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SUMMARY

Health is often qualitatively defined as a status free from disease and its quanti-
tative definition requires finding the boundary separating health from patholog-
ical conditions. Since many complex diseases have a strong genetic component,
substantial efforts have been made to sequence large-scale personal genomes;
however, we are not yet able to effectively quantify health status from personal
genomes. Sincemutational impacts are ultimatelymanifested at the protein level,
we envision that introducing a panoramic proteomic view of complex diseases
will allow us to mechanistically understand the molecular etiologies of human dis-
eases. In this perspective article, we will highlight key proteomic approaches to
identify pathogenic mutations and map their convergent pathways underlying
disease pathogenesis and the integration of omics data at multiple levels to
define the borderline between health and disease.

INTRODUCTION

As early as in 1996, the practice of genomic medicine had been precisely described by Laurie Garrett, a

Pulitzer prize-winning writer, where she imagined that by the year 2020, everyone will have his/her personal

genome information in a wallet-sized card guiding physicians’ clinical decision (Garrett, 1996). Compared

with the half-completed Human Genome Project in 1996, today we have completed whole-genome

sequencing for millions of individuals and have identified numerous novel disease-associated loci across

the genome. Technological advancements are now profoundly transforming our clinical practice, where tu-

mor sequencing and non-invasive prenatal testing have become routine clinical procedures. However, to

the general population, the imaginary scenario made in 1996 has not yet come true: while we are now able

to make a genome card for each person, to a large extent, we are still unable to effectively translate the

massive genomic information into clinical knowledge.

The widely used approach to analyze complex disease genomes is genome-wide association studies

(GWAS), which has identified thousands of loci associated with numerous diseases (NHGRI-EBI GWAS Cat-

alog). However, for many diseases, even with a very strong genetic component, GWAS often yield no signal

(Manolio et al., 2009), leading to a decade-long search for the ‘‘missing heritability’’. Built on GWAS, the

recently developed polygenic risk score model has demonstrated predictive power for few diseases (Khera

et al., 2018) but is not broadly applicable to most disease types. By scanning each individual genetic locus

across the genome one at a time, GWAS identify at-risk loci in diseases that display imbalanced allelic fre-

quencies between cases and controls, thereby tagging haplotypes by sentinel single nucleotide polymor-

phisms (SNPs). The disparities in allelic frequencies do not directly indicate functional consequences of

genomic variants; as such it is challenging to identify causal variants from regular GWAS investigations.

If we are able to quantify the molecular effect for every base change across the genome, integrating func-

tional data into the existing GWAS framework would substantially boost the power of detecting at-risk loci

and naturally unveil causal variants in diseases, thereby fundamentally innovating our interpretation of

genomic variants in human pathologies.

Another challenge with GWAS is mutational heterogeneity in complex human diseases, where hundreds or

thousands of genes are implicated in a given disease and different patients usually carry different clinical

mutations (Figures 1A and 1B). Because GWAS assumes independent contribution from every single locus

to disease etiologies, the intrinsic heterogeneity would become a bottleneck for identifying individual dis-

ease-associated variants that are more common and prevalent in cases relative to controls. To capture

these variants, large sample sizes are naturally needed to enrich disease-associated alleles in patient
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Figure 1. Mutational heterogeneity and pathway convergence

(A) GWAS examine each locus for the allelic enrichment in cases relative to controls.

(B) GWAS are often challenged by mutational heterogeneity. For example, patients #1, #2, and #3 have different affected

genes (A, B and C) leading to the same disease.

(C) If the affected genes A, B, and C are on the same pathway, the mutational heterogeneity should be understood as

mutational convergence.
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populations to reach genome-wide significance (Figure 1B). However, this model might not best reflect the

biology of human diseases, which are hallmarked by perturbations on molecular pathways (Nesterova

et al., 2019; Fruman et al., 2017) (Figure 1C). For example, prostate cancer is often characterized by pertur-

bation on androgen signaling pathways, and obstetric conditions are often linked with defective proges-

terone signaling. In other words, individual patients might carry highly heterogeneousmutations, but these

mutations in fact converge onto common biological pathways. As such, diseases with overlapping molec-

ular components tend to develop similar symptoms (Menche et al., 2015; Zhou et al., 2014). Therefore,

going beyond individual mutations and bringing systems thinking will help innovate our genome analysis

by identifying mutationally convergent pathways, which would effectively circumvent the challenge from

extreme mutational heterogeneity in human diseases.

