves the sufficiency of
Equation (3).

To extend the pairwise result to large ensembles, it will be
useful to employ an alternative idealized strategy that brings the
two neurons synchronously to spike threshold. Consider a pair
of neurons at a common voltage v1 = v∗ = v2. Define g∗ as the
conductance for which the difference η(t) ≡ v2(t) − v1(t), at this
common voltage, has zero temporal derivative, yielding

g∗ ≡
(

α2 − α1

β2 − β1

)
v∗

E − v∗
> 0. (7)

where, for 0 < v∗ < E, the inequality follows from Equation (2).
To elicit a spike we need that common voltage to be increas-
ing. Inserting g∗ into Equation (1) shows again the sufficiency of
Equation (3), in making both right hand sides (for k = 1, 2) pos-
itive. Figure 2B illustrates this control algorithm. As a technical
point, under this policy the origin is an unstable equilibrium. A
short, low amplitude pre-pulse in g, or the presence of small noise
in the system, is thus necessary to bring the neurons away from
the origin before carrying them along the diagonal according to
Equation (7).

2.4. GEOMETRIC INTERPRETATION OF CONDITIONS
We can concisely summarize the above results through geometric
constructions on the parameters. If we identify neurons by their
location in the (β, α) parameter plane (Figure 3), the necessary
condition Equation (2) requires the line connecting a controllable
pair to have positive slope. Recalling the pairwise labeling con-
vention α1 > α2, the sufficient condition Equation (3) says the

FIGURE 3 | Parameter space visualization of control approach. (A) A
given neuron, identified by its values for α and β (dot), will be pairwise
controllable with any neuron satisfying the necessary [N+; Equation (2)]
and sufficient [S+; Equation (3)] conditions (region shown in gray). (B) Two
neurons N1 and N2 can be made to spike simultaneously under the input
Equation (7), along with any neuron lying along the line L (see text).
Neurons to the left of L will remain subthreshold, while neurons to the right
will spike. If we instead choose input Equation (7) corresponding to lines L1

or L2, we selectively elicit a spike from neuron 1 or 2, respectively, along
with overlapping but distinct subensembles of neurons (to the right of the
chosen line).

line from the origin to (β1, α1) should lie above the line from the
origin to (β2, α2). The gray region in Figure 3 indicates that a par-
ticular neuron can be in a controllable pair with a limited but still
significant range of other neurons.

Now consider a controllable pair, denoted N1, N2 in
Figure 3B. For N1, N2 having equal initial conditions, the input
g∗ causes the two neurons to spike simultaneously at a time
denoted Ts. It follows from the form of Equation (7) that any
neuron that is collinear with N1 and N2 in the (β,α)-plane
also reaches threshold at time Ts (starting from rest) since the
leading term

(α1 − α2)

(β1 − β2)
(8)

defines the slope of the line L connecting N1, N2 (Figure 3B).
By monotonicity of the IAF model, any neuron that lies to the
right of L will have hit threshold before time t = Ts, since it pos-
sesses a larger channel conductance βk relative to αk. Similarly,
any neuron that lies to the left of L is subthreshold at t = Ts.
More generally, every line L of positive slope in the (β,α) plane
defines a control, via Equation (7), whose application splits the
ensemble into silent neurons (to the left) and spiking neurons
(to the right and including L). For a pair of neurons, construct-
ing the selective control is equivalent to picking one of two lines.
In particular, we can choose the line L2 in Figure 3 to make cell
N2 spike (simultaneously with any other cells along L2), while
cell N1 will remain subthreshold. Conversely, the line L1 elic-
its a spike in N1 while keeping cell N2 subthreshold. We will
use this geometric interpretation of the applied control to select
controllable subensembles, and assess collateral spiking, in large
ensembles.
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2.5. CONDUCTANCE BASED NEURAL MODELS
Before turning to large ensembles, we illustrate the two cell case
for more realistic neural dynamics with a Hodgkin–Huxley type
model with explicit conductance-based spike mechanism (Ching
et al., 2010, 2012). We fit “proxy” IAF neurons to the subthresh-
old voltage of the two neurons, and use the parameters of these
proxy neurons to construct the control g(t) (Figures 4A–C; see
Methods). Figure 4D shows successful sequence controllability in
this more realistic neural model, despite the control construction
depending on the approximating IAF dynamics.

Another important factor in real neurons is noise. In Figure 4E
we show that sequence controllability persists in the presence
of noise. As the noise level is increased, we begin to lose spikes
at desired times; the control g(t) is constructed to increase for
exactly the time required to spike under the deterministic dynam-
ics, and does not overshoot to account for noise-induced lags.
There is also a small increase in spike time jitter. However, in
general this simplest approach to control of more realistic neu-
ral models continues to work well up to moderate noise levels.
Improving the robustness of this approach in more general neural
models is a subject of ongoing study.

