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Abstract: In the last decade, it has been well-established that tumor-infiltrating myeloid cells fuel not
only the process of carcinogenesis through cancer-related inflammation mechanisms, but also tumor
progression, invasion, and metastasis. In particular, tumor-associated macrophages (TAMs) are the
most abundant leucocyte subset in many cancers and play a major role in the creation of a protective
niche for tumor cells. Their ability to generate an immune-suppressive environment is crucial to
escape the immune system and to allow the tumor to proliferate and metastasize to distant sites.
Conventional therapies, including chemotherapy and radiotherapy, are often not able to limit cancer
growth due to the presence of pro-tumoral TAMs; these are also responsible for the failure of novel
immunotherapies based on immune-checkpoint inhibition. Several novel therapeutic strategies have
been implemented to deplete TAMs; however, more recent approaches aim to use TAMs themselves
as weapons to fight cancer. Exploiting their functional plasticity, the reprogramming of TAMs aims to
convert immunosuppressive and pro-tumoral macrophages into immunostimulatory and anti-tumor
cytotoxic effector cells. This shift eventually leads to the reconstitution of a reactive immune landscape
able to destroy the tumor. In this review, we summarize the current knowledge on strategies able to
reprogram TAMs with single as well as combination therapies.

Keywords: TAM; reprogramming of TAM; anti-cancer treatment; immune landscape;
immunotherapy.

1. Introduction

Macrophages are specialized phagocytic cells of the innate immune system. They belong to
the mononuclear phagocyte system, comprising both tissue resident macrophages and circulating
monocytes, which are available to be recruited at sites of inflammation and tissue damage, such as
tumors. Plasticity is one of the main features of macrophages, since they display a broad spectrum of
activation states with distinctive phenotypes and functions. Differentiating monocytes, reaching the
tissues, can meet and adapt to particular local stimuli able to activate distinct genetic programs [1–5].

In this broad spectrum of activation states, two polarized extremes have been defined: the M1 (or
classically activated, pro-inflammatory/anti-tumoral) macrophages and the M2 (or alternatively
activated, anti-inflammatory/pro-tumoral). Prototypical M1 macrophages are activated by
lipopolysaccharides (LPS) and the pro-inflammatory cytokine IFN-γ. M1-like macrophages are
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able to neutralize bacterial infections and produce pro-inflammatory cytokines (e.g., IL-1β, TNF-α,
and IL-12). They are able to kill cancer cells, inhibit angiogenesis, and promote adaptive immune
responses. As opposite, prototypical M2 macrophages are induced by the anti-inflammatory cytokines
IL-4 and IL-13. They can suppress Th1 immunity, are central effectors in the healing of injured tissues,
and promote tumor progression and neo-angiogenesis. The uncontrolled and prolonged activation
of inflammatory macrophages could represent a risk for the body, therefore these cells typically shift
towards an M2 phenotype over time [3,5]. Although it has been recognized that a complex spectrum of
activation states exists for macrophages in cancer, depending on the type of tumor and their particular
localization (i.e., periphery versus centre of the tumor), especially at advanced stages, these cells most
commonly acquire an M2-like phenotype.

Tumor-associated macrophages (TAMs), presenting an M2-like polarization,
inhibit immuno-stimulatory signals and lack cytotoxic activity, therefore promoting tumor
development and survival [3]. TAMs are macrophages, which have been shaped by tumor-derived
factors to promote cancer progression. These corrupted cells are responsible for progression and
resistant to conventional antitumor treatments, such as chemotherapy or radiotherapy, but also to the
latest immunotherapies, such as anti-PD1 [3,6–8].

For these reasons, TAMs are promising targets for novel anti-tumor treatments. Several therapeutic
approaches have been assayed to deplete TAMs in tumors; however, new approaches are majorly
focused on the exploitation of TAMs themselves as weapons to fight cancer. The reprogramming
of TAMs aims to convert immunesuppressive and pro-tumoral macrophages (M2-like) into
immunostimulatory and anti-tumor cytotoxic effector cells (M1-like). If effective and long-lasting,
this switch is expected to reconstitute a reactive immune system with the ability to fight and completely
eliminate the cancer in the patient. In this review, we summarize the current knowledge on the role of
macrophages in tumors and strategies to re-educate TAMs.

2. Role of Macrophages in Tumors

Tumor-associated macrophages can represent up to 50% of the tumor mass, being the main
immune population in solid tumors. They can derive from circulating monocytes and tissue resident
macrophages. Specific signaling molecules, such as CCL2, CSF-1, cytokines, and complement
components (i.e., C5), are able to rapidly recruit circulating inflammatory monocytes at sites of tumor
growth [3]. However, TAMs can also derive directly from resident macrophages, originally present
in the healthy tissue later developing cancer. The tumor microenvironment can shape TAMs’
behavior through the release of different stimuli, which typically shift the macrophages towards an
immunosuppressive pro-tumoral phenotype, or, rarely, towards a pro-inflammatory and anti-tumoral
phenotype (Figure 1) [3,9,10]. Thus, macrophages can play a dual role in the development of different
tumor types [11], and their number and polarization status has been associated with a better or worse
patient survival. In several tumor types, such as osteosarcoma and esophageal tumors, their presence is
associated with better overall survival and longer metastasis progression-free survival [12,13]; instead,
in other tumors, macrophages are associated with worse prognosis, especially when linked to low
numbers of CD8+ cells, the lymphoid cellular type responsible for the killing of tumor cells [14–17].

TAMs showing M2-like features are typically associated and responsible for the bad prognosis of
the disease, and for this reason, they could be considered the corrupted policemen of our immune
system [3,18]. They are implicated in the initiation and progression of the tumor, through the secretion
of signaling molecules, such as transforming growth factor beta (TGF-β), vascular endothelial growth
factor (VEGF), macrophage colony-stimulating factor (M-CSF), interleukins or chemokines (IL-10, IL-6,
and CXCL-8) [19–21], and extracellular vesicles (EV) with immunosuppressive properties [22].

TAMs promote tumor invasion and metastasis through the secretion of matrix metalloproteases,
serine proteases, and cathepsins. Due to the release of these factors, the cell–cell junctions and the basal
membrane are disrupted [23]. Several molecules are involved in the remodeling of the extracellular
matrix. IL-4 induces the protease activity of cathepsins that promotes breast cancer invasion and
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metastasis [24]; other factors secreted by TAMs, such as TGF-β, VEGF, CCL8, COX-2, SPARC, MMP9,
and MMP2 contribute to the metastatic properties of cancer cells [25–30]. TAMs play a pivotal role
also in the process of epithelial to mesenchymal transition (EMT). This process promotes tumor
invasion and metastasis through the reduction of epithelial markers, such as E-cadherin, and the
induction of mesenchymal markers, such as vimentin, slug, snail, and fibronectin [31]. The TLR4/IL-10
pathway, TGF-β, and CCL18 produced by TAMs are associated with EMT [32–36]. Moreover, TAMs are
implicated in the sustainment of cancer stem cells (CSC). CSCs are a population of tumor cells,
which share some features with stem cells, being able to initiate tumorigenesis thanks to their ability
for continuous self-renewal and differentiation [37]. In this context, TAMs produce soluble factors
(e.g., TGF-β, IL-6) that promote survival of CSCs [20,21,38,39]. Our group has recently found that
also GPNMB produced by macrophages induces cancer stemness via CD44 binding and release of
IL-33 [40].J. Clin. Med. 2020, 9, x FOR PEER REVIEW 4 of 24 
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Figure 1. Tumor-associated macrophages (TAMs) and their ambivalent role in shaping the
tumor microenvironment. On the left side, the anti-tumoral M1-like macrophages, stimulated by
immunostimulatory cytokines (e.g., IL-1β, IL-12, IL-23, TNF-α, IFN-γ). M1-like TAMs promote
the recruitment and activation of T cells by producing CXCL10, TNF-α, and other cytokines.
Through the release of TNF-α, ROS (Reactive Oxign Species), and NO, they can directly kill tumor
cells. M1-like macrophages induce tissue damage, maturation of APCs (Antigen Presenting Cell) and
they can actively phagocytose cancer cells. On the right side, the pro-tumoral M2-like macrophages,
release immuno-suppressive mediators, such as IL-10, TGF-β, IDO1/2, which support regulatory T
cells. These pro-tumoral immune cells promote tumor proliferation (EGF, FGF, PDGF), angiogenesis
(CXCL8, VEGF, FGF), invasion and metastasis (TGF-β), and a continuous tissue remodeling (MMPs,
cathepsins, uPAR).

Another pro-tumoral function of TAMs is related to their ability to induce and sustain angiogenesis,
supporting the formation of tumor vessels. Angiogenesis is necessary to sustain tumor growth and
progression because neo-vessels bring oxygen and nutrients to the tumor. TAMs produce several
factors that contribute to create new vessels: VEGF, TGF-β, CXCL8, PDGF but also MMP9 and TIE2
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(endothelial-specific receptor tyrosine kinase) [19,41–45]. New vascularization is activated by the
binding of TIE2 with Angiopoietin 2 (ANG2); in hypoxic conditions, both the ligand (ANG2) and the
receptor (TIE2) are overexpressed [46,47].

The presence of TAMs is frequently associated with the failure of antitumoral treatments, such as
chemo- and radiotherapy [48,49]. The resistance to these therapies can be mediated by the release of
cytokines from TAMs; in particular, IL-6 has been demonstrated to induce tolerance in the treatment
of breast [50], pancreatic [51], and colorectal cancer [52,53]. TAMs-derived cathepsins B and S were
able to prevent paclitaxel-induced tumor cell death in mammary carcinoma [54]. In prostate cancer,
IL-4 impaired the efficacy of radiotherapy by inducing the CSFR1 signaling pathway [55]. Accordingly,
depletion of macrophages, through different approaches, has been demonstrated to increase the efficacy
of several conventional drugs [48].

TAMs can impair antitumoral immunotherapy thanks to their ability to shape the immune system
and polarize the tumor environment towards an immunosuppressive status. In fact, TAMs are able
to inhibit CD4+ and CD8+ effector function via the release of cytokines, chemokines, and enzymes
(e.g., CCL2, IL-10, TGF-β, Cathepsin K, COX-2, and MMPs); besides, TAMs activate the T-reg
subpopulation, impairing the effector function of lymphocytes. Macrophages in tumors express also
inhibitory checkpoint receptors (PD-L1/2, PD-1, CD80, CD86, and VISTA) frequently associated with
immunotherapy failure [56]. For example, TAMs overexpress PD-L1 that reduces the efficacy of anti
PD-1 therapies [57], by sequestering anti-PD-1 antibodies and also by unspecific binding [58].

3. Presence of TAMs in Different Tumor Types

Taking into account the properties of macrophages described in the previous paragraph,
it is now commonly accepted that high numbers of TAMs with an M2-like anti-inflammatory
phenotype are typically associated with poor patient outcome, while TAMs polarization towards an
M1-like pro-inflammatory phenotype tend to correlate with favorable prognosis and longer survival
(Table 1) [59–63]. Below, we address some of the features related to macrophage polarization in different
tumor types.

