
R E S E A R C H Open Access

© The Author(s) 2024. Open Access  This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 
International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you 
give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the 
licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or 
exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit ​h​t​​​​t​p​:​/​/​c​r​e​​a​​​t​i​
v​e​​c​​o​​m​​m​​o​n​s​.​o​r​g​/​l​i​c​e​n​s​e​s​/​b​y​-​n​c​-​n​d​/​4​.​0​/​​​​​.​​​

Gu et al. Cancer Cell International          (2024) 24:393 
https://doi.org/10.1186/s12935-024-03589-7

Cancer Cell International

†Yanlin Gu, Zhengyang Feng and Xiaoyan Xu contributed equally to 
this work.

*Correspondence:
Liyan Jin
jinyuliangyuan1985@sina.com

Full list of author information is available at the end of the article

Abstract
Background  As a common cause of cancer-related deaths in women, BRCA (breast cancer) shows complexity and 
requires precise biomarkers and treatment methods. This study delves into the molecular makeup of BRCA, focusing 
on immune profiles, molecular subtypes, gene expression and single-cell analysis.

Methods  XCell was used to assess immune infiltration based on TCGA (the Cancer Genome Atlas) data and the 
clustering analysis was made. Differentially expressed genes were examined in distinct clusters, and the WGCNA 
(weighted correlation network analysis) was made to establish co-expression networks. The prognostic models were 
developed by Cox and LASSO-Cox regression. The clustering analysis, GSEA (Gene set enrichment analysis), GSVA 
(gene set variation analysis) and communication analysis of the single-cell dataset GSE161529 were performed to 
investigate the functional relevance. Real-time polymerase chain reaction (RT-PCR) was employed for evaluating gene 
expression.

Results  The results revealed significant differences in immune cell infiltration between two clusters (C1 and C2). C2 
had poorer survival outcomes, which was associated with higher expression of immune checkpoints PD1 and PD-
L1. The gene modules identified via WGCNA were correlated with the immune-based subtypes. Then, a prognostic 
model comprising seven genes (ACSL1, ABCB5, XG, ADH4, OPN4, NPR3, NLGN1) was used to divide patients into 
high- and low-risk subgroups. The high-risk group had worse prognosis and higher scores of TIDE (Tumor Immune 
Dysfunction and Exclusion). The single-cell analysis depicted the immune landscape. Macrophages and endothelial 
cells exhibited higher AUCell scores. In cellular communication analysis, notably significant ligand-receptor 
interactions of HLA-DRA-> CD4 and TNFSF13B-> HLA-DPB1 were observed. The proportion of endothelial cells was 
correlated with risk scores. Finally, RT-PCR results illustrated the expression of seven genes in BRCA specimens.

Identification of a novel immune-related gene 
signature by single-cell and bulk sequencing 
for the prediction of the immune landscape 
and prognosis of breast cancer
Yanlin Gu1†, Zhengyang Feng2†, Xiaoyan Xu3† and Liyan Jin1*

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12935-024-03589-7&domain=pdf&date_stamp=2024-12-2


Page 2 of 23Gu et al. Cancer Cell International          (2024) 24:393 

Introduction
BRCA (breast cancer) has surpassed lung cancer as the 
commonest malignant tumor in the world, being the 
main cause of cancer-related deaths among women. 
According to a report in 2020, 2.3  million patients are 
diagnosed with BRCA worldwide annually, account-
ing for 11.7% of all cancer patients. Of these new BRCA 
patients, 685,000 patients die, accounting for 6.9% of all 
cancer deaths [1]. Although remarkable progress has 
been made in its treatment, staging and molecular bio-
markers, the heterogeneity of tumors is still a challenge 
to treatment results. It is extremely important to solve 
the heterogeneity problem of breast tumors and it is 
fundamental to develop personalized treatment strate-
gies for patients with breast tumors of biological hetero-
geneity. To develop more effective personalized drugs 
that can accurately target specific molecular changes in 
individual patients with BRCA, it is necessary to deeply 
understand the accurate molecular characteristics [2–4]. 
The development of personalized treatment strategies 
for patients with tumors constituted by unique biological 
components is the key to improving the treatment effect 
and reducing deaths in BRCA patients [5–7]. In addition, 
in the coming era of precision medicine, cancer treat-
ment will rely on the use of advanced technologies such 
as genomics, proteomics and artificial intelligence to 
identify new therapeutic targets and develop customized 
treatment programs [8–10]. The approaches developed 
by the most innovative methods will not only acceler-
ate the complete revolution of BRCA treatment, but also 
pave way for a change of the paradigm towards personal-
ized and targeted treatment in the field of oncology.