2.6. CONTROL OF SUBENSEMBLES
Having established pairwise sequence controllability using the
input (7), we now expand the approach to large ensembles.
Returning to the motivating problem schematized in Figure 1,
we imagine we are illuminating an ensemble of ChR2 positive
neurons, with multiple electrodes within the region (e.g., using
multiple tetrodes Siegle et al., 2011, or an implanted electrode
array Song et al., 2009). We suppose we have some number of
“recorded” neurons, for which (β,α) are known, as if determined
by a previous system identification step using nearby electrodes.
We suppose that only a small fraction of cells are recorded within
the illuminated area.

As before, we identify the kth neuron by its parameters
(βk, αk). Within the full ensemble, we want to construct a
subensemble�M that is sequence controllable, that is, a subset of
M neurons that can be activated in an arbitrary sequence by appli-
cation of a dynamic stimulus. We choose the labeling such that

β0 < β1 < · · · < βN . (9)

Then in order for �M to be pairwise controllable, for all
(αk, βk), (αl, βl) ∈ �M, k < l, we need to select neurons such that

(i)αk < αl

(ii)αk/bk < αl/bl.
(10)

However, pairwise controllability does not guarantee controlla-
bility of �M . Recalling Figure 3, we must be able to choose, for
each neuron in �M , a corresponding line that splits the (β,α)

plane with our target cell to the right, and the rest of �M to the
left. This amounts to the neurons in �M satisfying an additional
convexity constraint,

(α1 − α0)/(β1 − β0) < (α2 − α1)/(β2 − β1) < . . . , (11)

which states that the associated control lines must increase in
slope from the left-most to right-most neuron in �M . In other
words, the collection of lines bound a convex region in the (β, α)

plane. For any reasonable distribution of α and β across an ensem-
ble, there will be many subensembles �M that can be selected
satisfying these constraints. In the remainder of this section, we
demonstrate selection of such subensembles, and show as an
unavoidable consequence of the underactuated input that their
size is limited. In the next section, we consider control of �M as
a measure of and a proxy for selective activation across the full,
large ensemble.

From the recorded set of neurons, we want to find a control-
lable subensemble, noting that such a subset need not be unique.
This process amounts to identifying a monotonic subsequence in
the (β, α) plane [satisfying Equation (10)], for which standard
algorithms are available (Fredman, 1975) (see also Methods).
We demonstrate the principle of ensemble control with several
realizations of 8-cell controllable subensembles, found with the
largest monotonic sequence algorithm, from random draws of
a larger ensemble of 100 neurons, when the parameters (β, α)

are drawn from exponential and lognormal distributions, respec-
tively (see Methods). We then induce the example spike sequence
shown in Figure 5A (left), using Equation (7) by pairing each
controlled neuron with a dummy neuron, such that the line
joining them in the (β, α) plane lies to the right of all other neu-
rons (see above and Methods 4.2). The mean output is shown
in Figure 5A (right), where the desired sequence is successfully
achieved.

An important question then is how large M can be. Figure 5B
shows the maximum possible size of controllable subensembles in
a random population of illuminated cells, as a function of the total
number of illuminated ChR2+ cells. For comparison to experi-
mental settings, Figure 5C shows the fraction of controllable cells
in a subsample of recorded cells, i.e., the proportion of con-
trollable cells likely in common multi-unit recording sizes. Also
shown is this fraction for a typical controllable set returned by a
suboptimal numerical algorithm that also satisfies Equation (11)
(see Methods). As intuition might suggest, a pair of recorded
neurons is expected to be controllable around 50% of record-
ings. With larger recordings, the number of controllable neurons
increases, but as a decreasing fraction of the recorded population
size.

For generic random distributions of the parameters (β, α),
such subensembles are significantly smaller than the ensemble
as a whole. We stress that this result is an inherent consequence
of the experimental situation rather than the control approach
per se. Thus, finding controllable sets could require recording
from a large number of neurons. Nevertheless, the result shows
that, in principle, a measure of spike pattern control in under-
actuated ensembles is possible. More importantly, controllable
subensembles provide a structure by which to determine which
other neurons within the full ensemble are impacted by our con-
trol inputs. For example, for a desired spike in a given cell, it might
be possible to construct a control solution that minimizes the
number of extraneous spikes in other cells in the ensemble. Thus
we retain some control of the ensemble beyond synchronous bulk
activation, as we show next.
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FIGURE 4 | Simulation of Hodgkin–Huxley-type neurons. Two integrate
and fire neurons are fit to the HH neurons and control inputs are derived
according to our algorithm. (A) The response of the integrate and fire
neurons to the derived control inputs in (B). The red trace corresponds to cell
with larger channel conductance. (C) The response of the original HH

neurons to the derived control inputs, illustrating differential spiking. (D) An
example spike sequence (111122221212) achieved by interleaving the derived
inputs. Note the difference in magnitude and duration of g(t) in (B). (E) Effect
of noise of increasing variance on the achieved sequence. Eight realizations
at each noise level are shown.
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FIGURE 5 | Control in a population of neurons with random

distribution of (β, α). (A) Control of 8 cells. The target spike sequence
(left) is used to control n = 10 randomly generated ensembles of
8 controllable cells. The mean potential at the time of each spike is
depicted on the right. (B) Maximum number of controllable cells in an
ensemble of 1000 cells, given by the size of the largest subset satisfying
the monotonicity criterion. (C) Maximum fraction of controllable cells

within a random subsample of “recorded” cells (e.g., near an electrode),
given by the size of the largest subset satisfying the monotonicity
criterion. In addition, a realization of a convex subset is found; this is the
Typical fraction of controllable cells. In panels (B) and (C), α is lognormal
distributed with mean 1 and variance 0.25, β is exponentially distributed
with mean 1, n = 100 realizations are sampled at each size, with results
plotted as mean ± standard error.