4. Malignant Pleural Mesothelioma

Malignant Pleural Mesothelioma (MPM) is a very aggressive type of cancer, characterized by
a chronic inflammation, commonly caused by inhalation of asbestos fibers. Macrophages are key
drivers of this chronic non-resolving inflammation in the attempt to clear away the non-degradable
asbestos fibers [64,65]. Since the early steps of tumorigenesis, cancer and stromal cells increase
the number of TAMs in the tumor, by producing chemokines and growth factors (e.g., CCL2 and
CSF1) [3,66,67]. Furthermore, in mesothelioma, the tumor cells influence also their differentiation
into immune-suppressive and tumor-promoting macrophages [3]. It has been demonstrated that a
high density of CD68+ macrophages in surgical mesothelioma samples was correlated with worse
patient clinical outcome [68–70] and their depletion with zoledronic acid strongly reduced tumor
growth in mouse mesothelioma models [71]. Thus, macrophages in the tumor microenvironment
of human mesothelioma are correlated with faster and more aggressive tumor growth. Moreover,
Cornellisen et al. demonstrated that the CD163+ macrophages/total TAM ratio could be used as a
prognostic marker of local tumor outgrowth (LTO), a common complication in MPM after invasive
procedure. They found also that patients with this outgrowth show a significantly lower number of
CD8+ cells, compared with patients who did not develop LTO [72].
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Table 1. Prognostic significance of TAMs and relevant markers in different human tumor types.

Tumor Type Markers of TAMs Prognostic Impact References

Glioma

CD68, CD163, CD204 Bad [73]
IBA, CD204 Bad [74]

CD163/CCL3 ratio Bad (if high ratio) [75]
CD68, CD163/AIF ratio Bad (if high ratio) [76]

Mesothelioma
CD68 Bad [69,70]
CD163 Bad [72]

Lung cancer (NSCLC) CD68 Good (in tumor islets/bad in
tumor stroma) [61]

CD68/iNOS (for M1);
CD68/CD163 (for M2) Bad (if M2 > M1) [77]

Pancreatic cancer CD68, CD204 Bad [78]

Breast cancer
CD163 Bad [79]

CD68, CD163 Bad [80,81]

iNOS Good (if together with high
CD8+ cells) [17]

Colorectal cancer
CD68 Good (at the invasive front) [82,83]

Wnt5a, CD68 Bad [84]

Melanoma CD68, CD163 Bad (CD163 at tumor stroma
and CD68 at invasive front) [85]

Bladder cancer CD68 Bad [86]

TAM: tumor-associated macrophages; NSCLC: non-small-cell lung cancer.

5. Gliomas

In gliomas, the TAMs population is constituted by both microglia and newly recruited
monocyte-derived macrophages able to influence tumor development [87]. They can represent up to
40% of the cells in the tumor mass, underlying their importance in shaping the immunosuppressive
microenvironment of these aggressive tumors [87–89]. Interestingly, grade IV gliomas have a higher
density of TAMs compared with grade II and III. Komohara et al. [73] demonstrated not only that
the number of macrophages correlates with the grade of malignancy, but also that activation of
macrophages towards the M2-like phenotype is correlated with higher histological grade. Moreover,
Sorensen et al. demonstrated that M2-like TAMs are associated with more aggressive tumors and
can predict worse prognosis in high-grade glioma [74]. High gene expression ratio of CD163/CCL3
in gliomas, as M2 and M1 macrophage markers, respectively, and PD-1+ CD4 T cells in the blood of
tumor patients were associated with poor prognosis [75]. Increased numbers of CD68+ and higher
ratio of CD163/AIF+ cells, as TAMs markers, and more FOXP3+ cells were associated with shorter
progression-free survival, while high CD3+ and CD8+ T cells accompanied by low CD68+ and high
IDO+ cell counts were associated with better glioma prognosis [76].

6. Lung Cancer

Several clinical studies focused on TAMs have revealed the controversial role of macrophages in
lung cancer. The use of only generic markers for macrophages, such as CD68, has led to mixed results
on the prognostic value of macrophages in these types of tumors. Furthermore, macrophages can be
spread in different tissue compartments in the lung, such as tumor stroma, tumor islets, and alveolar
space; indeed, the macrophages distributed in multiple tissue locations may display different biological
properties [11,59–62,90]. Several studies showed that high levels of CD68+ macrophages in tumor
cell islets were associated with a longer survival in non-small-cell lung cancer (NSCLC) [61,91–94].
Opposite to this, high level of macrophages in the lung tumor stroma were correlated with reduced
survival [61,91,92]. Jackute et al. performed a double immunohistochemical staining on lung
tissue samples from NSCLC patients: CD68/iNOS, for M1 macrophages, and CD68/CD163, for M2
macrophages. Their analysis revealed that a high level of M1 macrophages in the tumor islets together
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with a low level of total tumor-infiltrating M2 macrophages were correlated with improved patients’
survival [77]. Moreover, Sumitomo et al. demonstrated that stromal TAMs density in the lungs is
associated with lymph node metastasis and reduced overall survival [95], as well as the density of
alveolar macrophages with M2 phenotype (CD163+) was associated with reduced disease free and
overall survival. High density of M1 macrophages, characterized by CXCL9, CXCL10, and STAT1
activation, accompanied by the presence of resident memory T cells was also strongly associated with
better outcomes in patients with lung cancer [96].

7. Pancreatic Cancer

Acute pancreatitis are predominantly infiltrated by M1-like, pro-inflammatory macrophages,
while chronic pancreatitis are mostly infiltrated by M2-like, anti-inflammatory macrophages.
Interestingly, it has been observed that M2-like macrophages CD68/CD204+ are more abundant
in patients with pancreatic cancer compared with patients with chronic pancreatitis, and their number
was correlated with larger tumor size and shorter survival in patients with pancreatic cancer [78,97,98].
Thus, providing a clear indication for the harmful role of TAMs in this type of cancer.

8. Colorectal Cancer

In contrast with other solid tumors, numerous studies have demonstrated that TAMs may present
a protective role in colorectal cancer [82,99–101]. High macrophage infiltration at the tumor front
was correlated with improved survival in colorectal cancer patients, in part due to their antitumor
action [82,99]. Furthermore, TAMs infiltration at the invasive front was also associated with reduced
hepatic metastasis [83]. Despite this evidence, other studies demonstrated the pro-tumoral role of
TAMs in colorectal cancer. Liu et al. showed that a high Wnt5a+CD68+/CD68+ TAMs ratio can be
associated with poor prognosis in colorectal cancer patients. Moreover, they revealed that Wnt5a could
induce an M2-like polarization of TAMs, promoting tumor growth and metastasis [84]. It was also
demonstrated that TAMs in colorectal cancer are able to promote angiogenesis and metastasis through
the secretion of VEGF [102]. Bailey et al. showed that macrophage count in the total tumor area was a
bad prognosis indicator, and macrophage numbers significantly increase with tumor stage [103]. As a
whole, these studies highlight the controversial role of macrophages in colorectal cancer, which may be
explained by the different localization of macrophages within the tumor tissue. Indeed, macrophages at
the invasive front are commonly anti-tumoral, since they are less exposed to tumor-derived cytokines
and are located in less hypoxic areas; thus, averting their pro-tumoral/anti-inflammatory (M2-like)
differentiation [104]. Moreover, also nutrients and microbiota are able to shape the function of
intestinal macrophages, key players in the maintenance of gut homeostasis. Wrong dietary habits,
together with an alteration of microbiota composition, can cause intestinal chronic inflammation
and, finally, colorectal cancer. Furthermore, a disruption of the IL-10/IL-10R axis, a key player in
the regulation of intestinal macrophages, can increase macrophage expression of pro-inflammatory
mediators, leading to intestinal inflammation [105].

9. Breast Cancer

Despite the great heterogeneity of breast cancer subtypes, the presence of TAMs usually correlates
with poor prognosis [79,80,106]. High-grade hormone receptor negative tumors (basal-like subtypes),
which present a very poor clinical outcome, have been associated with a tumor microenvironment
rich in TAMs [81,107], and their role in tumor progression is often linked with the induction of
EMT [36,107]. Su et al. demonstrated that mesenchymal-like breast cancer cells are able to polarize
macrophages towards TAMs by producing GM-CSF. This shift was associated with the increase
in CCL18+ macrophages [36], higher number of metastasis, and reduced patient survival [26].
Furthermore, it has been found also in triple-negative breast cancer that the overexpression of
EMT-related AXL kinase is able to promote TAMs polarization, and it is correlated with poor
prognosis [107]. A high density of M1 macrophages expressing iNOS in the center of the tumor,
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together with high presence of CD8+ cells, has been associated with improved survival in HER2+

breast cancer; in contrast, the presence of CD163+ macrophages and T-reg cells was linked to poor
prognosis [17]. Fortis et al. have also demonstrated that high ratio between CD8+ and CD163+ cells
evaluated in the tumor center, and the reverse low CD8+/CD163+ ratio in the tumor invasive margin,
represent a valuable prognostic marker in breast cancer [16].

As a whole, these studies demonstrate that TAMs are essential for the survival and progression of
most types of solid tumors [85,86,108], and their therapeutic targeting and reprogramming towards an
antitumor M1-like phenotype is a promising approach to fight cancer [48,49,109].

10. Therapeutic Approaches for Macrophage Reprogramming

In cancer, TAMs therapeutic reprogramming is intended to switch their M2-like protumor
properties towards M1-like macrophages, with active defensive activity and antitumor functions,
including direct killing of tumor cells, inhibition of angiogenesis, normalization of tumor vessels,
and improvement of adaptive immune responses [49]. Furthermore, TAMs reprogramming in the
tumor microenvironment (TME) is also expected to synergize and boost the activity of other antitumoral
treatments currently applied in the clinic, such as immune-checkpoint inhibitors (ICIs) or CAR T
cells [8]. In the next sections, we show the whole scenario on TAM reprogramming, starting from
the initial evidence of some cytotoxic drugs and low-dose radiotherapy towards a broad variety of
pharmacological approaches and new drug delivery approaches (Figure 2).

11. Chemotherapy, Radiotherapy, and Oncolytic Virus Inducing Cancer Cell Death and
TAMs Reprogramming

As a result of immunogenic cell death (ICD) induced by doxorubicin, macrophages become
activated and contribute to the antitumoral effect of this cytotoxic drug [78,110].
Other chemotherapeutics of the anthracycline family, oxaliplatin and bortezomib, as well as radiation or
photodynamic therapy, have also demonstrated induction of ICD and activation of the immune system
to fight against the tumor [111]. Cancer cells killed by ICD expose calreticulin and other endoplasmic
reticulum proteins; they release cytokines and damage-associated molecular patterns (DAMPs), such as
ATP or HMGB1, and also tumor antigens, which stimulate antitumor immune responses, resulting in
the recruitment and activation of macrophages and T cells to fight against the cancer cells. For other
chemotherapeutic drugs, such as gemcitabine, the results are not so clear, and their impact on TAMs’
polarization may depend on the tumor type or on the dose reaching cancer cells [49]. It was demonstrated
that low-dose gemcitabine (GEM) enhances immunogenicity and natural killer (NK) cell-driven tumor
immunity in lung cancer [112]. Low-dose GEM lipid nanocapsules showed ability to impact on
myeloid derived suppressor cells (MDSCs) and potentiate cancer immunotherapy in lymphoma and
melanoma-bearing mice [113]. In vitro experiments demonstrated that GEM-treated macrophages
become tumoricidal, and postsurgical adjuvant GEM therapy in pancreatic ductal adenocarcinoma
(PDAC) reprograms TAMs towards an M1-phenotype [98]. On the contrary, others have demonstrated
that GEM promotes M2-polarization in pancreatic tumors [114,115].