When it comes to functional determination of individual mutation consequences or identifying mutational

convergence onto biological pathways, proteomic profiling is apparently the most straightforward solution. In

this article, we will present our perspectives on the next generation of disease genome analysis by introducing

large-scale proteomic techniques and systems biology approaches. At the individual mutation level, we will

demonstrate the use of proteomic analysis to empower our genome analysis by quantifying mutational effects

on altering protein abundance and function. At the systems level, we will particularly demonstrate the power of

proteomic profiling in charting the cellular maps underlying human diseases, which will enable us to identify dis-

ease-associated pathways and will provide us with a network view of complex diseases. Lastly, we will illustrate

the use of machine learning approaches to integrate proteomic profiling and large-scale genome analysis,
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enabling a quantitative computation of the borderline between humanhealth anddisease. In particular, the inte-

gration of different omics techniques such as single-cell RNA sequencing with the single-cell proteomics will

have a deep impact on the interpretation of different disease phenotypes by profiling the transcript and protein

expression of single cells, elucidating the heterogeneity of human biopsy samples, and highlighting susceptibil-

ities in specific cell types. Single-cell metabolomic represents another important asset for the prediction or clas-

sification of human diseases. The characterization of small molecules is necessary to uncover the metabolic

changes inside different cell types and to understand how the alteration of specific metabolic pathways alters

the entire cellular metabolism and genetic expression (Kiviet et al., 2014). The application and the integration

of these single-cell technologies will therefore allow a more accurate characterization of the borders between

health and disease conditions.
DETERMINING MUTATIONAL CONSEQUENCES IN ALTERING PROTEIN ABUNDANCE

Recent studies have consistently revealed that more than 90% of at-risk loci in complex human diseases fall

in non-coding regions (Schaub et al., 2012; Corradin and Scacheri, 2014; Boix et al., 2021). As such, disrupt-

ing regulatory elements so as to perturb gene regulation represents a major mechanism underlying human

diseases. The Genotype-Tissue Expression (GTEx) project systematically cataloged human genomic vari-

ation associated with gene expression across multiple tissue types (e.g. expression quantitative loci,

eQTLs), which have provided an entry point connecting genetic changes with disease predispositions uti-

lizing mRNA gene expression as an endophenotype. However, the end product of gene regulation is pro-

tein, and cellular protein abundance could be highly disproportionate from mRNA expression given post-

transcriptional regulation mechanisms and environmental contribution (Jiang et al., 2020; Liu et al., 2016).

This notion was particularly highlighted by the landmark paper of the quantitative proteome map of the

human body (Jiang et al., 2020), where numerous genes with ubiquitous mRNA expression across tissues

in fact displayed strong tissue specificities in their protein abundance. Therefore, ideally the consequences

of human genomic mutations should be understood at the protein level, and the recent rapid development

of proteomic technologies has made this possible.

Given the number of biological factors involved in the regulation of protein expression and the impor-

tance of protein abundance in describing the physiological or pathological state of a biological system,

several proteomic techniques have been developed to quantitatively evaluate the proteome. In this

context, two different strategies can be adopted to quantify the protein abundance in human samples:

(1) stable isotope labeling techniques; and (2) label-free methods. Despite each of these techniques hav-

ing its own pros and cons in the evaluation of the human proteome (DeSouza and Siu, 2013; Aly et al.,

2021), the rapidly evolving field of precision medicine has driven the development of the approach known

as protein Quantitative Trait Loci (pQTLs) (Ye et al., 2020), which is able to correlate the genetic variant

with the protein abundance and the relative clinical trait or disease risk, thus elucidating the causal

role of that protein in a specific disease state. Wu and colleagues, for example, used isobaric tandem

mass tag-based quantitative mass spectrometry to determine protein levels of ~6,000 genes in lympho-

blastoid cell lines (LCLs) from 95 ethnically diverse individuals genotyped in the HapMap Project, leading

to a discovery of numerous cis-pQTLs across the genome, whose allelic alterations were significantly asso-

ciated with protein abundance of their neighboring genes in LCLs (Wu et al., 2013). These genetic loci

thus provided us a glimpse into the genetic control of protein abundance in humans, enabling us to

directly interpret mutational consequences at the protein level. A more recent work (Robins et al.,