2.7. LARGE ENSEMBLE RESPONSE TO SUBENSEMBLE CONTROL
Any spike induced in a controlled neuron will induce a certain
number of collateral spikes in other neurons within the broader
illuminated population. We term these neurons as participating
with the controlled neuron. They corresponded to neurons that
lie to the right of the line corresponding to the target neuron’s
activation.

Figure 6 illustrates the organization of participating cells in an
example controllable subensemble of eight cells, sampled from
a superset of 800 illuminated neurons. We induce a repeating
sequence of spikes in neurons 1, 4, and 8, and show the collat-
eral spiking activity in the full ensemble as rasters in Figure 6A.
Each induced spike is associated with distinct but overlapping sets
of participating cells. The geometry of these participating sets in
the (β,α) plane is shown in Figure 6B. Circles indicate the con-
trolled set of eight cells. Those cells with sufficiently high ChR2

conductance and long membrane time constants (low α) partic-
ipate with every controlled cell. Similarly, cells with sufficiently
low ChR2 conductance and short time constants never participate
with any cell. Those cells with intermediate parameterizations
may participate with one or more cells, depending on their prox-
imity to and the geometry of the controlled subensemble. Even
where the participating sets do overlap for different controlled
neurons, the level of activation differs depending on which cell is
controlled; note from Figure 6A that the participating set for neu-
ron 1 produces repetitive spikes due to the relatively larger input
required to activate that neuron.

To elucidate this further, we examine the fraction of par-
ticipating cells in a large illuminated ensemble of 2000 neu-
rons, for different size controlled subensembles, constructed
from randomly drawn subsets of recorded neurons. Figure 6C
shows three quantities related to this fraction as a function
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FIGURE 6 | Geometry of collateral spikes in participating subsets. (A, top)
A target sequence in three out of a set of eight controlled cells. (A, bottom)
Raster of corresponding spiking in superset of 800 cells. (B) Participating
sets for controlled spikes, shown in the (α, β) plane. From top to bottom,

spikes are driven in cells 1, 4, or 8. Black denotes a participating cell (i.e., a
cell that produces a collateral spike), green denotes a non-participating cell,
and circles mark cells in the controlled subset. (C) Fraction of participating
cells as a function of number of controlled cells (see text for definitions).

of controlled set size. Plotted are the fraction of participat-
ing cells that participate with only one of the controlled cells
(termed 1-participating), those that participate with all of the
controlled cells (termed n-participating), and the average frac-
tion of neurons that participate with at least one controlled cell.
Clearly, as the number of controlled cells increases, the frac-
tion of 1-participating cells rapidly decreases. However, so does
the fraction of n-participating cells, meaning that only a seg-
ment of the illuminated ensemble will always produce collateral
spikes. On average, for these parameters, about 40% of neu-
rons participate to some degree with the controlled subensemble,

but the size of the participating set depends only weakly on the
subensemble size.

This result demonstrates that control of even a few recorded
cells will provide a measure of control over a larger ensemble.
Hence, we are not resigned to synchronous bulk activation of the
ensemble. One could construct control solutions that partition or
segment the ensemble into groups, based on the probable location
of recorded cells in the parameter space. With sufficiently refined
estimates of the distributions of (β, α), one could alternatively
maximize the partitioning of the ensemble, without specifically
seeking a completely controllable subensemble. If we assume the

Frontiers in Neural Circuits www.frontiersin.org April 2013 | Volume 7 | Article 54 | 9

http://www.frontiersin.org/Neural_Circuits
http://www.frontiersin.org
http://www.frontiersin.org/Neural_Circuits/archive


Ching and Ritt Neurocontrol: from one, many

recorded neurons are a random sample of the full population,
we could estimate the likely levels of activation and overlap from
control applied to the recorded neurons, as a proxy for the full
ensemble. The larger the number of controllable cells, the greater
number of groups and control granularity within the ensemble
are possible.

3. DISCUSSION
Our goal has been to consider large ensemble properties in a “pes-
simistic” control regime we believe applies to many neurocontrol
applications in chronically implanted animals. As such, it is nec-
essary to lay out the simplifying assumptions and limitations of
the current analysis, and suggest their likely impacts. We first put
our approach in the context of previous work in neurocontrol.