Tumor immunotherapy is to fight tumors with the 
autoimmune system, marking a major breakthrough 
in medical treatment. This method involves the activa-
tion of specific cells in the immune system to identify 
and destroy tumor cells. Although it shows promising 
results in some types of tumors, it still faces challenges. 
Only a few patients benefit from immunotherapy in clini-
cal practice, and this therapy usually leads to immune-
related side effects [11]. Further research and clinical 
trials are required to optimize its effect and determine 
the appropriate patient population.

With the progress of bioinformatics and single-cell 
sequencing technology in recent years, there is a grow-
ing possibility of revealing the complex molecular 
landscape of BRCA. The innovative methods provide 

unprecedented opportunities for researchers to explore 
the heterogeneity of breast tumors with single-cell reso-
lution. The research results offer valuable insights into 
the mechanism governing the dynamic process of tumor 
evolution [12, 13]. In addition, the elucidation of complex 
interactions among tumor cells, immune effectors and 
matrix elements has become the focus of research. This 
kind of comprehensive study not only reveals the com-
plex immune escape mechanism of BRCA cells, but also 
identifies new immunotherapy targets with clinical sig-
nificance [14–18]. Similarly, the application of consistent 
clustering methods promotes successful identification of 
molecular subtypes and various cancer types with differ-
ent clinical results. This remarkable achievement high-
lights the potential of molecular stratification of breast 
tumors based on the comprehensive molecular analysis 
[19, 20]. By systematically classifying breast tumors into 
biologically and clinically relevant subtypes, researchers 
can tailor the treatment model according to the unique 
characteristics of each patient. In this way, the treatment 
effect will be maximized and the treatment results of 
patients will be improved tremendously [21, 22].

In this study, we employed a comprehensive bioinfor-
matics analysis to dissect the molecular heterogeneity of 
BRCA. Utilizing publicly available datasets from TCGA 
(The Cancer Genome Atlas), we performed immune infil-
tration analysis, consistent clustering, differential gene 
expression analysis, WGCNA (weighted gene co-expres-
sion network analysis), enrichment analysis, and prog-
nostic model construction. Our multi-faceted approach 
aimed to identify molecular signatures and immune pro-
files that could inform personalized therapeutic strate-
gies and improve patient prognostication.

Materials and methods
Data download
We obtained gene expression data (TPM) and associated 
prognosis information from TCGA database ​(​​​h​t​​t​p​s​​:​/​/​p​​o​
r​​t​a​l​.​g​d​c​.​c​a​n​c​e​r​.​g​o​v​/​​​​​) using the R package TCGAbiolinks, 
and utilized the ICGC (International Cancer Genome 
Consortium) dataset (BRCA-FR) as a validation set for 
further verification. We also downloaded the single-cell 
BRCA dataset GSE161529 from the GEO (Gene Expres-
sion Omnibus) database ​(​​​h​t​​t​p​s​​:​/​/​w​​w​w​​.​n​c​b​i​.​n​l​m​.​n​i​h​.​g​o​
v​/​g​e​o​/​​​​​) dataset using scRNA-seq on the 10X Genomics 
Chromium platform.

Conclusion  The integrative analysis provides new insights into molecular complexities of BRCA. Immune profiles 
and gene signatures hold potential for improving stratification of BRCA patients and guiding the development of 
personalized immunotherapy strategies.

Keywords  Breast cancer, Bioinformatics, Immune infiltration, Molecular subtyping, Prognostic model, Single-cell 
analysis
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Immune infiltration analysis
The immune microenvironment is a complex inte-
grated system composed of immune cells, inflammatory 
cells, fibroblasts, stromal tissue, various cytokines, and 
chemokines. Tissues consist of diverse cell types with 
unique transcriptional expressions. Deconvolution of 
gene expression profiles enables the reconstruction of 
tissue cellular composition. The xCell, developed by the 
dviraran team, utilizes the ssGSEA algorithm to rank 
gene expression levels and deconvolute transcriptome 
expression matrices, thereby estimating the composition 
and abundance of immune cells within heterogeneous 
populations for immune infiltration analysis [23]. We 
utilized xCell to assess the infiltration levels of immune 
cells, employed the R package IOBR (v0.99.9) for xCell 
deconvolution [24]. This involved filtering out immune 
cell data and evaluating immune cell infiltration abun-
dance. Visualization was achieved through box plots and 
stacked bar charts, created using the R package ggplot2 
(v3.4.2) [25]. Additionally, we computed the correlation 
between immune cells using the Pearson algorithm and 
represented it as a correlation heatmap using the R pack-
age corrplot (v0.92).