Controversial observations, regarding macrophage polarization, have been also found in response
to radiation therapy (RT). It has been suggested that M2 macrophages could be more resistant to
X-ray radiation compared to M1, leading to an increase in the M2/M1 TAMs ratio in a preclinical
model of glioblastoma [116]. In addition, irradiated TAMs could sustain cancer cell-invasion and
angiogenesis [117]. However, others showed that low-dose RT leads to the release of DAMPs (e.g.,
dsRNA or tumor antigens) from the tumor cells inducing the reprogramming of macrophages towards
an iNOS+/M1 phenotype [117–119]. In this case, the technological advances in the equipment used to
apply the treatment result crucial to control the dose, time, and localization of the RT [120].
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Figure 2. Reprogramming of tumor-associated macrophages is a promising target for novel anti-tumor
treatments. This figure summarizes and gives examples of various strategies with this purpose.
The inhibition of immunosuppressive genes has been investigated through the delivery of the
CRISPR/Cas9 machinery or lentiviral vectors to directly edit TAMs genome, HDAC inhibitors for
epigenetic regulation or nanoparticles encapsulating siRNAs, miRNAs, or mRNAs to manipulate
gene transcription. TLR and STING agonists have been shown to reprogram TAMs towards
an M1-like phenotype. Monoclonal antibodies targeting the CD47/SIRPα axis, activating CD40,
or blocking the scavenger receptor MARCO activate the antitumoral functions of macrophages.
Traditional chemotherapeutics such as gemcitabine or doxorubicin, oncolytic viruses, and low
doses of radiation, which induce the release of DAMPs by tumor cells, have been reported to
polarize macrophages towards M1-like phenotype, through pattern recognition receptor stimulation.
Manipulation of TAMs metabolism has been modestly explored, showing good results in experimental
settings through the inhibition of glycolysis, hypoxia, lactate, cholesterol, IDO, arginase, glutamine,
or adenosine pathways in macrophages, but also by the administration of iron-based nanoparticles (NPs)
(Ferumoxytol®) or oxygen. cGAMP, cyclic guanosine monophosphate–adenosine monophosphate;
CpG ODNs, CpG oligodeoxynucleotides; DAMP, damage-associated molecular pattern; DMXAA,
5,6-dimethylxanthenone-4-acetic acid; HDAC, histone deacetylase; MARCO, macrophage receptor
with collagenous structure; PRR, pattern recognition receptors; R848, resiquimod; STING, stimulator of
interferon genes; TAM, tumor-associated macrophage; TLRs, toll-like receptors.

Within the last decades the controlled application of oncolytic viruses (OV) has emerged as
an attractive therapeutic approach, owing to a preferential infection and killing of cancer cells,
which results in innate antitumor immune responses and immunological memory [121]. In a similar
manner to ICD or RT, OVs (i.e., influenza A, herpes simplex virus encoding GM-CSF, or adenovirus
Delta24-RGD) induced the release of tumor-associated antigens and immunostimulatory signals,
which promote TAMs polarization towards M1-like antitumor effectors [122]. Other approaches to
induce ICD activation, such as RIG-1 activation, are currently being tested in preclinical and clinical
studies alone or in combination with ICIs [123].

12. TLR or STING Signaling Activation to Reprogram TAMs

Toll-like receptors (TLRs) are innate immunity pattern recognition receptors expressed by
antigen-presenting cells, including macrophages, which play a key role in orchestrating the immune
response [3]. Nowadays, only imiquimod (R837; TLR7 agonist) is approved by the FDA (Food and
Drug Adminstration) for cancer treatment. However, clinical trials have been performed for other



J. Clin. Med. 2020, 9, 3226 9 of 24

TLR agonists, such as poly(I:C) (TLR3 agonist) [124,125]. We have recently demonstrated in vitro the
superior efficacy of poly(I:C) versus R837 to stimulate M2-like or tumor-conditioned macrophages
towards an M1-like antitumoral phenotype [126]. With the aim to improve the antitumoral efficacy
of poly(I:C), we have also developed arginine-based poly(I:C)-loaded nanocomplexes to favor TAMs
uptake and M1-antitumoral polarization. Macrophages exposed to poly(I:C)-nanocomplexes showed
significant secretion of the T-cell attracting chemokines CXCL10 and CCL5 and improved ability
to directly kill cancer cells [127]. Recently, the combination of CpG oligodeoxynucleotides (CpG;
TLR9 agonist) with Ferumoxytol® (FMT; an FDA approved drug for the treatment of iron deficiency)
showed a synergistic antitumoral effect, mediated by an increased infiltration of M1-like macrophages
(expressing F4/80 and iNOS) in a murine model of NSCLC [128]. A new hydrogel loaded with CpG
and Doxorubicin showed also antitumoral efficacy, mediated by a decrease in M2-like TAMs and
MDSCs, upon intratumoral implantation in a murine melanoma model [129]. Regarding the activation
of extracellular TLRs, Diprovocim, a small drug agonist of TLR2, identified through a screening of
molecules on macrophages, showed efficacy in combination with anti-PD-L1 antibodies in a melanoma
model [130]. A similar antitumoral activity, mediated by TLR2 activation, was observed for the
intratumoral injection of a modified glucomannan polysaccharide in murine models of sarcoma and
melanoma [131].

Another innate immune pathway, involving stimulator of interferon genes (STING), a cytoplasmic
DNA sensor anchored in the endoplasmic reticulum, has been used to reprogram TAMs through
activation of IRF3 and type I interferon (IFN) genes [132,133]. STING agonists, such as cyclic
dinucleotides (CDNs; e.g., cGAMP) or DMXAA, have been evaluated in preclinical and clinical
trials [134,135]. In order to improve the delivery of CDNs to its intracellular target, Cheng et al.
developed a liposomal formulation of cGAMP. In a murine model of breast cancer, cGAMP-liposomes
induced TAMs reprograming, increased CD8+ T cell infiltration, reduced tumor growth, and prevented
the formation of secondary tumors [136]. The inhalation of cGAMP-liposomes coated with
phosphatidylserine also triggered type I IFN production in murine models of lung metastasis and
showed long-term survival when combined with RT [137]. STING and TLR agonists have also been able
to overcome resistance to monoclonal antibody therapies, through reprogramming of macrophages,
by increasing the FcgR A:I (activatory: inhibitory) ratio, inducing proinflammatory cytokine responses
and enhancing the mAb-mediated phagocytic activity [136]. In vivo, the STING agonists changed the
FcγR A:I ratio and enhanced the efficacy of anti-CD20 mAb therapy [138]. Of note, the use of TLR or
STING agonists, as adjuvants, alone, or in combination has been also evaluated in the context of cancer
vaccination in preclinical and clinical trials [122,139].

13. Monoclonal Antibodies to Reprogram TAMs

As TAM targeting has been recognized important for the treatment of cancer, several monoclonal
antibodies (mAb) have been investigated to manipulate macrophage recruitment or polarization into
the tumor. Anti-CD40 antibodies have shown agonistic activity to reprogram TAMs resulting in effective
antitumoral activity [140,141]. Macrophages and dendritic cells express on their surface CD40, a receptor
of the TNF receptor family, which upon interaction with its ligand CD40L, mainly expressed by T cells,
basophils, and mast cells, upregulates the expression of MHC (Major Histocompatibility Complex)
molecules and the secretion of pro-inflammatory cytokines, thus promoting T cell activation [142].
The combination of anti-CD40 with anti-CSF-1R, which impairs the recruitment of new TAMs towards
the tumor, was effective to treat “cold” preclinical tumor models, not responsive to immune checkpoint
inhibitors (ICIs). The combination of these antibodies was able to turn “cold” into “hot” tumors,
now responding to ICIs, through a decrease in immunosuppressive cells, TAMs reprogramming,
activation of cytotoxic T cells and thus unleashing of potent antitumor immunity [143,144]. In clinical
trials, anti-CD40 mAbs are being evaluated in combination with ICIs, chemotherapy or other
targeted therapies [49]. A similar mechanism of action, promoting the anti-tumoral functions of
macrophages in tumors, has been observed for anti-MARCO mAbs, in murine models of breast,
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colon cancer, and melanoma [145]. These antibodies target the pattern-recognition scavenger receptor,
MARCO, which is overexpressed in TAMs and linked to poor prognosis in breast, lung, and hepatic
cancer [146–148]. Bispecific antibodies, targeting angiopoietin-2 (Ang-2) and vascular endothelial
growth factor (VEGF), showed TAMs reprogramming and delayed tumor growth in glioma murine
models [149]. The combination of Ang-2/VEGF bispecific antibodies with 5-FU and irinotecan in
colorectal cancer or with temozolomide in glioma, showed significant benefits versus the combination
of anti-VEGF with chemotherapy [150,151].

An important approach, using mAbs to reprogram TAMs into antitumor effectors, consists of
the manipulation of the CD47–SIRPα axis. The signal regulatory protein-α (SIRPα, also known as
SHPS1), expressed on the surface of phagocytic cells, such as macrophages, interacts with CD47,
expressed by the target cells, resulting in the inhibition of phagocytosis and thus acting as a “don’t eat
me” signal for tissue homeostasis [152]. In preclinical cancer models, the pharmacological inhibition of
CD47, overexpressed by cancer cells, restores the ability of macrophages to phagocyte and kill tumor
cells [153–155]. Antibodies able to inhibit SIRPα showed satisfactory antitumoral activity in lung cancer
models, however their effect was limited in time [156]. The sustained reprogramming of TAMs towards
M1-antitumor effectors was achieved by the self-assembled combination of SIRPα-blocking antibodies
with CSF-1R inhibitors. This combined therapy activates antitumor macrophages, by hindering the
CD47-SIRPα ligation, while impairing recruitment of new TAMs by inhibition of CSF-1R [157,158].
Clinical trials using anti-CD47 mAbs or CD47-Fc fusion proteins are on-going for the treatment of
hematological cancers or refractory solid tumors in combination with anti-PD-1 therapy or with
anti-CD20 (Rituximab®) to target B cells [159].

14. Genetic and Epigenetic Intervention to Reprogram TAMs

M2 and M1 macrophages are characterized by distinct genetic programs. Thus, the therapeutic
reprogramming of TAM genetic features towards antitumoral macrophages has been investigated using
different methodological approaches: including the delivery of nucleic acids (i.e., RNAs), direct gene
editing (i.e., CRISPR/Cas9 system), or even through manipulation of gene’s activity and expression at
epigenetic level.

Interference RNAs, such as small interfering RNA (siRNA) or microRNAs (miRNA), can be
used to silence the expression of immunosuppressive genes, while the administration of messenger
RNA (mRNA) may be applied to activate the stimulatory pathways in macrophages to fight against
the tumor. It is worth noting that delivery of RNAs as free molecules into cells comes with several
issues, for instance concerning their biochemical properties (as large polyanions cannot cross easily
the plasmatic membrane) and their biological features (nucleases can easily disrupt them). Thus,
the implementation of NP-based delivery vehicles is investigated to hide and protect the RNA molecules
until their entry in the cytosol. For example, charge-altering releasable transporters (CARTs) are
positively charged NPs used to incorporate anionic mRNA molecules and to release them in the
cytoplasm in response to the cellular pH [160]. CARTs were employed to deliver mRNA for CD70,
OX40L, CD80, and CD86 (co-stimulatory proteins for T-cells), as well as IL-12 and IFN-γ (cytokines that
enhance Th1 tumoricidal response) to macrophages in murine subcutaneous models of two tumors,
where only one tumor was treated. Upon intra-peritumoral administration of CD80/86 + IL12 and OX40L
mRNA-CARTs the mice showed a complete response at the treated tumor and systemic anti-tumor
immune response, as seen by the regression of the untreated distal tumor [161]. Another approach
was described using di-mannose-functionalized polymeric NPs to deliver towards TAMs two mRNAs
encoding IRF5, an interferon regulatory factor, and IKKβ, a kinase that phosphorylates and activates
IRF5. The intraperitoneal injection of these NPs in murine models of ovarian cancer was able to
reprogram TAMs, and their antitumoral efficacy was also confirmed in murine models of glioma and
lung metastasis [162].