3.1. PREVIOUS WORK
The application of control methods in neuroscience is a grow-
ing area of interest (Lebedev and Nicolelis, 2006; Grill et al.,
2009; Schiff, 2009; Ahmadian et al., 2011). Controlling neuronal
spiking has most frequently been studied in the context of elec-
trical stimulation. Significant study has been directed toward
global network properties of phase oscillator models of neurons.
For example, the objective in (Danzl et al., 2008, 2009; Nabi
and Moehlis, 2012) is finding inputs that alter the rate or syn-
chronization of neural populations while satisfying stimulation
constraints such as charge balance and minimum current flow. A
similar paradigm has been studied in conductance based models,
where a non-linear Kalman filtering approach was used to obtain
complete state estimates of a single neuron (Ullah and Schiff,
2009). In an alternative approach, (Ahmadian et al., 2011) used a
statistical framework to control the probability of spiking assum-
ing either an electrical or optical input. Importantly, these works
assume each neuron receives an independent channel of control
input.

Less work has been performed on the underactuated case.
Effort again has centered on the problem of controlling not the
spiking but the overall level of synchronization within a cell pop-
ulation (Tass, 2002, 2003a,b; Nabi and Moehlis, 2011). The recent
work (Dasanayake and Li, 2011; Zlotnik and Li, 2012) uses a non-
linear methodology derived from quantum spin control to obtain
optimal current inputs to control populations of phase oscillator
neurons. The solutions allow for setting different spike frequen-
cies in different cells with a single input and are optimal according
to classical control theoretic criteria. However, since they arise
from oscillator models, the resulting spike sequences are periodic.
Moreover, the control is allowed to take both positive and nega-
tive values, which may not be available in common experimental
paradigms.

From a theoretical standpoint, the integrate and fire frame-
work we have used amounts to a bilinear control problem,
where the input is affine to the state (in our case, the mem-
brane potential). Such systems have been well-studied, and cer-
tain controllability properties characterized (Tarn et al., 1973;
Elliott, 2009). However, the control of such systems with reset
dynamics and positivity constraints on the input has not, to
our knowledge, been studied. The formulation here differs
from the above works by considering control of arbitrary spike

sequences, using a non-negative conductance input in a non-
periodic setting. We do not explicitly consider a control objective
function or prove optimality. Our aim is to identify condi-
tions and control inputs that are viable in current experimental
implementations, where measurement is coarse and actuation is
broad, and directly construct strategies through analysis of the
dynamics.

Our approach depends heavily on the existence of heterogene-
ity between neurons. Several lines of evidence across physical and
biological systems suggest the importance of variation in under-
standing the function of complex systems (Marder and Taylor,
2011; McDonnell and Ward, 2011). Nervous systems naturally
exhibit cell to cell variability, and relying only on mean values
of measured parameters can be misleading in predicting circuit
function. For example, some intrinsic membrane properties of
olfactory bulb mitral cells covary according to whether the cells
innervate the same or different glomeruli (Angelo et al., 2012)
with strong impacts on firing properties (Angelo and Margrie,
2011), while heterogeneity across mitral cells increases the infor-
mativeness of output spike patterns by reducing redundancy
(Padmanabhan and Urban, 2010). In other systems, covaria-
tion of properties across neurons can result in a fixed overall
network behavior over a range of parameter sets, producing a
robust output despite cellular variation from animal to animal
(Grashow et al., 2010) [reviewed in Marder and Taylor (2011)].
In contrast, heterogeneity across neurons can also constrain net-
work behaviors, such as in the degree of synchronous oscillation
(White et al., 1998). Our results focus on exploiting heterogeneity
for a neuroengineering control objective, rather than consider-
ing the role of noise in normal neural function, but are closely
connected to these prior observations. For example, in the sim-
ulation of large ensembles (Figure 6) we assumed that alpha
and beta vary independently. If there was some homeostatic or
other mechanism that resulted in non-independence of parame-
ter variations across cells, the efficacy of an underactuated control
scheme would depend on the details of the parameter distri-
butions. For example, if α and β were inversely proportional,
fewer pairs would satisfy the condition Equation (3). Conversely,
if α and β were positively correlated, more pairs would be con-
trollable. However, only in the case of a convex relationship
(e.g., α as a parabolic function of β) would we get a signifi-
cant increase in the size of the maximally controllable ensemble.
Most likely, real neural networks lie somewhere between these
extremes.