Consistent clustering and typing
We utilized the R package ConsensusClusterPlus 
(v1.62.0) for consensus clustering based on immune infil-
tration results to differentiate different BRCA subtypes. 
We repeated sampling of 80% of the total samples 1000 
times, with clusterAlg = “km” and distance="euclidean”. 
To validate the relationship between clustered subgroups 
and OS (overall survival), KM (Kaplan Meier) survival 
curves were plotted using the survival package (v3.5.3). 
Subsequently, we examined the expression differences 
of the immune checkpoint PD-L1 (CD274) and PD1 
(PDCD1) within consensus clustering subgroups, visual-
ized as violin plots using the ggplot2 package (v3.4.2).

Differential genes between clustering subgroups were 
analyzed using the DESeq2 package, with criteria of 
|log2FC| ≥ 1 and P < 0.05. Volcano plots and heatmaps 
were then generated to visualize significantly differen-
tially expressed immune-related genes. Additionally, we 
specifically investigated the expression differences of 
genes closely related to BRCA (ATM, BARD1, BRCA1, 
BRCA2, CDH1, CHEK2, RAD51D) among consensus 
clustering subgroups. We drew the violin plots with the 
ggplot2 package.

Weighted gene association network analysis
WGCNA is a systems biology method to describe pat-
terns of gene co-expression between different samples 
[26]. We employed the R package WGCNA (v1.72.1) to 
analyze differentially expressed genes based on consen-
sus clustering subgroups. We computed the correlation 

coefficients between genes and constructed a hierarchi-
cal clustering tree based on these coefficients. Different 
branches of the clustering tree represent distinct gene 
modules, and module significance was subsequently 
calculated. The minimum module gene count was set to 
30, softpower was set to the optimal threshold of 3 and 
the module merge cut height was set to 0.25. Interested 
modules were selected based on correlation values, and 
expression genes highly correlated with the consensus 
clustering subgroups were identified.

Enrichment analysis
GO (Gene Ontology) enrichment analysis and KEGG 
(Kyoto Encyclopedia of Genes and Genomes) enrich-
ment analysis are widely applied for analyzing the 
functional enrichment of genes across various dimen-
sions and levels. In our study, we focused on expres-
sion genes highly correlated with consensus clustering 
subgroups, employed clusterProfiler (v4.7.1.3) for both 
GO and KEGG enrichment analyses to identify signifi-
cantly enriched biological processes and pathways. The 
enrichment results were visualized using the R pack-
ages GOplot (v1.0.2) and enrichplot (v1.18.4), with a 
significance threshold set at P < 0.05 for the enrichment 
analysis.

Prognostic genes were screened and prognostic models 
were constructed
To identify prognostic genes, we initially conducted uni-
variate Cox regression analysis on genes derived from the 
consistency clustering results (P < 0.05). Subsequently, we 
performed multivariate Cox regression analysis to iden-
tify independent prognostic genes. Lasso-Cox regression 
analysis was carried out via the glmnet package (v4.1.7) 
in R, where the optimal lambda value was selected. Genes 
with non-zero coefficients were retained for constructing 
the prognostic model. A risk score was computed based 
on gene expression levels and coefficients from the multi-
variate Cox regression model, according to the following 
formula:

	

riskscore =
∑

i

Coefficient(hubgene

i

)

∗ mRNAExpression (hubgenei)

Samples were stratified into high- and low-risk groups 
according to the median risk score. To assess the pre-
dictive capacity of the risk score, KM curve analysis was 
conducted using the survival package (v3.5.3).