Instead of mRNA, siRNAs were used to silence the expression of genes that control TAMs
immunosuppression. Song et al. developed mannosylated dual pH-responsive NPs delivering
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two siRNAs against vascular endothelial growth factor (VEGF) and placental growth factor (PIGF),
directed towards TAMs in murine models of breast cancer. The intravenous administration of these
siRNA-NPs inhibited tumor-induced neoangiogenesis and lung metastasis [163]. Other dual-targeting
NPs were designed, linking a scavenger receptor B type 1 (SR-B1) targeting peptide and an M2
macrophage binding peptide (M2-pep), to deliver anti-CSF-1R siRNA towards TAMs in murine models
of subcutaneous melanoma [164]. These NPs led to a decrease in macrophage number in tumors,
reduced tumor size, IL-10, and TGF-β, while an increase in CD8+ T cells [165]. A similar result was
observed for siCCR2-NPs intravenously injected in orthotopic models of breast cancer [166]. These NPs
may act on the monocyte precursors of TAMs, as the CCL2/CCR2 axis is the main responsible of
monocyte recruitment towards tumors [3].

Gene silencing was also investigated using micro RNAs (miRNAs). miR-125a is upregulated
in M1-macrophages and suppressed in M2 [167,168]. To revert this situation, Zhao et al.
transduced in vitro bone-marrow derived macrophages (BMDMs) with a lentivirus overexpressing
miR-125a and mixed them with Lewis lung cancer (LLC) cells prior to their subcutaneous injection in
syngeneic mice. This approach allowed to correlate the antitumoral effects of injected miR-125a-BMDMs
with M1-like polarization, characterized by higher iNOS and lower CD206 expression, resulting in
antitumoral effects [169]. Later, Parayath et al. developed NPs to encapsulate and deliver miR-125b in
KRAS/p53 murine models of NSCLC. This miRNA was responsible for increase in macrophage numbers
in tumors and for rise in M1/M2 ratio [170]. Another approach consisted in the encapsulation of miR155
in lipid-coated calcium phosphonate NPs, conjugated with mannose to target CD206 on TAMs and with
a pH-responsive coating to uncover the content of NPs once reaching the tumor acidic microenvironment.
These miR155-NPs showed antitumoral effect in murine models of fibrosarcoma [171]. Finally, it is
important to pay attention to the recently identified protumoral role of some miRNAs [172,173],
which may require the development of strategies for their inhibition. To our best knowledge, no clinical
trials have been initiated using RNA-based NPs towards TAMs.

Gene editing, consisting in DNA intervention, still presents difficulties with regard to both
technological and ethical aspects. However, its possibilities for application in the clinic have been
significantly accelerated since the discovery of the CRISPR/Cas9 system for precise gene editing of
mammalian cells. The CRISPR/Cas9 approach was used ex vivo to prevent the expression of siglec-10
in primary monocytes [174] or the SIRP-α gene in murine macrophages (RAW 264.7) [175], with the aim
to dismantle the siglec-10/CD24 or the SIRP-α/CD47 immune checkpoints, respectively, and improve
the phagocytic activity of macrophages. Although the results are interesting, their application in
preclinical cancer models remains to be tested. Gene editing, using novel lentiviral-based systems,
was also investigated to transduce into primary macrophages both soluble transforming growth
factor beta receptor II (sTβRII), to inhibit TGF-β and reduce immune suppression, and interleukin-21
(IL-21), to induce M1-like activation. These gene-edited macrophages were treated with GM-CSF and
intratumorally injected in orthotopic glioma murine models, showing a continuous M1-antitumoral
genetic programming for several weeks and ability to prevent tumor growth [176]. Despite their
difficult application in the clinic, we foresee more investigations on the ex vivo preparation of
M1-antitumoral gene-edited macrophages providing important information on their long-term efficacy
and safety aspects.

As an alternative, the epigenetic manipulation of macrophages offers the possibility to manipulate
the transcriptional machinery of the cells without direct intervention of their DNA or RNA.
Histone deacetylases (HDACs) are a class of enzymes that remove acetyl groups from histones
(proteins associated with chromatin), reducing the expression of affected genes. The intraperitoneal
administration of TMP195, an inhibitor of HDAC7, in murine models of breast cancer (MMTV-PyMT)
resulted in a major infiltration of CD11b+ myeloid cells and Mac-2 + mature macrophages inside
the tumors showing upregulation of M1-genes. Furthermore, TMP195 treatment, not showing a
direct effect on the cancer cells, resulted in immune-mediated killing of cancer cells and improved the
efficacy of chemotherapy and anti-PD-1 in MMTV-PyMT tumor bearing mice [177]. Other epigenetic
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approaches to reprogram TAMs have relayed on intervention of histone methyl transferases or histone
demethylases [178]. In addition, several ongoing clinical trials are studying the combination of
epigenetic treatments with ICIs [179].

15. Metabolic Manipulation to Reprogram TAMs

The crosstalk between cancer cells and immune cells in the tumor microenvironment implies also
changes in the metabolism of macrophages. TAMs present distinct glucose, lipid, amino acid, oxygen,
and iron consumption, which support their protumoral and immunosuppressive properties to favor
tumor growth. In experimental settings, it has been demonstrated that therapeutic intervention of
metabolic pathways inside macrophages and/or in the tumor extracellular space can be applied to
reprogram TAMs towards M1-like antitumoral macrophages [180,181].

With regard to energy metabolism, cancer cells with high glycolytic activity decrease the availability
of glucose and induce an acidic microenvironment, which push TAMs towards an M2-like metabolism,
strongly committed to oxidative phosphorylation and fatty acid oxidation, in contrast to M1-like
macrophages, which present higher glucose uptake and aerobic glycolytic catabolism [182]. To alleviate
hypoxia, hyaluronic acid NPs targeted towards TAMs have been designed to increase O2 production
in the TME, showing inhibition of tumor growth and metastasis in 4T1 tumors [183,184]. Inactivation
of HIF-1α by restoring miR-30c expression in macrophages showed antitumoral efficacy in gastric
cancer [185]. In other reports, tumor oxygenation was improved by normalizing the tumor vasculature,
through inhibition of VEGF or REDD1 in TAMs [186]. Blockade of glycolysis using 2-deoxy-D-glucose
(2DG) was also used to abrogate TAMs ability to induce angiogenesis, extravasation, and EMT [187].
Another strategy to disrupt the M2-polarization pathways activated by lactate in TAMs consisted in
the use of MEK/STAT3 inhibitors (i.e., selumetinib or static) [188].

Regarding the metabolism of lipids, fatty acid uptake and fatty acid oxidation (FAO) are
downregulated in M1 macrophages, while FAO and mitochondrial activity are enhanced in M2 [189].
Linoleic acid (unsaturated fatty acid) rather than stearic acid (saturated fatty acid) promoted cytotoxic
functions of macrophages towards cancer cells [181]. Etomoxir, an FAO inhibitor, blocked IL-4-induced
M2 macrophage polarization [189], and EI-05, activator of the intracellular lipid chaperone E-FABP
(epithelial fatty acid binding protein), led to the increase in IFN-β production by macrophages and
improved antitumoral responses in murine models of breast cancer [190].

With regard to amino acids, altered L-arginine metabolism was one of the first markers identified
to classify myeloid polarization [191]. Myeloid cells use distinct metabolic pathways to catabolize the
essential L-arginine. M1-macrophages convert L-arginine to NO and L-citruline by inducible nitric
oxide synthase (iNOS), while M2-macrophages skew arginine catabolism towards the production of
ornithine and polyamines [191]. Upregulation of arginase 1 (Arg1) is pro-tumoral, while induction of
iNOS presents a dual role, likely depending on amount of NO, type of tumor, and concomitant presence
of ROS [192]. Blocking L-arginine uptake by tumor MDSCs impaired their protumoral properties in
murine models of prostate cancer [193]. The effects of other amino acids on macrophage’s polarization
was also studied. Extracellular adenosine, via adenosine receptors, supports protumoral functions of
TAMs by altering their phagocytic activity, cytokine, and VEGF production [194]. The knockout of
the adenosine receptor A2A in myeloid cells resulted in prevention of tumor growth and metastasis
in melanoma tumor models [195]. Pharmacological or genetic deletion of glutamine synthase in
macrophages reduced intracellular glutamine and increased succinate, showing M1-polarization
properties and less metastasis in LLC models [196]. TAMs and MDSCs up-regulate indoleamine
2,3 dioxygenase (IDO), which converts tryptophan in kynurenines, favoring regulatory T-reg cells
expansion [197], consequently several IDO inhibitors are being tested in clinical trials.

Finally, it is important to understand the role of iron metabolism in the polarization of
macrophages, as iron homeostasis is required for DNA-synthesis, hematopoiesis, mitochondrial
biogenesis, energy metabolism, and oxygen transport. M1-macrophages present a higher uptake,
while M2-macrophages present a higher release of iron by ferroportin, enhanced heme catabolism by
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heme-oxygenase-1 (HO-1), and restricted iron retention by ferritin [198,199]. It was demonstrated that
Ferumoxytol® (iron-based NPs) increase intracellular iron in TAMs, inducing their M1-polarization
in vitro and in vivo and showing therapeutic effects in breast cancer and NSCLC liver metastasis [200].
Suppression of the iron-releasing enzyme HO-1 promoted the expansion of M1-macrophages and
reduced tumor growth in breast cancer models [201]. On the contrary, HO-1 has been found to be
pro-inflammatory in chronic metabolic inflammation related to obesity [202], and in the context of
colon cancer, increased HO-1 production by intestinal macrophages helps to resolve inflammation and
prevents carcinogenesis [203]. These studies provide some insights to manipulate iron levels or HO-1
levels to control inflammation to treat cancer, or also other diseases.

These observations show a strict interplay between metabolism of TAMs and their immune
functions that should be taken into account to design new strategies to intervene on macrophages
within tumors, however this crosstalk remains to be further investigated [204].

16. Conclusions

The tumor microenvironment (TME) drives the success of antitumoral therapies and the outcome
of patients with cancer. The targeting of TAMs, as the most abundant immune population in the
TME, has been an important object of oncological studies. These studies, in different types of tumor,
have provided clues about the molecular mechanisms and relevant markers for the pro-/anti-tumoral
functions of macrophages, which can be now targeted. Taking advantage of this knowledge, the scientific
community has focused its efforts on the reprogramming of macrophages to revert immunosuppression
and to unleash their anti-tumoral functions. Consequently, a wide range of pharmacological strategies
have been investigated, as described in this review, and many of them are now in clinical trials.
These approaches are being tested as monotherapies, but mainly in combination with traditional
chemotherapies or with new immunotherapies, such as anti-checkpoint inhibitors or adoptive cell
transfer (i.e., CART cells). Furthermore, in the near future, we expect that new drug delivery approaches
will help to improve significantly the efficacy of TAM reprogramming for the treatment of cancer.