There are also well-known phenomena for which small
amounts of dynamical noise can be beneficial. In the classic
example of stochastic resonance (SR), small noise added to a
thresholding device allows subthreshold signals to be detected
on the output (Tessone et al., 2006; McDonnell and Ward,
2011), a phenomenon seen also in neural networks (Gai et al.,
2010; Kawaguchi et al., 2011). In certain settings, such as signal
transmission through the summed output of a parallel array of
thresholding devices, uncorrelated noise across devices also can
improve superthreshold signal transmission (Stocks, 2001) (for
an implementation with IAF neurons, see Hoch et al., 2003). It
is unclear how addition of independent dynamical noise com-
pares to inclusion of parameter heterogeneity, for example by
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allowing devices to have different thresholds (Stocks, 2000). In
at least some cases, transmission enhancement through dynam-
ical noise is optimal when all devices are identical, and this is
the case most widely studied (Stocks, 2001; McDonnell et al.,
2007; Kawaguchi et al., 2011). However, some have argued the
above examples are just specific instances of a more general
phenomenon of “diversity-induced resonance” (Tessone et al.,
2006). These ideas remain under investigation. An essential dif-
ference from these studies and our results is that, while in all
cases a common signal is applied across units, the quality met-
ric employed for SR is signal transmission of a summed output,
thereby eliminating the individuality of each unit. Here, we seek
specifically those common inputs that diversify the outputs, not
for the preservation of signal transmission, but directly to activate
subensembles within a region. In applications, the distinction is
likely to matter when there are other identities to the neurons,
for example tuning to particular sensory events. In the above
theoretical results, all neurons were identical and there was no
difference (e.g, to downstream areas) in having one or another
neuron spike.

3.2. LIMITATIONS AND EXTENSIONS
We believe many important neurocontrol problems can have
pessimistic outcomes from the perspective of traditional con-
trol theoretic formulations, and have attempted instead to better
determine what control may be possible under the limitations
imposed by the experimental structure. While neural systems can
present complicated, non-linear dynamics, and previous work
has approached control under these dynamics (McIntyre and
Grill, 1999; Liu et al., 2010, 2011; Ahmadian et al., 2011), we
believe a more fundamental issue is the nearly continuous struc-
ture of neural tissue. We are motivated in particular by cortical
tissue, where the number of neurons in a cortical column is large
enough and the columnar structure rich enough (Meyer et al.,
2010; Oberlaender et al., 2012) that it is unclear how much utility
there is in deriving control strategies at the single neuron scale.
As a nearly continuous substance with fixed substructure (e.g.,
the topology of synaptic connections, cortical lamination), neu-
ral tissue presents control problems fundamentally different from
the control of mechanical devices with discrete degrees of free-
dom that motivates much of the classical theory. For example, it
appears that performance may degrade smoothly as the number
of controlled neurons decreases, such that relatively crude stimu-
lation to sensory areas can induce perceptual biasing (Romo et al.,
2000; Hanks et al., 2006). Neurocontrol problems fall somewhere
between the discrete degrees of freedom and independent actua-
tors common in robotics and aerospace control, and well mixed
bulk solutions such as in chemical process control.

In cortical tissue, the most widely employed interface for
recording and stimulation consists of one or more microelec-
trodes. We can crudely assess the degree of underactuation as
follows. Each contact records from and can stimulate (within safe
levels) a diameter of order 100 μm, leading to a coarse estimate
of up to a few hundred stimulated cells per contact (Gold et al.,
2006; Grill et al., 2009; Histed et al., 2009; Buzsáki et al., 2012).
Even neglecting fabrication challenges, the maximum density of
electrodes that can be placed within a given volume is limited by

the tolerable tissue damage. Imagining an optimistic situation of
a MEMS fabricated shaft spanning the cortex, with linearly spaced
contacts at high density (10–100, the ratio of total neurons in a
column [order 104, (Meyer et al., 2010)] to the number of inde-
pendently stimulated “pools” could still be of order 100 to 1 or
greater. The lateral density of multiple shafts is similarly limited
at scales up to 1 mm by concerns about tissue damage, and in gen-
eral it appears difficult to lower this ratio with implanted devices.
This estimate ignores further neural complications such as corti-
cal structure and cell types, but also strategies for current steering
using multiple contacts simultaneously.

Optogenetics offers a number of advantages as a stimula-
tion modality. Because stimulation is optical, it is not as critical
to place physical contacts close to the desired stimulation site,
and because the mechanism of stimulation is through mem-
brane bound proteins and not extracellular current, there may
be little to no collateral stimulation. The latter property allows
investigation of specific, targeted cell populations, and may also
alleviate unintended effects such as direct recruitment of inhibi-
tion with electrical microstimulation (Butovas, 2006; Tehovnik,
2006; Histed et al., 2009). A lesser noted property is the abil-
ity to stimulate large numbers of neurons in bulk with broad
illumination, with the lateral spread of light controlled by the
size of the fiber. The scales at which neurons can be activated
are determined by the scattering of light in tissue, the irradiance
thresholds for activating optogenetic molecules, and maximal
illumination before incurring tissue damage, heating, or other
undesired effects. No currently conceivable technology for chron-
ically implanted animals would provide an independent light
source for every neuron. In awake animals it is difficult to cre-
ate high illuminator density, so most studies use single sources
with broad illumination (Zhang et al., 2009; Anikeeva et al.,
2011; Siegle et al., 2011; Royer et al., 2012); we have consid-
ered this simplest case. The single input might be thought to
allow only bulk activation and synchronous spiking; we have
shown here that this is not fully the case. In behavioral exper-
iments, the usefulness of a control strategy such as presented
here will depend on the number and composition of participat-
ing neurons, coactivated by stimulation of at least one controlled
neuron (Figure 6). In the presence of a population of neurons
activated by every input, the functional import of differential con-
trol of a potentially small subset of neurons is a central open
question, likely dependent on the behavioral context and region
being stimulated. Several groups have developed multisource sys-
tems, e.g., (Zorzos et al., 2010), and in some cases light fields
may partially overlap, creating opportunities for multisource con-
trol. In this case the model could be modified with, e.g., two
inputs βaga(t) + βbgb(t) to each cell, where the difference in
β’s encode location relative to sources. Follow up work could
consider multi-source activation, for example to seek optimal
configurations given a “cost per fiber” and a control objective.
Analogous to current steering in multielectrode arrays, use of
a dynamical strategy such as presented here might achieve a
significant improvement in control resolution (e.g, number of
controlled vs. participating neurons) with a modest increase in
the number of inputs, even where the ensemble remains highly
underactuated.
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We can further distinguish three broad categories of caveats
to our analysis, relating to the degrees of dynamical freedom, the
parameter choices, and the state estimation and control strategies,
which we discuss in turn.