2021) further illustrated the power of integrating proteomics in our current genomic analysis, where

numerous pQTLs for 7,376 proteins were identified by performing proteomic profiling in 330 dorsolateral

prefrontal cortical samples. Leveraging these brain pQTL loci, a follow-up analysis further re-assessed po-

tential functional implications of genomic loci in large-scale GWAS of seven neurological phenotypes

(Alzheimer disease, amyotrophic lateral sclerosis, depression, insomnia, intelligence, neuroticism, and

schizophrenia), and identified putative causal loci underlying these conditions (Kibinge et al., 2020). In

a similar effort, plasma pQTLs were also identified (Sun et al., 2018), which enabled us to directly identify

at-risk loci from the genome for cardiovascular disease (Yao et al., 2018). Taken together, integrating pro-

teomic profiling techniques has now allowed us to directly associate genetic allelic changes with alter-

ations of protein abundance, providing a direct indicator to disease predispositions and suggesting tar-

gets for prevention and medical intervention.

Lastly, the rise of single-cell RNA sequencing technique paved the way for the optimization of single-cell

proteomic approaches to accurately quantify proteins from a small number of cells (Kelly, 2020). Indeed,
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despite the gap that still exists between sample size and proteome coverage, recent technological ad-

vancements have allowed us to reliably profile thousands of proteins starting from just a few hundred of

cells (Zhu et al., 2018; Budnik et al., 2018; Dou et al., 2018). While the field of single-cell proteomics is still

not completely mature, its continuous development will allow the spatial resolution of mammalian sam-

ples, thus uncovering the protein abundance heterogeneity of complex tissues.
DETERMINING MUTATIONAL CONSEQUENCES IN ALTERING PROTEIN FUNCTION

While proteomic approaches can be leveraged to directly determine the effect of mutations on the alter-

ation of protein abundance, recent methodological advancement has enabled us to determine mutational

effects on changing protein structure and interaction. The 3D protein structures are determined by their

amino acid sequence, which in turn is genetically controlled. Therefore, discovering the relationship be-

tween genome sequencing data, amino acid sequence, and protein structure is indispensable for under-

standing the molecular basis of complex human diseases. Over the years, many efforts have been under-

taken to resolve the 3D structure of proteins via X-ray crystallography, high-resolution nuclear magnetic

resonance spectroscopy, cryogenic electron microscopy, and protein-modeling algorithms (Kuhlman

and Bradley, 2019). These techniques assess non-synonymous mutations (loss-of-function and missense

mutations) and are expected to pave the way for advancing our understanding of mutations from

exome-sequencing data for complex human diseases. Compared with no nonsense mutations resulting

in premature stop codons, characterizing functional consequences of missense mutations (amino acid

replacement) are often challenging.

Classical structural biology methods are employed to determine alterations in physicochemical properties (e.g.

difference in solvent exposure between wild-type andmutated alleles) associated with amino acid replacement,

which are integrated with evolutionary conservation analysis to derive a quantitative metric to score mutational

deleteriousness from exome-sequencing data. Interestingly, as opposed to our initial expectation of mutational

effects on affecting structure or stability of individual proteins, increasing evidence has now shown that disease-

causingmissensemutations are likely to disrupt protein-protein interactions. A recent work (Fragoza et al., 2019)

leveraged the yeast-two-hybrid (Y2H) platform to experimentally assess mutational consequences of missense

mutations from whole-exome-sequencing data on perturbing protein interactions, and estimated that ~10.5%

among all missense variants per genome likely affect protein interactions, instead of causing unstable protein

expression. This observation is important because the perturbation of protein interactions simply implies sub-

stantial rewiring of the cellular protein-protein interaction network, which likely contribute to the diversified phe-

notypes, especially disease predispositions, among the human population. More importantly, this study further

revealed that those missense mutations disrupting protein interactions are widely distributed across the entire

allele frequency spectrum; as such, perturbing protein interactions likely represent commonmechanisms under-

lying human diseases. Another recent work further strengthened these concepts by directly mapping genomic

mutations onto protein sequences encoding residues in protein-protein interaction interfaces, and indeed

observed that both germline mutations in human diseases and somatic mutations in different cancer types

weremore likely to affect residues in protein-protein interaction interfaces (Cheng et al., 2021). Focusing on can-

cer, intriguingly, these affected protein interactions were highly correlated with clinical outcomes (survival) and

drug responses.