Author Contributions: E.D. and C.A., writing and elaboration of figures and tables; A.U., writing and editing;
C.B. and F.T.A., writing, review, and editing. All authors have read and agreed to the published version of
the manuscript.

Funding: F.T.A. was supported by the AECC (“Asociación Española Contra el Cáncer, Spain). E.D. was supported
by AIRC (Associazione Italiana per la Ricerca contro il Cancro).

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Gordon, S.; Plüddemann, A. The mononuclear phagocytic system. Generation of diversity. Front. Immunol.
2019, 10. [CrossRef] [PubMed]

2. Wynn, T.A.; Chawla, A.; Pollard, J.W. Macrophage biology in development, homeostasis and disease. Nature
2013, 496, 445–455. [CrossRef] [PubMed]

3. Mantovani, A.; Marchesi, F.; Malesci, A.; Laghi, L.; Allavena, P. Tumour-associated macrophages as treatment
targets in oncology. Nat. Rev. Clin. Oncol. 2017, 14, 399–416. [CrossRef] [PubMed]

4. Biswas, S.K. Metabolic reprogramming of immune cells in cancer progression. Immunity 2015, 43, 435–449.
[CrossRef]

5. Yona, S.; Kim, K.-W.; Wolf, Y.; Mildner, A.; Varol, D.; Breker, M.; Strauss-Ayali, D.; Viukov, S.; Guilliams, M.;
Misharin, A.; et al. Fate mapping reveals origins and dynamics of monocytes and tissue macrophages under
homeostasis. Immunity 2013, 38, 79–91. [CrossRef]

6. Allavena, P.; Mantovani, A. Immunology in the clinic review series; focus on cancer: Tumour-associated
macrophages: Undisputed stars of the inflammatory tumour microenvironment. Clin. Exp. Immunol. 2012,
167, 195–205. [CrossRef]

7. De Palma, M.; Lewis, C.E. Macrophage regulation of tumor responses to anticancer therapies. Cancer Cell
2013, 23, 277–286. [CrossRef]

http://dx.doi.org/10.3389/fimmu.2019.01893
http://www.ncbi.nlm.nih.gov/pubmed/31447860
http://dx.doi.org/10.1038/nature12034
http://www.ncbi.nlm.nih.gov/pubmed/23619691
http://dx.doi.org/10.1038/nrclinonc.2016.217
http://www.ncbi.nlm.nih.gov/pubmed/28117416
http://dx.doi.org/10.1016/j.immuni.2015.09.001
http://dx.doi.org/10.1016/j.immuni.2012.12.001
http://dx.doi.org/10.1111/j.1365-2249.2011.04515.x
http://dx.doi.org/10.1016/j.ccr.2013.02.013


J. Clin. Med. 2020, 9, 3226 14 of 24

8. Quaranta, V.; Schmid, M.C. Macrophage-mediated subversion of anti-tumour immunity. Cells 2019, 8.
[CrossRef]

9. Cortez-Retamozo, V.; Etzrodt, M.; Newton, A.; Rauch, P.J.; Chudnovskiy, A.; Berger, C.; Ryan, R.J.H.;
Iwamoto, Y.; Marinelli, B.; Gorbatov, R.; et al. Origins of tumor-associated macrophages and neutrophils.
Proc. Natl. Acad. Sci. USA 2012, 109, 2491–2496. [CrossRef]

10. Movahedi, K.; Van Ginderachter, J.A. The ontogeny and microenvironmental regulation of tumor-associated
macrophages. Antioxid. Redox Signal. 2016, 25, 775–791. [CrossRef]

11. Mei, J.; Xiao, Z.; Guo, C.; Pu, Q.; Ma, L.; Liu, C.; Lin, F.; Liao, H.; You, Z.; Liu, L. Prognostic impact of
tumor-associated macrophage infiltration in non-small cell lung cancer: A systemic review and meta-analysis.
Oncotarget 2016, 7, 34217–34228. [CrossRef] [PubMed]

12. Gomez-Brouchet, A.; Illac, C.; Gilhodes, J.; Bouvier, C.; Aubert, S.; Guinebretiere, J.-M.; Marie, B.;
Larousserie, F.; Entz-Werlé, N.; de Pinieux, G.; et al. CD163-positive tumor-associated macrophages
and CD8-positive cytotoxic lymphocytes are powerful diagnostic markers for the therapeutic stratification of
osteosarcoma patients: An immunohistochemical analysis of the biopsies fromthe French OS2006 phase 3
trial. Oncoimmunology 2017, 6, e1331193. [CrossRef] [PubMed]

13. Kovaleva, O.V.; Rashidova, M.A.; Samoilova, D.V.; Podlesnaya, P.A.; Mochalnikova, V.V.; Gratchev, A.
Immunosuppressive phenotype of esophagus tumors stroma. Anal. Cell. Pathol. 2020, 2020, 1–9. [CrossRef]
[PubMed]

14. Iseulys, R.; Anne, G.-B.; Corinne, B.; Gonzague, D.B.D.P.; Marie, K.; Jean-Yves, B.; Aurélie, D. The immune
landscape of chondrosarcoma reveals an immunosuppressive environment in the dedifferentiated subtypes
and exposes CSFR1+ macrophages as a promising therapeutic target. J. Bone Oncol. 2020, 20, 100271.
[CrossRef] [PubMed]

15. Massi, D.; Rulli, E.; Cossa, M.; Valeri, B.; Rodolfo, M.; Merelli, B.; de Logu, F.; Nassini, R.; del Vecchio, M.; di
Guardo, L.; et al. The density and spatial tissue distribution of CD8+ and CD163+ immune cells predict
response and outcome in melanoma patients receiving MAPK inhibitors. J. Immunother. Cancer 2019, 7, 308.
[CrossRef]

16. Fortis, S.P.; Sofopoulos, M.; Sotiriadou, N.N.; Haritos, C.; Vaxevanis, C.K.; Anastasopoulou, E.A.; Janssen, N.;
Arnogiannaki, N.; Ardavanis, A.; Pawelec, G.; et al. Differential intratumoral distributions of CD8 and
CD163 immune cells as prognostic biomarkers in breast cancer. J. Immunother. Cancer 2017, 5, 39. [CrossRef]

17. Honkanen, T.J.; Tikkanen, A.; Karihtala, P.; Mäkinen, M.; Väyrynen, J.P.; Koivunen, J.P. Prognostic and
predictive role of tumour-associated macrophages in HER2 positive breast cancer. Sci. Rep. 2019, 9, 10961.
[CrossRef]

18. Chen, Y.; Song, Y.; Du, W.; Gong, L.; Chang, H.; Zou, Z. Tumor-associated macrophages: An accomplice in
solid tumor progression. J. Biomed. Sci. 2019, 26, 78. [CrossRef]

19. Qian, B.-Z.; Pollard, J.W. Macrophage diversity enhances tumor progression and metastasis. Cell 2010, 141,
39–51. [CrossRef]

20. Jinushi, M.; Chiba, S.; Yoshiyama, H.; Masutomi, K.; Kinoshita, I.; Dosaka-Akita, H.; Yagita, H.; Takaoka, A.;
Tahara, H. Tumor-associated macrophages regulate tumorigenicity and anticancer drug responses of cancer
stem/initiating cells. Proc. Natl. Acad. Sci. USA 2011, 108, 12425–12430. [CrossRef]

21. Fan, Q.-M.; Jing, Y.-Y.; Yu, G.-F.; Kou, X.-R.; Ye, F.; Gao, L.; Li, R.; Zhao, Q.-D.; Yang, Y.; Lu, Z.-H.;
et al. Tumor-associated macrophages promote cancer stem cell-like properties via transforming growth
factor-β1-induced epithelial-mesenchymal transition in hepatocellular carcinoma. Cancer Lett. 2014, 352,
160–168. [CrossRef] [PubMed]

22. Kogure, A.; Kosaka, N.; Ochiya, T. Cross-talk between cancer cells and their neighbors via miRNA in
extracellular vesicles: An emerging player in cancer metastasis. J. Biomed. Sci. 2019, 26, 7. [CrossRef]
[PubMed]

23. Liguori, M.; Solinas, G.; Germano, G.; Mantovani, A.; Allavena, P. Tumor-associated macrophages as incessant
builders and destroyers of the cancer stroma. Cancers 2011, 3, 3740–3761. [CrossRef] [PubMed]

24. Vasiljeva, O.; Papazoglou, A.; Krüger, A.; Brodoefel, H.; Korovin, M.; Deussing, J.; Augustin, N.; Nielsen, B.S.;
Almholt, K.; Bogyo, M.; et al. Tumor cell-derived and macrophage-derived cathepsin B promotes progression
and lung metastasis of mammary cancer. Cancer Res. 2006, 66, 5242–5250. [CrossRef]

http://dx.doi.org/10.3390/cells8070747
http://dx.doi.org/10.1073/pnas.1113744109
http://dx.doi.org/10.1089/ars.2016.6704
http://dx.doi.org/10.18632/oncotarget.9079
http://www.ncbi.nlm.nih.gov/pubmed/27144518
http://dx.doi.org/10.1080/2162402X.2017.1331193
http://www.ncbi.nlm.nih.gov/pubmed/28932633
http://dx.doi.org/10.1155/2020/5424780
http://www.ncbi.nlm.nih.gov/pubmed/32884895
http://dx.doi.org/10.1016/j.jbo.2019.100271
http://www.ncbi.nlm.nih.gov/pubmed/31956474
http://dx.doi.org/10.1186/s40425-019-0797-4
http://dx.doi.org/10.1186/s40425-017-0240-7
http://dx.doi.org/10.1038/s41598-019-47375-2
http://dx.doi.org/10.1186/s12929-019-0568-z
http://dx.doi.org/10.1016/j.cell.2010.03.014
http://dx.doi.org/10.1073/pnas.1106645108
http://dx.doi.org/10.1016/j.canlet.2014.05.008
http://www.ncbi.nlm.nih.gov/pubmed/24892648
http://dx.doi.org/10.1186/s12929-019-0500-6
http://www.ncbi.nlm.nih.gov/pubmed/30634952
http://dx.doi.org/10.3390/cancers3043740
http://www.ncbi.nlm.nih.gov/pubmed/24213109
http://dx.doi.org/10.1158/0008-5472.CAN-05-4463


J. Clin. Med. 2020, 9, 3226 15 of 24

25. Zhang, S.; Che, D.; Yang, F.; Chi, C.; Meng, H.; Shen, J.; Qi, L.; Liu, F.; Lv, L.; Li, Y.; et al. Tumor-associated
macrophages promote tumor metastasis via the TGF-β/SOX9 axis in non-small cell lung cancer. Oncotarget
2017, 8, 99801–99815. [CrossRef]

26. Chen, J.; Yao, Y.; Gong, C.; Yu, F.; Su, S.; Chen, J.; Liu, B.; Deng, H.; Wang, F.; Lin, L.; et al. CCL18 from
tumor-associated macrophages promotes breast cancer metastasis via PITPNM3. Cancer Cell 2011, 19, 541–555.
[CrossRef]

27. Steenbrugge, J.; Breyne, K.; Demeyere, K.; de Wever, O.; Sanders, N.N.; van den Broeck, W.; Colpaert, C.;
Vermeulen, P.; van Laere, S.; Meyer, E. Anti-inflammatory signaling by mammary tumor cells mediates
prometastatic macrophage polarization in an innovative intraductal mouse model for triple-negative breast
cancer. J. Exp. Clin. Cancer Res. 2018, 37, 191. [CrossRef]