3.2.1. Dynamics assumptions
The most severe dynamical limitation in the current analysis is
the choice of the integrate and fire model. Although this model
is analytically convenient and widespread, it cannot represent
some phenomena found in biological neurons and higher order
models, such as bursting (Breen et al., 2003), intrinsic subthresh-
old oscillations (Manor et al., 1997; Khosrovani et al., 2007), or
rebound spiking (Sohal et al., 2006). There are at least two major
mathematical properties of the IAF that could limit broad appli-
cability. The first is that the model is nearly linear; the spike
generation mechanism has been compressed into an external and
discontinuous reset when the voltage crosses a threshold, and
the model has linear (technically, affine) subthreshold dynamics.
The second property is that the model is one dimensional. Our
approach depends in large measure on the monotonicity of the
membrane potential response to the optogenetic drive. As a par-
ticular counterexample, harnessing subthreshold inactivation of
sodium channels in a Hodgkin–Huxley type model could allow a
less excitable cell to overtake a more excitable cell after a set of pre-
pulses (data not shown). Such control strategies are not available
in IAF models; however, a control strategy dependent on differen-
tial inactivation of ion channel species is more complicated than
that presented here, and would require detailed knowledge of
channel properties and subthreshold voltage, not readily available
from extracellular recordings. To the extent subthreshold dynam-
ics are nearly linear for fast inputs, our simple approach may be
viable with little modification, as we demonstrated in Section 2.5.

As a first analysis, we included no synapses or network effects
in our formulation. Inclusion would open up new control possi-
bilities, but with substantially greater complication. It may be that
connected networks may admit larger controllable sets. In partic-
ular, neurons unreachable from direct stimulation might still be
activated through appropriate network interactions. However, it
would be necessary on a case by case basis to know the details
of present cell types (at least inhibitory versus excitatory, but
probably a finer categorization), their synaptic topology, and geo-
metric arrangement (de Kock and Sakmann, 2009; Meyer et al.,
2010; Oberlaender et al., 2012). It is unlikely that a single gen-
eral control approach will apply to all network structures, and it
is unknown how much improvement could follow from explicit
modeling of synaptic interactions.

Other dynamical limitations include a superficial treatment
of channel and charge kinetics. We used point neurons, lack-
ing any description of spatial spread of charge or ChR2 chan-
nels. We did not include ChR2 kinetics, which exhibit history
dependent responses, maximal open and close rates, and pos-
sibly low continuously open conductance (Yizhar et al., 2011).
Even ignoring channel kinetics, ChR2 conductance should be not
only non-negative, but also bounded below some maximal value,
determined by expression levels, saturation of the channels, and
the maximal illumination the experimenter is willing to apply.
In experiments, g(t) may not be approximated well as directly

proportional to the applied light, and perhaps would be replaced
by a sigmoidal or other saturating mapping of light to conduc-
tance. Many variants of ChR2 are available (Fenno et al., 2011;
Yizhar et al., 2011), and in an experimental setting the dynamics
of the variant should play a role in the control approach. We note
that these assumptions were required, practically if not theoreti-
cally, in other recent control theoretic studies incorporating ChR2
(Ahmadian et al., 2011).

3.2.2. Assumptions on parameters
Accepting these dynamical simplifications, there are still non-
trivial choices for parameters. Given the choice of IAF dynamics,
we further simplified the problem by assuming noiseless neurons
and a stable rest point. As a consequence, the ensemble dynamics
are determined completely by the parameters (βk, αk), allowing
us to derive simple conditions on pairwise controllability. This
fit our goal of using simple models to try to understand large
ensembles, but with more realistic dynamics other strategies may
be possible. We assumed both E and the threshold vT are con-
stant across cells. One but not both of E or vT can be scaled away
through an appropriate choice of units for membrane potential
vk. A consequent change to (βk,αk) could be absorbed into their
assumed distributions, and thus it is sufficient to consider ran-
dom distributions on (βk,αk, vT;k). Small variations in vT should
not change the qualitative results, but further work is required
to assess any quantitative effects. Relative to the values of rest
and threshold, the ChR2 reversal potential E we used in simu-
lations may be low, although it is hard to determine “true” values
in such a simple model. The effect of high E would be to lin-
earize the dynamics, so that the conductance input is effectively
a current, since then g(t)βk(E − vk) ∼ g(t)βkE for all subthresh-
old potentials. The likely effect of this linearization is to relax the
conditions for controllability since, in effect, the input is free from
the membrane potential vk.