To explore the association between risk score and 
immunotherapy response, we initially scrutinized the 
expression profiles of immune checkpoint genes (CD274, 
CD47, HAVCR2, LAG3, IDO1, SIRPA, TNFRSF4, 
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PDCD1, CTLA4, TIGIT) between high- and low-risk 
cohorts. Subsequently, we evaluated the TIDE (Tumor 
Immune Dysfunction and Exclusion) scores across these 
risk groups [27, 28]. TIDE scores reflect the sensitivity 
to immune checkpoint inhibitors, serving as a surrogate 
biomarker predictive of response to immune modula-
tion. Using the TIDE website ​(​​​h​t​​t​p​s​​:​/​/​t​​i​d​​e​.​d​f​c​i​.​h​a​r​v​a​r​d​.​e​
d​u​/​l​o​g​i​n​/​​​​​)​, we computed TIDE scores for BRCA samples 
via the “Predict Response” module, thereby examining 
disparities between high- and low-risk cohorts. Consid-
ering the potential correlation between risk and TIDE 
scores among patients, we employed the ggExtra package 
(v0.10.0) in R to construct scatter plots illustrating the 
relationship between risk scores and TIDE scores, while 
also fitting correlation curves [29].

Single cell quality control
Prior to delving into the analysis of single-cell gene 
expression data, it is imperative to ensure the fidelity of 
UMIs (Unique Molecular Identifiers) by confirming their 
correspondence to viable cells. QC (Quality control) 
measures were enacted based on three pivotal cell covari-
ates: count depth per UMI, gene count per UMI, and the 
mitochondrial gene count score per UMI.

Outlier Management: A robust approach employing 
the MAD (median absolute deviation) was undertaken 
to cull cells exhibiting MAD values exceeding 5 across 
the aforementioned QC metrics. Additionally, cells dis-
playing mitochondrial percentages surpassing 5% were 
excluded from further analysis.

Bimodal Filtering: Leveraging the scrublet function 
from the Python package scanpy, we effectively identified 
and eliminated doublets, defined as instances where two 
or more cells were coincidentally captured within a single 
droplet [30, 31]. Subsequent to doublet prediction for 
each sample, the predicted_doublet attribute facilitated 
the filtration of the expression matrix.

Single cell deconvolution normalization
The scran package utilizes a pooled size factor estimation 
deconvolution normalization method, designed to effec-
tively mitigate technical variability between cells while 
retaining biological diversity [32]. Initially, in Python, 
we conducted log2 transformation and Leiden clustering 
using scanpy. Subsequently, in R, the computeSumFac-
tors function was employed to compute size factors for 
individual cells, followed by their application for normal-
ization. The resultant normalized expression matrix was 
utilized for subsequent analyses.

Single cell go batch
The autoencoder, an unsupervised neural network, is 
adept at learning low-dimensional representations of 
data and reconstructing input data. In this study, we 

employed the autoencoder functionality within scvi-tools 
to mitigate batch effects present in single-cell data with 
Python.

Single-cell clustering
We conducted clustering analysis of single-cell sequenc-
ing data with the Python package scanpy. Initially, the 
sc.pp.neighbors function was applied to construct a cel-
lular neighborhood graph, employing the UMAP algo-
rithm for distance and similarity calculations between 
cells. Subsequently, the leiden function facilitated Leiden 
clustering, optimizing modularity via the Leiden algo-
rithm to yield refined clustering outcomes. Visualization 
of these results depicted the spatial distribution of cells 
from distinct clusters within the UMAP coordinates.

Single cell annotation
We utilized Enrichment with ORA (Over Representation 
Analysis) for annotation, leveraging markers provided by 
the dataset authors. Through one-sided Fisher exact tests 
based on contingency tables, we assessed the significance 
of overlap between S and each gene set. Subsequently, we 
transformed the test P-values into logarithmic functional 
enrichment scores, where higher scores signify greater 
enrichment. By comparing two annotation methods with 
previous clustering results, we ultimately chose the more 
effective ORA annotation as the foundation for subse-
quent analysis of cell types.

Single cell communication analysis
CellPhoneDB (v2) is a methodology grounded in ligand-
receptor inference aimed at elucidating signal transduc-
tion dynamics across heterogeneous cell types within 
single-cell datasets [33]. Leveraging a meticulously 
curated repository of ligand-receptor interactions and 
gene expression profiles extracted from single-cell tran-
scriptomic data, this approach enables the prediction of 
potential communication networks between distinct cel-
lular populations. Implementation of the CellPhoneDB 
method is facilitated through the cellphonedb mod-
ule within the Python package Liana, with a particular 
emphasis on visualizing cell types exhibiting notable per-
turbations. We utilized Connectome to infer functional 
connections between cells, NATMI to predict ligand-
receptor interactions between cells based on machine 
learning; SingleCellSignalR to reconstruct signaling net-
works between cells, CellChat to deduce that communi-
cation patterns between cells exhibit high significance in 
ligand-receptor interactions across different methods, as 
well as CellPhoneDB [34–36].