28. Wang, R.; Zhang, J.; Chen, S.; Lu, M.; Luo, X.; Yao, S.; Liu, S.; Qin, Y.; Chen, H. Tumor-associated macrophages
provide a suitable microenvironment for non-small lung cancer invasion and progression. Lung Cancer 2011,
74, 188–196. [CrossRef]

29. Wang, S.; Zou, Z.; Luo, X.; Mi, Y.; Chang, H.; Xing, D. LRH1 enhances cell resistance to chemotherapy
by transcriptionally activating MDC1 expression and attenuating DNA damage in human breast cancer.
Oncogene 2018, 37, 3243–3259. [CrossRef]

30. Sangaletti, S.; Di Carlo, E.; Gariboldi, S.; Miotti, S.; Cappetti, B.; Parenza, M.; Rumio, C.; Brekken, R.A.;
Chiodoni, C.; Colombo, M.P. Macrophage-derived SPARC bridges tumor cell-extracellular matrix interactions
toward metastasis. Cancer Res. 2008, 68, 9050–9059. [CrossRef]

31. Aras, S.; Zaidi, M.R. TAMeless traitors: Macrophages in cancer progression and metastasis. Br. J. Cancer
2017, 117, 1583–1591. [CrossRef] [PubMed]

32. Yao, R.-R.; Li, J.-H.; Zhang, R.; Chen, R.-X.; Wang, Y.-H. M2-polarized tumor-associated macrophages
facilitated migration and epithelial-mesenchymal transition of HCC cells via the TLR4/STAT3 signaling
pathway. World J. Surg. Oncol. 2018, 16, 9. [CrossRef] [PubMed]

33. Liu, C.-Y.; Xu, J.-Y.; Shi, X.-Y.; Huang, W.; Ruan, T.-Y.; Xie, P.; Ding, J.-L. M2-polarized tumor-associated
macrophages promoted epithelial-mesenchymal transition in pancreatic cancer cells, partially through
TLR4/IL-10 signaling pathway. Lab. Investig. 2013, 93, 844–854. [CrossRef] [PubMed]

34. Li, S.; Xu, F.; Zhang, J.; Wang, L.; Zheng, Y.; Wu, X.; Wang, J.; Huang, Q.; Lai, M. Tumor-associated
macrophages remodeling EMT and predicting survival in colorectal carcinoma. Oncoimmunology 2018, 7,
e1380765. [CrossRef]

35. Cai, J.; Xia, L.; Li, J.; Ni, S.; Song, H.; Wu, X. Tumor-associated macrophages derived TGF-β-Induced epithelial
to mesenchymal transition in colorectal cancer cells through Smad2,3-4/Snail signaling pathway. Cancer Res.
Treat. 2019, 51, 252–266. [CrossRef] [PubMed]

36. Su, S.; Liu, Q.; Chen, J.; Chen, J.; Chen, F.; He, C.; Huang, D.; Wu, W.; Lin, L.; Huang, W.; et al. A positive
feedback loop between mesenchymal-like cancer cells and macrophages is essential to breast cancer metastasis.
Cancer Cell 2014, 25, 605–620. [CrossRef] [PubMed]

37. Raggi, C.; Mousa, H.S.; Correnti, M.; Sica, A.; Invernizzi, P. Cancer stem cells and tumor-associated
macrophages: A roadmap for multitargeting strategies. Oncogene 2016, 35, 671–682. [CrossRef]

38. Zhou, W.; Ke, S.Q.; Huang, Z.; Flavahan, W.; Fang, X.; Paul, J.; Wu, L.; Sloan, A.E.; McLendon, R.E.; Li, X.; et al.
Periostin secreted by glioblastoma stem cells recruits M2 tumour-associated macrophages and promotes
malignant growth. Nat. Cell Biol. 2015, 17, 170–182. [CrossRef]

39. Raghavan, S.; Mehta, P.; Xie, Y.; Lei, Y.L.; Mehta, G. Ovarian cancer stem cells and macrophages reciprocally
interact through the WNT pathway to promote pro-tumoral and malignant phenotypes in 3D engineered
microenvironments. J. Immunother. Cancer 2019, 7, 190. [CrossRef]

40. Liguori, M.; Digifico, E.; Vacchini, A.; Avigni, R.; Colombo, F.S.; Borroni, E.M.; Farina, F.M.; Milanesi, S.;
Castagna, A.; Mannarino, L.; et al. The soluble glycoprotein NMB (GPNMB) produced by macrophages
induces cancer stemness and metastasis via CD44 and IL-33. Cell. Mol. Immunol. 2020. [CrossRef]

41. Tamura, R.; Tanaka, T.; Yamamoto, Y.; Akasaki, Y.; Sasaki, H. Dual role of macrophage in tumor immunity.
Immunotherapy 2018, 10, 899–909. [CrossRef] [PubMed]

42. Hughes, R.; Qian, B.-Z.; Rowan, C.; Muthana, M.; Keklikoglou, I.; Olson, O.C.; Tazzyman, S.; Danson, S.;
Addison, C.; Clemons, M.; et al. Perivascular M2 macrophages stimulate tumor relapse after chemotherapy.
Cancer Res. 2015, 75, 3479–3491. [CrossRef] [PubMed]

http://dx.doi.org/10.18632/oncotarget.21068
http://dx.doi.org/10.1016/j.ccr.2011.02.006
http://dx.doi.org/10.1186/s13046-018-0860-x
http://dx.doi.org/10.1016/j.lungcan.2011.04.009
http://dx.doi.org/10.1038/s41388-018-0193-4
http://dx.doi.org/10.1158/0008-5472.CAN-08-1327
http://dx.doi.org/10.1038/bjc.2017.356
http://www.ncbi.nlm.nih.gov/pubmed/29065107
http://dx.doi.org/10.1186/s12957-018-1312-y
http://www.ncbi.nlm.nih.gov/pubmed/29338742
http://dx.doi.org/10.1038/labinvest.2013.69
http://www.ncbi.nlm.nih.gov/pubmed/23752129
http://dx.doi.org/10.1080/2162402X.2017.1380765
http://dx.doi.org/10.4143/crt.2017.613
http://www.ncbi.nlm.nih.gov/pubmed/29690747
http://dx.doi.org/10.1016/j.ccr.2014.03.021
http://www.ncbi.nlm.nih.gov/pubmed/24823638
http://dx.doi.org/10.1038/onc.2015.132
http://dx.doi.org/10.1038/ncb3090
http://dx.doi.org/10.1186/s40425-019-0666-1
http://dx.doi.org/10.1038/s41423-020-0501-0
http://dx.doi.org/10.2217/imt-2018-0006
http://www.ncbi.nlm.nih.gov/pubmed/30073897
http://dx.doi.org/10.1158/0008-5472.CAN-14-3587
http://www.ncbi.nlm.nih.gov/pubmed/26269531


J. Clin. Med. 2020, 9, 3226 16 of 24

43. Osterberg, N.; Ferrara, N.; Vacher, J.; Gaedicke, S.; Niedermann, G.; Weyerbrock, A.; Doostkam, S.;
Schaefer, H.-E.; Plate, K.H.; Machein, M.R. Decrease of VEGF-A in myeloid cells attenuates glioma progression
and prolongs survival in an experimental glioma model. NeuroOncology 2016, 18, 939–949. [CrossRef]

44. Yeo, E.-J.; Cassetta, L.; Qian, B.-Z.; Lewkowich, I.; Li, J.; Stefater, J.A.; Smith, A.N.; Wiechmann, L.S.; Wang, Y.;
Pollard, J.W.; et al. Myeloid WNT7b mediates the angiogenic switch and metastasis in breast cancer. Cancer
Res. 2014, 74, 2962–2973. [CrossRef] [PubMed]

45. Mantovani, A.; Schioppa, T.; Porta, C.; Allavena, P.; Sica, A. Role of tumor-associated macrophages in tumor
progression and invasion. Cancer Metastasis Rev. 2006, 25, 315–322. [CrossRef]

46. Mazzieri, R.; Pucci, F.; Moi, D.; Zonari, E.; Ranghetti, A.; Berti, A.; Politi, L.S.; Gentner, B.; Brown, J.L.;
Naldini, L.; et al. Targeting the ANG2/TIE2 axis inhibits tumor growth and metastasis by impairing
angiogenesis and disabling rebounds of proangiogenic myeloid cells. Cancer Cell 2011, 19, 512–526.
[CrossRef] [PubMed]

47. Venneri, M.A.; de Palma, M.; Ponzoni, M.; Pucci, F.; Scielzo, C.; Zonari, E.; Mazzieri, R.; Doglioni, C.;
Naldini, L. Identification of proangiogenic TIE2-expressing monocytes (TEMs) in human peripheral blood
and cancer. Blood 2007, 109, 5276–5285. [CrossRef]

48. Belgiovine, C.; D’Incalci, M.; Allavena, P.; Frapolli, R. Tumor-associated macrophages and anti-tumor
therapies: Complex links. Cell. Mol. Life Sci. 2016, 73, 2411–2424. [CrossRef]

49. Anfray, C.; Ummarino, A.; Andón, F.T.; Allavena, P. Current strategies to target tumor-associated-macrophages
to improve anti-tumor immune responses. Cells 2019, 9. [CrossRef]

50. Xu, X.; Ye, J.; Huang, C.; Yan, Y.; Li, J. M2 macrophage-derived IL6 mediates resistance of breast cancer cells
to hedgehog inhibition. Toxicol. Appl. Pharmacol. 2019, 364, 77–82. [CrossRef]

51. Kuwada, K.; Kagawa, S.; Yoshida, R.; Sakamoto, S.; Ito, A.; Watanabe, M.; Ieda, T.; Kuroda, S.; Kikuchi, S.;
Tazawa, H.; et al. The epithelial-to-mesenchymal transition induced by tumor-associated macrophages
confers chemoresistance in peritoneally disseminated pancreatic cancer. J. Exp. Clin. Cancer Res. 2018, 37, 307.
[CrossRef] [PubMed]

52. Yin, Y.; Yao, S.; Hu, Y.; Feng, Y.; Li, M.; Bian, Z.; Zhang, J.; Qin, Y.; Qi, X.; Zhou, L.; et al.
The immune-microenvironment confers chemoresistance of colorectal cancer through macrophage-derived
IL6. Clin. Cancer Res. 2017, 23, 7375–7387. [CrossRef] [PubMed]

53. Zhu, X.; Shen, H.; Yin, X.; Long, L.; Chen, X.; Feng, F.; Liu, Y.; Zhao, P.; Xu, Y.; Li, M.; et al. IL-6R/STAT3/miR-204
feedback loop contributes to cisplatin resistance of epithelial ovarian cancer cells. Oncotarget 2017,
8, 39154–39166. [CrossRef] [PubMed]

54. Shree, T.; Olson, O.C.; Elie, B.T.; Kester, J.C.; Garfall, A.L.; Simpson, K.; Bell-McGuinn, K.M.; Zabor, E.C.;
Brogi, E.; Joyce, J.A. Macrophages and cathepsin proteases blunt chemotherapeutic response in breast cancer.
Genes Dev. 2011, 25, 2465–2479. [CrossRef]

55. Xu, J.; Escamilla, J.; Mok, S.; David, J.; Priceman, S.; West, B.; Bollag, G.; McBride, W.; Wu, L. CSF1R signaling
blockade stanches tumor-infiltrating myeloid cells and improves the efficacy of radiotherapy in prostate
cancer. Cancer Res. 2013, 73, 2782–2794. [CrossRef]