3.2.3. Assumptions on state estimation
We made additional limiting assumptions to the observation
model and allowable control inputs, inspired by our experimen-
tal context (Zhang et al., 2009; Anikeeva et al., 2011; Siegle
et al., 2011; Yizhar et al., 2011). Our approach amounts to an
open-loop, feedforward control solution, as we do not process
extracellular recordings in real time. In practice, any attempt to
apply such a solution would require good estimates of (βk,αk).
This raises the need for a system identification process prior to
initiation of control. Any errors in the resulting estimates would,
of course, diminish the accuracy of the derived control input, and
in cases where the two cells cross threshold close to each other,
would increase the error rate for induced spikes. In Section 2.5 we
demonstrated a degree of feasibility by fitting the IAF model to a
noisy, multiconductance neural model, using only the spike times.
Our open loop approach is most appropriate for situations where
we cannot precisely measure the membrane potential, such as in
extracellular recording. While methods exist for estimating such
potentials, and other variables such as ion channel conductances,
from discrete spike times, they tend to be computationally inten-
sive and introduce an additional set of complications (Koyama
and Paninski, 2009; Paninski et al., 2009; Meng et al., 2011).
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Other approaches abstract the biophysics and try to capture the
timing of spikes relative to inputs and spiking history without
explicit dynamical representation, such as general linear models
(Truccolo et al., 2005; Lawhern et al., 2010). Future work could
evaluate if fitting such models facilitated more accurate control
designs in experimental settings. The IAF is likely to be bio-
physically inaccurate for many recordings, but provides a more
direct path to determining conditions and inputs for sequence
controllability, and can perform surprisingly well at fitting and
predicting spike trains from real neurons (Gerstner and Naud,
2009). Moreover, the central issue of underactuation would per-
sist, and we would still need to determine how the full ensemble
activity relates to that of the smaller controlled set.

Noise arises in several ways, adding uncertainty to the trajec-
tories, and making the control objective probabilistic. We do not
expect, at least for small noise, to see a large impact on our ensem-
ble properties such as the controllable fractions, since such noise
will be averaged out over the large population. However, the error
rate in individual spike trains would inevitably increase. More
importantly, noise in the form of spontaneous activity could
weaken our assumption that neurons return to their resting state
after each spike. Of course, if there is a strong structured input
from any source other than our illumination, no feedforward
control strategy could result in dependable spike patterns, and a
more challenging closed loop control strategy would be needed
(Ahmadian et al., 2011). However, under reasonable assumptions
of small and unstructured spontaneous membrane potential fluc-
tuations, our control strategy could apply to a “ball” of initial
conditions around rest, for which there is only small deviation
of trajectories during the fast approach to spiking.

Relying on cells to return to rest after each spike constrains the
timing of controlled spikes to the scale of membrane time con-
stants. Measured time constants typically fall within 10–100 ms,
with most estimates falling near 20 ms (Koch et al., 1996; Mensi
et al., 2012; Varela et al., 2012), including specifically in our area
of interest, rodent somatosensory cortex (Feldmeyer et al., 1999;
Siegle et al., 2011). Because the time constant depends on the total
membrane conductance, it can be significantly shorter (e.g., 5 ms)
during states of high input (Mensi et al., 2012). More generally,
the effective decay rate may differ from the time constant esti-
mated from passive membrane properties with non-linear models
(Koch et al., 1996; Wei and Wolf, 2011). Under our approach,
these estimates suggest typical maximal control rates around
10 Hz, with a range from 2 to 40 Hz. Even at the slower end,
these rates should be taken in the context of observed sponta-
neous and evoked rates in cortex, which are often below 1 Hz
(Brecht, 2003; DeWeese et al., 2003; Brecht and Sakmann, 2004;
O’Connor et al., 2010), albeit with a “heavy tail” toward higher
rates. In other words, while extracellular recording selectively
samples from neurons with high spontaneous rates, the ability
to control spike rates even if limited to 10 Hz represents a sub-
stantial modulation of spike rate for a large fraction of neurons.
More elaborate strategies that do not require this return to rest
could likely operate at higher spike rates, and possibly be more
robust to errant spikes, but again would require good estimations
of continuous states, based on limited observability through spike
times.