Recently, a study conducted (Wierbowski et al., 2020) on the protein-protein interactions between SARS-

CoV-2 and its human host and the impact of human genetic variants on the disruption of native protein-pro-

tein interactions and, consequently, on patient symptoms and responses following SARS-CoV-2 exposure,

was able to generate a web interface containing a 3D structural interactome meta-analysis and the predic-

tion of the binding between viral-human interaction interfaces and drug repurposing candidates. Given all

these findings, proteomic techniques (protein abundance profiling, Y2H and pull-down assay) to define

protein interactomes and 3D protein structural modeling to spatially resolve localization of genomic mu-

tations, have apparently opened a new avenue to future genomic medicine, from disease prognostics to

treatment strategy development.
MAPPING THE PROTEIN INTERACTOME TO REVEAL MUTATIONALLY CONVERGENT

PATHWAYS

Complex diseases are hallmarked by locus heterogeneity, where different patients carry different sets of

mutations. However, it is important to emphasize that the concept of locus heterogeneity was simply
4 iScience 24, 102925, August 20, 2021
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derived from the one-dimensional genome, and viewing these mutations from the proteomic dimension

gives a different view. In this context, affinity purification assays and Y2H screenings offer a unique oppor-

tunity to uncover the protein interactions impact on complex human diseases. While Y2H assays can only

verify the physical interaction in protein pairs, the affinity purification methods are able to identify direct or

indirect interactions among a group of proteins, thus representing one of the most commonmethods used

to characterize complex protein interactions in different model systems. Over the years, pull-down assays

have also been applied to uncover the impact of extreme locus heterogeneity on protein associations. For

example, our recent work (Li et al., 2015) on co-immunoprecipitation coupled with mass spectrometry in

neuronal cells revealed proteins interacting with key autism spectrum disorder (ASD) proteins that were

individually identified from clinical studies. Intriguingly, despite these ASD proteins found from disparate

patients with idiopathic and syndromic ASD, their interacting proteins formed a highly connected network,

suggesting a mutational convergence onto molecular pathways in complex diseases. It is also the same for

the well-known BAF complexes and PI3K/Akt/mTOR pathway, where almost all their protein members had

been individually identified as at-risk loci in neurodevelopmental disorders. Moreover, the recent resolu-

tion of the mitochondrial protein complex reorganization during neuronal differentiation unveiled the un-

characterized protein C20orf24, whose 30 UTR variant is associated with mitochondria respiratory chain

complex deficiency in patients, as a respirasome assembly factor, as well as showing that the binding be-

tween NENF and the Parkinson’s disease-associated proteins DJ1 and PINK1 resulted in the improvement

of neurotrophic activity and, consequently, neuronal survival (Moutaoufik et al., 2019). Additionally, we

showed that the SOD1-PRDX5 interaction, critical for mitochondrial redox homeostasis, can be perturbed

by amyotrophic lateral sclerosis-linked SOD1 allelic variants, and also established a functional role for

neurodegenerative-linked factors coupled with IkBε in nuclear factor-kB (NF-kB) activation (Malty et al.,

2017). In addition to neurological disorders, our systems biology analyses revealed mutational conver-

gence in cardiovascular or pulmonary diseases and prostate cancer (Li et al., 2018; Wang and Li, 2020). De-

ciphering complex human diseases through the integration of genomics, transcriptomics, and proteomics

data has also made challenging by the need of using cell lines or mouse models to investigate the mech-

anisms contributing to a specific pathology. Indeed, obtaining genetic information from a patient simply

require a blood or a saliva sample, while dissecting the transcriptomic or the proteomic impact of a muta-

tion in a specific tissue often needs the use of models that are not able to recapitulate the complex human

disease phenotypes. This important gap in translating the discoveries made in well characterized cellular or

animal models to heterogeneous human diseases drove the development of more close-to-natural sam-

ples, like induced pluripotent stem cell (iPSC)-derived cell lines and organoids (Zilocchi et al., 2020).