56. Gordon, S.R.; Maute, R.L.; Dulken, B.W.; Hutter, G.; George, B.M.; McCracken, M.N.; Gupta, R.; Tsai, J.M.;
Sinha, R.; Corey, D.; et al. PD-1 expression by tumour-associated macrophages inhibits phagocytosis and
tumour immunity. Nature 2017, 545, 495–499. [CrossRef]

57. Chen, B.J.; Chapuy, B.; Ouyang, J.; Sun, H.H.; Roemer, M.G.M.; Xu, M.L.; Yu, H.; Fletcher, C.D.M.;
Freeman, G.J.; Shipp, M.A.; et al. PD-L1 expression is characteristic of a subset of aggressive B-cell
lymphomas and virus-associated malignancies. Clin. Cancer Res. 2013, 19, 3462–3473. [CrossRef]

58. Arlauckas, S.P.; Garris, C.S.; Kohler, R.H.; Kitaoka, M.; Cuccarese, M.F.; Yang, K.S.; Miller, M.A.; Carlson, J.C.;
Freeman, G.J.; Anthony, R.M.; et al. In vivo imaging reveals a tumor-associated macrophage-mediated
resistance pathway in anti-PD-1 therapy. Sci. Transl. Med. 2017, 9. [CrossRef]

59. Carus, A.; Ladekarl, M.; Hager, H.; Pilegaard, H.; Nielsen, P.S.; Donskov, F. Tumor-associated neutrophils
and macrophages in non-small cell lung cancer: No immediate impact on patient outcome. Lung Cancer
2013, 81, 130–137. [CrossRef]

60. Hirayama, S.; Ishii, G.; Nagai, K.; Ono, S.; Kojima, M.; Yamauchi, C.; Aokage, K.; Hishida, T.; Yoshida, J.;
Suzuki, K.; et al. Prognostic impact of CD204-positive macrophages in lung squamous cell carcinoma: Possible
contribution of Cd204-positive macrophages to the tumor-promoting microenvironment. J. Thorac. Oncol.
2012, 7, 1790–1797. [CrossRef]

http://dx.doi.org/10.1093/neuonc/now005
http://dx.doi.org/10.1158/0008-5472.CAN-13-2421
http://www.ncbi.nlm.nih.gov/pubmed/24638982
http://dx.doi.org/10.1007/s10555-006-9001-7
http://dx.doi.org/10.1016/j.ccr.2011.02.005
http://www.ncbi.nlm.nih.gov/pubmed/21481792
http://dx.doi.org/10.1182/blood-2006-10-053504
http://dx.doi.org/10.1007/s00018-016-2166-5
http://dx.doi.org/10.3390/cells9010046
http://dx.doi.org/10.1016/j.taap.2018.12.013
http://dx.doi.org/10.1186/s13046-018-0981-2
http://www.ncbi.nlm.nih.gov/pubmed/30537992
http://dx.doi.org/10.1158/1078-0432.CCR-17-1283
http://www.ncbi.nlm.nih.gov/pubmed/28928161
http://dx.doi.org/10.18632/oncotarget.16610
http://www.ncbi.nlm.nih.gov/pubmed/28388577
http://dx.doi.org/10.1101/gad.180331.111
http://dx.doi.org/10.1158/0008-5472.CAN-12-3981
http://dx.doi.org/10.1038/nature22396
http://dx.doi.org/10.1158/1078-0432.CCR-13-0855
http://dx.doi.org/10.1126/scitranslmed.aal3604
http://dx.doi.org/10.1016/j.lungcan.2013.03.003
http://dx.doi.org/10.1097/JTO.0b013e3182745968


J. Clin. Med. 2020, 9, 3226 17 of 24

61. Dai, F.; Liu, L.; Che, G.; Yu, N.; Pu, Q.; Zhang, S.; Ma, J.; Ma, L.; You, Z. The number and microlocalization
of tumor-associated immune cells are associated with patient’s survival time in non-small cell lung cancer.
BMC Cancer 2010, 10, 220. [CrossRef] [PubMed]

62. Ohri, C.M.; Shikotra, A.; Green, R.H.; Waller, D.A.; Bradding, P. Macrophages within NSCLC tumour islets
are predominantly of a cytotoxic M1 phenotype associated with extended survival. Eur. Respir. J. 2009,
33, 118–126. [CrossRef] [PubMed]

63. Chen, J.J.W.; Yao, P.-L.; Yuan, A.; Hong, T.-M.; Shun, C.-T.; Kuo, M.-L.; Lee, Y.-C.; Yang, P.-C. Up-regulation of
tumor interleukin-8 expression by infiltrating macrophages: Its correlation with tumor angiogenesis and
patient survival in non-small cell lung cancer. Clin. Cancer Res. 2003, 9, 729–737. [PubMed]

64. Liu, G.; Cheresh, P.; Kamp, D.W. Molecular basis of asbestos-induced lung disease. Annu. Rev. Pathol. Mech.
Dis. 2013, 8, 161–187. [CrossRef]

65. Mossman, B.T.; Lippmann, M.; Hesterberg, T.W.; Kelsey, K.T.; Barchowsky, A.; Bonner, J.C.
Pulmonary endpoints (lung carcinomas and asbestosis) following inhalation exposure to asbestos. J. Toxicol.
Environ. Health Part B 2011, 14, 76–121. [CrossRef]

66. Balkwill, F. TNF-α in promotion and progression of cancer. Cancer Metastasis Rev. 2006, 25, 409–416.
[CrossRef]

67. Conti, I.; Rollins, B.J. CCL2 (monocyte chemoattractant protein-1) and cancer. Semin. Cancer Biol. 2004, 14,
149–154. [CrossRef]

68. Cornelissen, R.; Lievense, L.A.; Maat, A.P.; Hendriks, R.W.; Hoogsteden, H.C.; Bogers, A.J.; Hegmans, J.P.;
Aerts, J.G. Ratio of intratumoral macrophage phenotypes is a prognostic factor in epithelioid malignant
pleural mesothelioma. PLoS ONE 2014, 9, e106742. [CrossRef]

69. Chee, S.J.; Lopez, M.; Mellows, T.; Gankande, S.; Moutasim, K.A.; Harris, S.; Clarke, J.; Vijayanand, P.;
Thomas, G.J.; Ottensmeier, C.H. Evaluating the effect of immune cells on the outcome of patients with
mesothelioma. Br. J. Cancer 2017, 117, 1341–1348. [CrossRef]

70. Burt, B.M.; Rodig, S.J.; Tilleman, T.R.; Elbardissi, A.W.; Bueno, R.; Sugarbaker, D.J. Circulating and
tumor-infiltrating myeloid cells predict survival in human pleural mesothelioma. Cancer 2011, 117, 5234–5244.
[CrossRef]

71. Veltman, J.D.; Lambers, M.E.H.; van Nimwegen, M.; Hendriks, R.W.; Hoogsteden, H.C.; Hegmans, J.P.J.J.;
Aerts, J.G.J.V. Zoledronic acid impairs myeloid differentiation to tumour-associated macrophages in
mesothelioma. Br. J. Cancer 2010, 103, 629–641. [CrossRef] [PubMed]

72. Cornelissen, R.; Lievense, L.A.; Robertus, J.-L.; Hendriks, R.W.; Hoogsteden, H.C.; Hegmans, J.P.J.J.;
Aerts, J.G.J.V. Intratumoral macrophage phenotype and CD8 + T lymphocytes as potential tools to predict
local tumor outgrowth at the intervention site in malignant pleural mesothelioma. Lung Cancer 2015, 88,
332–337. [CrossRef] [PubMed]

73. Komohara, Y.; Ohnishi, K.; Kuratsu, J.; Takeya, M. Possible involvement of the M2 anti-inflammatory
macrophage phenotype in growth of human gliomas. J. Pathol. 2008, 216, 15–24. [CrossRef] [PubMed]

74. Sørensen, M.D.; Dahlrot, R.H.; Boldt, H.B.; Hansen, S.; Kristensen, B.W. Tumour-associated
microglia/macrophages predict poor prognosis in high-grade gliomas and correlate with an aggressive
tumour subtype. Neuropathol. Appl. Neurobiol. 2018, 44, 185–206. [CrossRef] [PubMed]

75. Vidyarthi, A.; Agnihotri, T.; Khan, N.; Singh, S.; Tewari, M.K.; Radotra, B.D.; Chatterjee, D.; Agrewala, J.N.
Predominance of M2 macrophages in gliomas leads to the suppression of local and systemic immunity.
Cancer Immunol. Immunother. 2019, 68, 1995–2004. [CrossRef] [PubMed]

76. Nam, S.J.; Kim, Y.-H.; Park, J.E.; Ra, Y.-S.; Khang, S.K.; Cho, Y.H.; Kim, J.H.; Sung, C.O. Tumor-infiltrating
immune cell subpopulations and programmed death ligand 1 (PD-L1) expression associated with
clinicopathological and prognostic parameters in ependymoma. Cancer Immunol. Immunother. 2019,
68, 305–318. [CrossRef]

77. Jackute, J.; Zemaitis, M.; Pranys, D.; Sitkauskiene, B.; Miliauskas, S.; Vaitkiene, S.; Sakalauskas, R. Distribution
of M1 and M2 macrophages in tumor islets and stroma in relation to prognosis of non-small cell lung cancer.
BMC Immunol. 2018, 19, 3. [CrossRef]

78. Yoshikawa, K.; Mitsunaga, S.; Kinoshita, T.; Konishi, M.; Takahashi, S.; Gotohda, N.; Kato, Y.; Aizawa, M.;
Ochiai, A. Impact of tumor-associated macrophages on invasive ductal carcinoma of the pancreas head.
Cancer Sci. 2012, 103, 2012–2020. [CrossRef]

http://dx.doi.org/10.1186/1471-2407-10-220
http://www.ncbi.nlm.nih.gov/pubmed/20487543
http://dx.doi.org/10.1183/09031936.00065708
http://www.ncbi.nlm.nih.gov/pubmed/19118225
http://www.ncbi.nlm.nih.gov/pubmed/12576442
http://dx.doi.org/10.1146/annurev-pathol-020712-163942
http://dx.doi.org/10.1080/10937404.2011.556047
http://dx.doi.org/10.1007/s10555-006-9005-3
http://dx.doi.org/10.1016/j.semcancer.2003.10.009
http://dx.doi.org/10.1371/journal.pone.0106742
http://dx.doi.org/10.1038/bjc.2017.269
http://dx.doi.org/10.1002/cncr.26143
http://dx.doi.org/10.1038/sj.bjc.6605814
http://www.ncbi.nlm.nih.gov/pubmed/20664588
http://dx.doi.org/10.1016/j.lungcan.2015.03.013
http://www.ncbi.nlm.nih.gov/pubmed/25843042
http://dx.doi.org/10.1002/path.2370
http://www.ncbi.nlm.nih.gov/pubmed/18553315
http://dx.doi.org/10.1111/nan.12428
http://www.ncbi.nlm.nih.gov/pubmed/28767130
http://dx.doi.org/10.1007/s00262-019-02423-8
http://www.ncbi.nlm.nih.gov/pubmed/31690954
http://dx.doi.org/10.1007/s00262-018-2278-x
http://dx.doi.org/10.1186/s12865-018-0241-4
http://dx.doi.org/10.1111/j.1349-7006.2012.02411.x