3.2.4. Implications of the current results
In the context of these caveats, we now recap our major results
and their most likely impacts for more realistic models and in
experiments. First, we have provided analytic results in a simple
model that establish the feasibility of using a single input (opti-
cal fiber) to achieve a degree of independent spike control in pairs
of neurons. We extended this result to consider control in large
ensembles, showing that some degree of independence is possi-
ble beyond synchronous activation of a fixed set of neurons. The
approach could be readily implemented in experiments involving
recording of single unit activity simultaneously with application
of optogenetic stimulation. A prominent remaining hurdle is the
system identification step for finding (βk,αk). While not consid-
ered here, a number of empirical approaches could be used for
this purpose (Koyama and Paninski, 2009; Paninski et al., 2009;
Meng et al., 2011). The testing of our method in an experimen-
tal preparation is the subject of ongoing work. Our results are
a first step in the development of control solutions for expand-
ing control of ensemble spiking beyond synchronous activation,
in the underactuated situations we see as typical given available
stimulation technology for the near future.

4. METHODS
4.1. NUMERICAL IMPLEMENTATION
All simulations were implemented in the MATLAB (Mathworks,
Inc.) environment using standard Euler or Runge–Kutta methods
for solving ordinary differential equations. The Euler step size was
chosen as 0.002. The non-linear reset operation was implemented
using a threshold of vT = 1. After each spike, membrane poten-
tial was reset to Vreset = 0.0001. When large neuronal ensembles
were randomly generated, the parameter α was drawn from a
lognormal distribution of mean 1 and variance 0.25, while the
parameter β was drawn from an exponential distribution of mean
1. These distributions were chosen loosely based on experimental
and biophysical intuition, assuming that leak conductance must
always take a finite value (i.e., α > 0), while certain cells may
have little to no ChR2 expression (i.e., β ≥ 0). The MATLAB
functions exprnd and logrnd were used to sample these
distributions.

4.2. ALGORITHM FOR CONTROL OF MULTIPLE CELLS
The following algorithm was used to select inputs for a given set of
controllable cells (e.g., Figure 5A). Assume that the subensemble
is labeled as in Equation (11) for i = 1, . . . , N. For a desired spike
in cell Ni:

• If i �= 1 and i �= N, calculate si = (αi − αi − 1)/(βi − βi − 1) and
si + 1 = (αi + 1 − αi)/(βi + 1 − βi). Take s∗ as the mean of si and
si + 1.

• If i = 1, s∗ = (s2 + (α1/β1))/2.
• If i = N, s∗ = sN × 2.
• Calculate

y∗ = αi − s∗βi.

• Create a “dummy” cell ND with parameters along the line in
the (β, α)-plane defined by slope s∗ and α-intercept y∗.

• Apply control input Equation (7) for Ni and ND.
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By construction, a spike is achieved in Ni and all other cells in
the controlled set remain subthreshold by virtue of lying to the
left of the line connecting Ni and ND. This algorithm is not opti-
mal (in the sense of minimizing stimulation energy or timing,
or maximizing robustness to noise), and is designed to sim-
ply demonstrate selective spiking control in the underactuated
ensemble.

4.3. SIMULATION OF BIOPHYSICAL NEURONS
In Figure 4, each neuron was simulated using biophysical voltage-
gated conductance equations of the Hodgkin–Huxley type. These
neurons are based on non-linear equations that describe the
dynamics of sodium, potassium, and leak channels, and previ-
ously published in (Ching et al., 2010, 2012).

For each neuron, we used a system identification procedure
to fit the parameters (β, α) of a corresponding IAF model. While
many such procedures could be used, we opted for a fit based
on minimizing the difference in spike timing of the biophysical
neuron and the fitted integrate-and-fire neuron, upon excitation
by pulse inputs. We used the non-linear least-squares function
fminsearch in MATLAB to effect the fit. After making the
fit for the two neurons, we applied the algorithm in Section 2.3
to find inputs that achieve selective spiking in the two IAF neu-
rons. This control input was then applied to the original HH-type
neurons, leading to the output shown in the figure.

4.4. SUBENSEMBLE CONSTRUCTION
Figure 5B reports the maximal controllable set size as a func-
tion of the size of the illuminated population. At each point

on the x axis of this figure, a random realization of corre-
sponding size is created by drawing from the above random
distributions of (β,α). From that realization, the length of the
longest monotonic subsequence [satisfying Equation (10)] is
obtained using a standard algorithm (Fredman, 1975). This
length constitutes the maximal controllable set size. Figure 5C
reports the maximal and typical controllable fractions. At each
point on the x-axis of this figure, a random realization of the
corresponding size is created by drawing from the same dis-
tributions as in Figure 5B. The maximal controllable fraction
is the maximal set size divided by the value on the x-axis.
The typical controllable fraction is found by finding a sub-
set that satisfies not only Equation (10) but also the convexity
criterion Equation (11). To find a convex set, we used a sub-
optimal method using repetitive random subsampling of the
set and creation of a convex hull using the MATLAB function
convhull.

Figure 6 was created by generating random realizations of
cell ensembles of variable size. From each ensemble, a control-
lable set was realized as above. A superset of 1000 cells was
then generated and the percentage of cells that produced col-
lateral spikes in that superset was computed for each controlled
cell. The average over all controlled cells is then computed.
We report this average for 100 realizations of each controlled
set size.
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