Single-cell GSVA
To evaluate functional enrichment among diverse cell 
types and subgroups within single-cell samples, we 

https://tide.dfci.harvard.edu/login/
https://tide.dfci.harvard.edu/login/
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performed GSVA (Gene Set Variation Analysis) on sin-
gle-cell transcriptomic data using the Python package 
decoupler [37].

Single cell AUCell analysis
Single-cell AUCell analysis evaluates the activity level of 
specific gene sets or pathways within each cell, utilizing 
the AUC (area under the curve) to discern whether key 
subsets of input gene sets are enriched in the expressed 
genes of individual cells. This methodology facilitates 
the identification of cells harboring active gene sets and 
enables the exploration of relative gene set expression 
across diverse cell types or states.

Single cell GSEA
The R package clusterProfiler (v4.7.1.3) was employed to 
conduct GSEA (Gene Set Enrichment Analysis) on dif-
ferentially expressed genes between subgroups associ-
ated with model risk genes and other subgroups. GSEA 
assesses the distribution trend of predefined gene sets 
within the gene expression profile ranked by phenotype, 
thereby determining their contribution to the phenotype. 
Gene sets from the h.all.v7.4.symbols.gmt collection 
obtained from the MSigDB (Molecular Signatures Data-
base) were used for this analysis. The parameters were set 
as follows: 1000 permutations, a minimum of 10 genes 
per gene set, a maximum of 500 genes per gene set, and 
BH (Benjamini-Hochberg) correction for p-values. The 
significance threshold for enrichment was established as 
a false FDR (discovery rate) value (Q-value) < 0.05.

Cellular composition of TCGA-BRCA was inferred by 
deconvolution
Cellular interactions constitute an intricate network 
interfacing the immune system with tumor cells, with 
discerning the specific immune cell composition within 
solid tumors being pivotal for prognosticating respon-
siveness to immunotherapeutic interventions. However, 
due to the inadequacy of numerous tissue samples for 
disaggregation into individual cells, direct leveraging 
of single-cell RNA sequencing techniques is unfeasible. 
To surmount this obstacle, we applied a deconvolution 
methodology dubbed MuSiC (v1.0.0), employed the cell-
type specificity gleaned from single-cell RNA sequencing 
data of BRCA as a benchmark gene expression profile 
[38]. Employing the MuSiC package in R, we inferred the 
cellular composition within TCGA-BRCA samples and 
illustrated the outcomes via a stacked bar plot using the 
ggplot2 package (v3.4.2). Subsequently, we stratified the 
samples into high-risk and low-risk subcohorts according 
to median risk score. KM survival analysis was conducred 
to elucidate survival disparities. Given the association 
between the proportion of high-risk subgroups and the 
risk score, we utilized the R-package ggExtra (v0.10.0) to 

generate a scatter plot depicting this relationship, along 
with fitting a correlation curve [29].

The expression of prognostic genes in breast cancer tissue
We collected and analyzed the expression of 7 genes in 
7 pairs of BRCA and adjacent tissue samples. RNA was 
extracted using trizol reagent (Invitrogen) and reverse 
transcribed to cDNA using Hiscript III RT SuperMix for 
qPCR (Vazyme). Real-time PCR was conducted on an 
Applied Biosystems platform by Thermo Fisher Scientific 
using SYBR Green (Vazyme) as the detection method. 
The primer sequences are provided in the supplemen-
tary Table 1. The 2^-ΔΔCt method was employed to 
calculate gene expression levels, with the adjacent tis-
sue samples serving as the calibrator (assigned a value of 
1), and comparative graphs were generated. The Ethics 
Committee of The Second Affiliated Hospital of Soochow 
University granted approval for this research (Number: 
JD-BS-2022-0033).

Statistical analysis
All data computations and statistical analyses were con-
ducted with R (v4.3.2) and Python (v3.12.2). To miti-
gate the potential for false positives, BH correction was 
applied for multiple testing, employing FDR correction 
across multiple tests. For comparisons of continuous 
variables between the two groups, the Mann-Whitney 
U test (Wilcoxon rank-sum test) was employed to assess 
differences in variables that deviated from normal distri-
bution. Survival analysis was executed using the survival 
package in R (v3.5.3). KM survival curves were utilized 
to visualize survival disparities, with the Log-rank test 
applied to assess the significance of survival time differ-
ences between the two groups. Univariate and multivari-
ate Cox proportional hazards regression analyses were 
conducted to delineate independent prognostic factors. 
All statistical tests were two-sided, and a significance 
threshold of P < 0.05 was adopted.