Overall, including a proteomic perspective to the genomic information will help revealing the convergent

disease pathways from heterogeneous mutations. As such, genetic architecture of human phenotypes is

best characterized by mapping genomic mutations onto molecular pathways, calling for large-scale prote-

omic profiling to derive a complete cellular map of protein-protein interaction. Toward this goal, investi-

gators have formed the Psychiatric Cell Map Initiative (Willsey et al., 2018) to systematically delineate a pro-

tein-protein interaction map underlying brain development, which will not only identify molecular

pathways where pathological mutations converge, but will also reveal the shared molecular etiologies at

a pathway level among distinct but related neurodevelopmental disorders, such as autism, intellectual

disability, epilepsy and schizophrenia. Together, integrating proteomic profiling in disease genome anal-

ysis will provide deep mechanistic insights into disease etiologies, which are absent from genomic analysis

alone.
LEVERAGING DEEP LEARNING TO INTEGRATE PROTEOMIC PROFILING AND PATIENT

GENOMES

Once we have a reference cellular map of protein interactions, we will be able to convert the traditional

mutation analysis from the one-dimensional genome space into a machine learning problem in a high-

dimensional space. We previously illustrated the problem formulation by mapping genomic mutations

onto a cellular network, followed by developing graph search algorithms to identify compact sub-networks

with increased mutational load in cases relative to controls ((Li et al., 2019), Figure 2). However, calculating

mutational load is often challenged by unclear molecular consequences of individual genomic variants.

Borrowing strength from proteomic profiling data, and the accumulating pQTL data that have become

available in different human tissue and cell types will now allow the estimation of tissue-specific mutational

pathogenicity. These functional data (i.e., quantifying mutational effects on protein abundance, structure

and interaction as described above) will enable us to directly aggregate the impact of pathogenic
iScience 24, 102925, August 20, 2021 5
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Figure 2. Structural deep network embedding (SDNE) to identify disease-associated pathways from large-scale disease genomes

The embedding technique is to map proteins on the network onto a low-dimensional space where the local topological features of a given node protein are

still preserved. SDNE uses two deep AutoEncoder networks, takes the adjacency vector of each protein (network node) as input, and learns its embeddings

in a new space with compressed dimension. For a given protein in the embedding space, SDNE preserves the first and second order topological neighbors

from the original network. Clustering proteins in the embedding space will identify functionally related proteins, thereby defining biological pathways. For

each gene (protein), we then define its mutation burden by aggregating common, rare and de novo deleterious variants in the gene (weighted aggregation),

followed by a comparison with the expectedmutational burden in control samples. The test statistic is then assigned to each protein to reflect the differential

mutational burden of a given gene in cases relative to controls. Lastly, we will identify protein clusters displaying significantly increased mutational burden in

cases relative to controls. These clusters will be mapped back onto the original interaction network for their physical organization to represent biological

pathways.
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mutations on each gene at the protein level. We can then score each protein based on their differential

impact scores in cases relative controls, followed by identifying the underlying pathways on which the

seemingly heterogeneous mutations converge.

We herein introduce a deep learning theoretical framework to uncover genetic basis from large-scale

disease genomes by integrating proteomic information. Compared with our earlier proposal based on

graph search algorithms (Li et al., 2019), which are often computationally challenging when handling

large-scale biological networks and millions of genomic mutations, the deep learning framework is

computationally scalable and efficient. We introduce the Structural Deep Network Embedding (SDNE)

framework (Wang et al., 2016) for disease genome analysis. SDNE maps each protein from a large bio-

logical network onto a compressed space (embedding) by implementing semi-supervised deep autoen-

coder networks (Figure 2). Therefore, unlike PCA, the SDNE mapping is non-linear and guarantees that

the geometric distribution of the proteins in the new space preserves their local topological structure on

the biological network. Clustering proteins in the new embedding space (Figure 2) will reveal hidden

pathway structures not seen in the original topological network (Wang et al., 2016). SDNE well solves

the computing scalability problem, and the incomplete information on biological networks will be ad-

dressed in the new ‘‘embedding’’ space, where proteins in related pathways will be geometrically clus-

tered together despite their missing links on the original network. After clustering, we can map muta-

tions onto each protein in the embedding space: each protein will be assigned with a score

quantifying differential burden of aggregated consequential mutations between cases and controls.

Common or rare variants could be analyzed separately or based on their weighted aggregation (Curtis,

2019). With this score assignment, the clusters enriched for proteins frequently affected by pathogenic

mutations in cases relative to controls can be easily identified by regular statistical tests. Mapping the

identified protein clusters back onto the original interaction network will identify their physical organiza-

tion, which naturally reveals disease-associated pathways (Figure 2).