J. Clin. Med. 2020, 9, 3226 18 of 24

79. Zhang, W.-J.; Wang, X.-H.; Gao, S.-T.; Chen, C.; Xu, X.-Y.; Sun, Q.; Zhou, Z.-H.; Wu, G.-Z.; Yu, Q.; Xu, G.;
et al. Tumor-associated macrophages correlate with phenomenon of epithelial-mesenchymal transition
and contribute to poor prognosis in triple-negative breast cancer patients. J. Surg. Res. 2018, 222, 93–101.
[CrossRef]

80. Tiainen, S.; Tumelius, R.; Rilla, K.; Hämäläinen, K.; Tammi, M.; Tammi, R.; Kosma, V.-M.; Oikari, S.; Auvinen, P.
High numbers of macrophages, especially M2-like (CD163-positive), correlate with hyaluronan accumulation
and poor outcome in breast cancer. Histopathology 2015, 66, 873–883. [CrossRef]

81. Campbell, M.J.; Tonlaar, N.Y.; Garwood, E.R.; Huo, D.; Moore, D.H.; Khramtsov, A.I.; Au, A.; Baehner, F.;
Chen, Y.; Malaka, D.O.; et al. Proliferating macrophages associated with high grade, hormone receptor
negative breast cancer and poor clinical outcome. Breast Cancer Res. Treat. 2011, 128, 703–711. [CrossRef]
[PubMed]

82. Funada, Y.; Noguchi, T.; Kikuchi, R.; Takeno, S.; Uchida, Y.; Gabbert, H.E. Prognostic significance of CD8+ T
cell and macrophage peritumoral infiltration in colorectal cancer. Oncol. Rep. 2003, 10, 309–313. [CrossRef]
[PubMed]

83. Zhou, Q.; Peng, R.-Q.; Wu, X.-J.; Xia, Q.; Hou, J.-H.; Ding, Y.; Zhou, Q.-M.; Zhang, X.; Pang, Z.-Z.; Wan, D.-S.;
et al. The density of macrophages in the invasive front is inversely correlated to liver metastasis in colon
cancer. J. Transl. Med. 2010, 8, 13. [CrossRef] [PubMed]

84. Liu, Q.; Yang, C.; Wang, S.; Shi, D.; Wei, C.; Song, J.; Lin, X.; Dou, R.; Bai, J.; Xiang, Z.; et al. Wnt5a-induced
M2 polarization of tumor-associated macrophages via IL-10 promotes colorectal cancer progression. Cell
Commun. Signal. 2020, 18, 1–19. [CrossRef]

85. Jensen, T.O.; Schmidt, H.; Møller, H.J.; Høyer, M.; Maniecki, M.B.; Sjoegren, P.; Christensen, I.J.; Steiniche, T.
Macrophage markers in serum and tumor have prognostic impact in American Joint Committee on Cancer
stage I/II melanoma. J. Clin. Oncol. 2009, 27, 3330–3337. [CrossRef]

86. Hanada, T.; Nakagawa, M.; Emoto, A.; Nomura, T.; Nasu, N.; Nomura, Y. Prognostic value of tumor-associated
macrophage count in human bladder cancer. Int. J. Urol. 2000, 7, 263–269. [CrossRef]

87. Bowman, R.L.; Klemm, F.; Akkari, L.; Pyonteck, S.M.; Sevenich, L.; Quail, D.F.; Dhara, S.; Simpson, K.;
Gardner, E.E.; Iacobuzio-Donahue, C.A.; et al. Macrophage ontogeny underlies differences in tumor-specific
education in brain malignancies. Cell Rep. 2016, 17, 2445–2459. [CrossRef]

88. Hambardzumyan, D.; Gutmann, D.H.; Kettenmann, H. The role of microglia and macrophages in glioma
maintenance and progression. Nat. Neurosci. 2016, 19, 20–27. [CrossRef]

89. Watters, J.J.; Schartner, J.M.; Badie, B. Microglia function in brain tumors. J. Neurosci. Res. 2005, 81, 447–455.
[CrossRef]

90. Wu, P.; Wu, D.; Zhao, L.; Huang, L.; Chen, G.; Shen, G.; Huang, J.; Chai, Y. Inverse role of distinct subsets
and distribution of macrophage in lung cancer prognosis: A meta-analysis. Oncotarget 2016, 7, 40451–40460.
[CrossRef]

91. Welsh, T.J.; Green, R.H.; Richardson, D.; Waller, D.A.; O’Byrne, K.J.; Bradding, P. Macrophage and mast-cell
invasion of tumor cell islets confers a marked survival advantage in non-small-cell lung cancer. J. Clin. Oncol.
2005, 23, 8959–8967. [CrossRef] [PubMed]

92. Kim, D.-W.; Min, H.S.; Lee, K.-H.; Kim, Y.J.; Oh, D.-Y.; Jeon, Y.K.; Lee, S.-H.; Im, S.-A.; Chung, D.H.; Kim, Y.T.;
et al. High tumour islet macrophage infiltration correlates with improved patient survival but not with
EGFR mutations, gene copy number or protein expression in resected non-small cell lung cancer. Br. J. Cancer
2008, 98, 1118–1124. [CrossRef] [PubMed]

93. Kawai, O.; Ishii, G.; Kubota, K.; Murata, Y.; Naito, Y.; Mizuno, T.; Aokage, K.; Saijo, N.; Nishiwaki, Y.;
Gemma, A.; et al. Predominant infiltration of macrophages and CD8 + T Cells in cancer nests is a significant
predictor of survival in stage IV nonsmall cell lung cancer. Cancer 2008, 113, 1387–1395. [CrossRef] [PubMed]

94. Feng, P.-H.; Yu, C.-T.; Wu, C.-Y.; Lee, M.-J.; Lee, W.-H.; Wang, L.-S.; Lin, S.-M.; Fu, J.-F.; Lee, K.-Y.; Yen, T.-H.
Tumor-associated macrophages in stage IIIA pN2 non-small cell lung cancer after neoadjuvant chemotherapy
and surgery. Am. J. Transl. Res. 2014, 6, 593–603. [PubMed]

95. Sumitomo, R.; Hirai, T.; Fujita, M.; Murakami, H.; Otake, Y.; Huang, C.-L. M2 tumor-associated macrophages
promote tumor progression in non-small-cell lung cancer. Exp. Ther. Med. 2019, 18, 4490–4498. [CrossRef]

96. Garrido-Martin, E.M.; Mellows, T.W.P.; Clarke, J.; Ganesan, A.-P.; Wood, O.; Cazaly, A.; Seumois, G.; Chee, S.J.;
Alzetani, A.; King, E.V.; et al. M1hot tumor-associated macrophages boost tissue-resident memory T cells
infiltration and survival in human lung cancer. J. Immunother. Cancer 2020, 8. [CrossRef]

http://dx.doi.org/10.1016/j.jss.2017.09.035
http://dx.doi.org/10.1111/his.12607
http://dx.doi.org/10.1007/s10549-010-1154-y
http://www.ncbi.nlm.nih.gov/pubmed/20842526
http://dx.doi.org/10.3892/or.10.2.309
http://www.ncbi.nlm.nih.gov/pubmed/12579264
http://dx.doi.org/10.1186/1479-5876-8-13
http://www.ncbi.nlm.nih.gov/pubmed/20141634
http://dx.doi.org/10.1186/s12964-020-00557-2
http://dx.doi.org/10.1200/JCO.2008.19.9919
http://dx.doi.org/10.1046/j.1442-2042.2000.00190.x
http://dx.doi.org/10.1016/j.celrep.2016.10.052
http://dx.doi.org/10.1038/nn.4185
http://dx.doi.org/10.1002/jnr.20485
http://dx.doi.org/10.18632/oncotarget.9625
http://dx.doi.org/10.1200/JCO.2005.01.4910
http://www.ncbi.nlm.nih.gov/pubmed/16219934
http://dx.doi.org/10.1038/sj.bjc.6604256
http://www.ncbi.nlm.nih.gov/pubmed/18283317
http://dx.doi.org/10.1002/cncr.23712
http://www.ncbi.nlm.nih.gov/pubmed/18671239
http://www.ncbi.nlm.nih.gov/pubmed/25360223
http://dx.doi.org/10.3892/etm.2019.8068
http://dx.doi.org/10.1136/jitc-2020-000778


J. Clin. Med. 2020, 9, 3226 19 of 24

97. Habtezion, A.; Edderkaoui, M.; Pandol, S.J. Macrophages and pancreatic ductal adenocarcinoma. Cancer Lett.
2016, 381, 211–216. [CrossRef]

98. Di Caro, G.; Cortese, N.; Castino, G.F.; Grizzi, F.; Gavazzi, F.; Ridolfi, C.; Capretti, G.; Mineri, R.; Todoric, J.;
Zerbi, A.; et al. Dual prognostic significance of tumour-associated macrophages in human pancreatic
adenocarcinoma treated or untreated with chemotherapy. Gut 2016, 65, 1710–1720. [CrossRef]

99. Forssell, J.; Oberg, A.; Henriksson, M.L.; Stenling, R.; Jung, A.; Palmqvist, R. High macrophage infiltration
along the tumor front correlates with improved survival in colon cancer. Clin. Cancer Res. 2007, 13, 1472–1479.
[CrossRef]

100. Nagorsen, D.; Voigt, S.; Berg, E.; Stein, H.; Thiel, E.; Loddenkemper, C. Tumor-infiltrating macrophages
and dendritic cells in human colorectal cancer: Relation to local regulatory T cells, systemic T-cell response
against tumor-associated antigens and survival. J. Transl. Med. 2007, 5, 62. [CrossRef]

101. Sugita, J.; Ohtani, H.; Mizoi, T.; Saito, K.; Shiiba, K.; Sasaki, I.; Matsuno, S.; Yagita, H.; Miyazawa, M.;
Nagura, H. Close association between Fas ligand (FasL.; CD95L)-positive tumor-associated macrophages and
apoptotic cancer cells along invasive margin of colorectal carcinoma: A proposal on tumor-host interactions.
Jpn. J. Cancer Res. 2002, 93, 320–328. [CrossRef] [PubMed]

102. Barbera-Guillem, E.; Nyhus, J.K.; Wolford, C.C.; Friece, C.R.; Sampsel, J.W. Vascular endothelial growth factor
secretion by tumor-infiltrating macrophages essentially supports tumor angiogenesis, and IgG immune
complexes potentiate the process. Cancer Res. 2002, 62, 7042–7049. [PubMed]

103. Bailey, C.; Negus, R.; Morris, A.; Ziprin, P.; Goldin, R.; Allavena, P.; Peck, D.; Darzi, A. Chemokine expression
is associated with the accumulation of tumour associated macrophages (TAMs) and progression in human
colorectal cancer. Clin. Exp. Metastasis 2007, 24, 121–130. [CrossRef] [PubMed]

104. Erreni, M.; Mantovani, A.; Allavena, P. Tumor-associated Macrophages (TAM) and Inflammation in Colorectal
Cancer. Cancer Microenviron. 2011, 4, 141–154. [CrossRef]

105. Caprara, G.; Allavena, P.; Erreni, M. Intestinal Macrophages at the Crossroad between Diet, Inflammation,
and Cancer. Int. J. Mol. Sci. 2020, 21. [CrossRef]

106. Williams, C.B.; Yeh, E.S.; Soloff, A.C. Tumor-associated macrophages: Unwitting accomplices in breast cancer
malignancy. NPJ Breast Cancer 2016, 2. [CrossRef]

107. Bottai, G.; Raschioni, C.; Székely, B.; Di Tommaso, L.; Szász, A.M.; Losurdo, A.; Győrffy, B.; Ács, B.;
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