Results
To elucidate the organizational framework of this manu-
script, we have provided a delineation of the Workflow 
(Fig. 1).

Consensus clustering results based on immune infiltration
To explore the extent of immune cell infiltration in 
TCGA-BRCA patients, the xCell method was employed 
to calculate the immune cell infiltration levels for all sam-
ples. Based on the results of immune infiltration, samples 
were clustered into two subtypes (Fig. 2A-B). Specifically, 
C1 (Cluster 1) comprised 1003 samples, while C2 (Cluster 
2) comprised 221 samples (Table 2.1.1). The differences in 
immune cell infiltration levels between C1 and C2 groups 
were calculated (Fig. 2C). Notably, our findings revealed 
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significant discrepancies across 29 out of 37 immune 
cell types between the high and low-risk groups. With 
the exception of mast cells, eosinophils, B cells, class-
switched memory B cells, CD8 + naïve T cell, Tregs, Nat-
ural killer cells, Natural killer T cell, all other cell types 
exhibited noteworthy differences in immune infiltration 
levels between the C1 and C2 groups. Specifically, com-
mon lymphoid progenitor, granulocyte-monocyte pro-
genitor, basophils, Th1 cells, and Th2 cells demonstrated 
higher infiltration levels within the C1 group, while the 
remaining cell types exhibited heightened infiltration 

within the C2 group. Furthermore, we visualized the pro-
portions of immune cell infiltration between the C1 and 
C2 groups using a stacked bar plot (Fig. 2D), indicating a 
reduced proportion of T cell subsets within the C1 group 
compared to the C2 group.

To delve deeper into the prognostic disparities between 
the C1 and C2 cohorts, we conducted survival curve 
analysis for both groups (Fig. 3A). The findings revealed 
a significant discrepancy in prognosis, with 1003 sam-
ples in C1 and 221 samples in C2 possessing survival 
data, showcasing a notably poorer prognosis in the 

Fig. 1  Workflow. TCGA: The Cancer Genome Atlas, BRCA: Breast Cancer, DEG: Differential Expressed Gene, WGCNA: Weighted correlation network analysis, 
GSVA: Gene Set Variation Analysis, GSEA: Gene Set Enrichment Analysis, CCI: Cell-Cell Interaction
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Fig. 2  Consensus Clustering Based on Immune Infiltration. A. Plot of cumulative distribution function in consensus clustering. B. Results of consistency 
clustering. C. Comparison of immune cell infiltration levels among consistent cluster subtypes. D. The distribution of immune cell infiltration levels in 
TCGA-BRCA samples from xCell analysis results. (* : P < 0.05, * * : P < 0.01, * * * : P < 0.001, * * * * : P < 0.0001)
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latter. Given the influence of immune checkpoint expres-
sion on survival, we scrutinized the variance in PD-L1 
(CD274) and PD1 (PDCD1) expression between the 
two groups (Fig.  3B). The analysis unveiled heightened 
levels of PD-L1 (CD274) and PD1 (PDCD1) expression 
within the C2 cohort relative to C1. The overexpression 
or hyperactivity of immune checkpoint molecules could 
engender immune suppression, culminating in compro-
mised immunity and heightened susceptibility to cancer. 
Subsequent analysis involved probing the Pearson cor-
relation of differentially expressed immune cells within 
the C1 and C2 groups. As illustrated in Fig. 3C, positive 

correlations predominated among immune cells in the 
C1 cohort. Figure 3D depicted a similar trend within the 
C2 cohort, with notably robust correlations observed, 
particularly between T cell and B cell subsets, alongside 
elevated correlations among macrophage subsets. While 
most cells exhibited positive correlations, a subset dis-
played negative correlations.