Although the theoretic model we presented above is an unsupervised model solely driven by clustering

structure of pathogenic mutations, the model can be easily extended to supervised models guided by a

list of known disease-associated genes as training data. Krishnan and colleagues previously developed a

classifier trained on genes known to be implicated in autism, which was utilized to score all human candi-

date genes in autism. The classifier was constructed based on topological similarity between any given

genes and known autism genes on a defined brain-specific gene-gene association network (Krishnan

et al., 2016). Although their original model was not designed for analyzing personal genomes, the recent

development of a graph convolutional network has made it possible, where each protein on the interaction

network could be represented by a feature vector encoding its topological position, enrichment of
6 iScience 24, 102925, August 20, 2021
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pathogenic mutations, and gene expression. The deep learning algorithm will be trained to identify pro-

teins in close proximity to known disease genes in the feature space.
FROM DEEP MOLECULAR PROFILING TO DEEP PHENOTYPING: THE EMERGING

TECHNOLOGICAL DEVELOPMENT

While leveraging deep learning to integrate multi-omics data could help address many long-standing

challenges in our genome analysis, one fundamental problem that has remained is the extreme pheno-

typic heterogeneity. In a typical clinical analysis, we classify human populations into cases and controls;

however, the borderline between health and disease is often not binary but personal and dynamic. For

example, the normal body temperature (oral) varies from 33.2�C to 38.2�C among the human population

(Sund-Levander et al., 2002), and therefore adopting a single threshold based on the population average

would likely result in erroneous decision making in our clinical practice. This personalized perception of

human diseases and treatments has guided the shifting from the ‘‘one-size-fits-all’’ approach of the

epidemiological studies, to the more accurate precision medicine field, which aims at defining a

custom-made diagnosis and treatment for each patient. In particular, by pairing large multidimensional

biological datasets, which capture individual variabilities associated with a peculiar phenotype, and arti-

ficial intelligence algorithms, precision medicine allows the prediction of disease risk, treatment

response, and other outcomes in each subject based on their own physio-pathological characteristics

(Uddin et al., 2019).

Electronic health records (EHRs) contain rich information about patient journey during their clinical visits,

and deep learning models have been recently developed (Morel et al., 2020; Jaotombo et al., 2020; Desau-

tels et al., 2017) to predict future clinical events (e.g., in-hospital mortality and unplanned readmission) from

past events recorded in individual’s EHRs. The UK-Biobank, TOPMed amongmany other biobank and con-

sortium resources have nowmatched each patient’s genome (exome) with EHRs, enabling genome scan for

multiple traits at the same time. Our recent work (Li et al., 2018) leveraged a machine learning framework to

integrate patients’ personal genomes, EHR data, and personal lifestyles, which by aggregation accurately

predicted disease occurrences of abdominal aortic aneurysm, a cardiovascular condition prevalent among

aged population. It is important to note that genomic mutation profiles predispose individuals to a given

disease, whereas EHR and lifestyle data predict disease risk in near term. By aggregating these two ele-

ments, it is possible to accurately predict the disease risk as we demonstrated before (Li et al., 2018). Going

beyond disease risk prediction, one can further seek clinically actionable solutions to reduce disease risk by

modifying lifestyles conditioned on one’s personal genome.

Despite the clinical utility of EHR data for stratifying patient phenotypes, the data itself are sparse and are

only recorded during discrete clinical visits. We and several other groups are actively exploring alternative

solutions to achieve deep and precise phenotyping (Li et al., 2019). Wearable technologies represent a pro-

active solution, which by integrating with cloud computing and storage can easily achieve physiological

data acquisition in real time. Clinical diagnostic decisions could be immediately made by analyzing the ac-

quired physiological data (heart rate, skin temperature, respiratory rate, etc.). For example, recent work re-

purposed consumer smartwatches to longitudinally track physiological signal fluctuations of study partic-

ipants and successfully achieved symptomatic and pre-symptomatic detection of COVID-19 (Quer et al.,

2021; Mishra et al., 2020). Similarly, investigators have also used continuous glucose monitoring for dense

sampling to longitudinally track glucose dynamics and uncovered highly personal glucotypes among study

participants (Hall et al., 2018), thereby suggesting the limitation of using single-time-point measurements

in the existing clinical diagnosis practice. More importantly, the observation also calls for fine stratification

of diabetic patients based on personal glucose profiles to identify molecular mechanisms specific to per-

sonal glucotypes. By enabling personal deep phenotyping, we envision that multi-omics data profiling and

integration will be ultimately achieved at a personal level.
LOOKING FORWARD: FINDING THE BORDERLINE BETWEEN DISEASE AND HEALTH

LEVERAGING BIGGER DATA, BETTER MODEL, AND NEWER TECHNOLOGIES

We live in a changing world, where since the past decade, we have witnessed the rapid: (1) growth of high-

throughput technologies, (2) replacement of microarrays by RNA sequencing, (3) accumulation of disease

genomes, and (4) development of single-cell and proteomic technologies, enabling us to investigate

cellular events at an unprecedented resolution. Compared with technological advancements, our
iScience 24, 102925, August 20, 2021 7



Figure 3. A conceptual biological network connecting proteins with physical or genetic interactions

Proteins associated with related pathways are proximal to each other, while proteins with non-overlapped biological

functions are positioned far apart. Colored regions indicate enriched disease-associated pathways for different

categories. Figure is from Science. 2010; 327:425-431. Reprinted with permission from AAAS.
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analytical frameworks have remained largely unchanged, where we continue to perform GWAS and the

search for missing heritability has remained elusive. We reasoned that these statistical genetic models infer

disease associations purely based on allele frequencies, which do not directly model molecular functions.

Therefore, genetic heterogeneity has remained a major challenge (Figure 1B), which would require large

sample size to enrich at-risk alleles so as to reach genome-wide significance.

We present our view for the nature of complex diseases on the global human protein interaction network,

where genes implicated in a particular disease type are clustered in related biological pathways. Overlap-

ping pathways between diseases likely reflect overlapping phenotypic spectra in each disease (Figure 3).

Therefore, proteomic profiling is strongly desired to help elucidate mutational consequences and to

construct tissue/cell-type specific cellular maps, which will substantially expediate our disease genome

analysis. This integrative view of human diseases has been extensively applied by the Clinical Proteomic

Tumor Analysis Consortium (CPTAC) for the characterization of different cancer types. In particular, the

employment of proteomics-based approaches allowed the elucidation of genomics alteration effects on

the disease proteomics landscape and the identification of specific therapeutic targets (Krug et al.,

2020; Mertins et al., 2016; Zhang et al., 2014; Wu et al., 2019). The big amount of data derived from these

multi-omics studies were then incorporated in the open-source platform cBioPortal to visualize the multi-

dimensional aspects of tumors in the context of proteomics, genomics, and clinical data (Wu et al., 2019).

This integrative view requires innovative analytical models, which represents the next-generation frame-

work for large-scale disease genome analysis. Integrating with proteomic data, we essentially map

genomic mutations from the one-dimension genome to a multidimensional space, which can be easily

formulated into a space embedding problem in machine learning (Figure 2). Therefore, extending the ex-

isting statistical association framework, we envision that deep learning will play a fundamental role in quan-

tifying allelic effects and especially in network embedding to reveal disease-associated pathways. This inte-

grative framework naturally circumvents the genetic heterogeneity challenge and converts it into finding

hidden pathway structures on biological networks, a typical problem in machine learning. We envision

that integrating with multi-omics data will substantially lessen the demand for large-scale patient samples

but will require the development of advanced deep learning platforms, which represent an exciting new

opportunity in this field.
8 iScience 24, 102925, August 20, 2021
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To achieve precision mapping from genomes onto phenotypes, we envision that mapping personal ge-

nomes onto personal traits, instead of associating population allele frequencies with population average

of phenotypic traits, will revolutionize our preventative and therapeutic strategies in our clinical practice

and will significantly advance our personal healthcare. While personal omics-profiling has become avail-

able (Chen et al., 2012), unified protocols and standards are required for deep and longitudinal phenotyp-

ing in future practice. Emerging technologies and 3D printing techniques have made it possible to design

and manufacture many sensor types to capture physiological signals that cannot be recorded in previous
iScience 24, 102925, August 20, 2021 9
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research, such as wearable headband sensors longitudinally recording brain electroencephalogram signals

and sensor chips woven into a shirt for proactively tracking muscle contraction events or monitoring elec-

trocardiogram signals (Medgadget, 2020). These technologies enable longitudinal phenotyping and will

help define disease subtypes and achieve stratification of patients, facilitating fine mapping of molecular

components for quantitatively defined phenotypes (Figure 4).
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