Results of weighted gene association network analysis
To investigate the differences between C1 and C2 groups, 
we conducted PCA principal component analysis) to 
assess the degree of discrimination between patient types 

Fig. 3  Immune-cell Correlations of Consensus Clustering Subtypes Based on Immune Infiltration. A. Kaplan-Meier analysis of consistent cluster subtypes 
C1 and C2, with significance P values calculated by the log-rank method. B. Expression of immune checkpoints PD-L1 (CD274) and PD1 (PDCD1) among 
cluster subtypes. C. The correlation of immune cells within subtype C1 in the consensus cluster. Red represents positive correlation and blue represents 
negative correlation. D. The correlation of immune cells within subtype C2 in the consensus cluster. (* : P < 0.05, * * : P < 0.01, * * * : P < 0.001, * * * * : 
P < 0.0001)
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based on gene expression profiles (Fig.  4A). The results 
demonstrated noticeable dissimilarities between the 
samples from C1 and C2 groups (Refer to Table-2.1.2). 
Subsequently, we performed differential gene expression 
analysis, classifying genes as differentially expressed with 
cut-off criteria of P < 0.05 and |log 2 FC| >1. Our analy-
sis identified a total of 1010 upregulated genes and 1648 
downregulated genes. The volcano plot was listed in 
Fig. 4B, while the heatmap was drawn in Fig. 4C. Further-
more, we investigated the differences in the expression 
of genes closely associated with BRCA (ATM, BARD1, 
BRCA1, BRCA2, CDH1, CHEK2, RAD41D) between the 
C1 and C2 groups (Fig.  4D). Notably, ATM expression 
was found to be significantly lower in the C1 group com-
pared to the C2 group, while the expression of BARD1, 
BRCA1, BRCA2, CDH1, CHEK2, and RAD41D was 
higher in the C1 group.

To identify gene modules associated with immune 
infiltration-based clustering, we employed WGCNA on 
differentially expressed genes in the C1 and C2 groups. 

We constructed a scale-free network with cut-off crite-
ria of R2 = 0.9(Fig. 5A). Subsequently, we acquired seven 
co-expression gene modules with a height cutoff of 
0.25 (Fig.  5B). By integrating the expression patterns of 
module genes with immune infiltration-based cluster-
ing information, we identified eight modules (turquoise, 
brown, green, blue, red, black, yellow, and grey) that 
displayed correlation with immune infiltration-based 
clustering subtypes (Fig.  5C). Notably, the turquoise 
module exhibited the highest correlation with immune 
infiltration-based clustering subtypes. Utilizing a correla-
tion scatterplot, we investigated the relationship between 
gene modules and clusters (Fig.  5D). Furthermore, we 
performed GO and KEGG pathway enrichment analy-
sis on the 979 genes within the turquoise module (Table 
2.2.1, Table 2.2.2). The GO analysis revealed enrich-
ment in functions such as ameboidal-type cell migration 
and vascular process in the circulatory system (Fig. 5E). 
Enriched KEGG pathways included the AMPK signaling 
pathway and cAMPK signaling pathway (Fig. 5F).

Fig. 4  Differentially Expressed Genes in Consensus Clustering Subtypes Based on immune infiltration. A. PCA plot of consensus cluster subtypes in TCGA-
BRCA samples. B. Volcano plot of differential expression analysis between C1 and C2. C. Heatmap between the C1 and C2. D. Box plot of BRCA related 
genes ATM, BARD1, BCRA1, BCRA2, CDH1, CHEK2, RAD51D between C1 and C2. (* * : P < 0.01, * * * * : P < 0.0001). TCGA: The Cancer Genome Atlas, BRCA: Breast 
Cancer, NS: Not significant, PCA: Principal Components Analysis
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Fig. 5  WGCNA results. A. Network topology analysis of different soft threshold powers. B. Gene clustering dendrogram obtained by hierarchical cluster-
ing based on topological overlap (top) and module colors assigned by different gene clusters (bottom). Each color represents a different module, and the 
corresponding gene with the same color belongs to the same gene module. C. Heatmap of correlation between module and trait. Each row corresponds 
to a gene module. Each cell contains the corresponding correlation and P value; Red indicates a positive correlation and blue indicates a negative correla-
tion. D. Scatter plot of GS versus MM in turquoise-colored modules. MM represents the correlation between the expression of eigengenes and genes. The 
genes in each module are highly correlated with the module to which they are assigned, indicating a high degree of connectivity within the module. GS 
represents the absolute value of the correlation between a gene and a phenotypic trait. Each point in the graph represents a gene. The abscissal value 
indicates the correlation between the gene and the module, and the ordinate value indicates the correlation between the gene and the phenotypic trait. 
There was a highly significant correlation between GS and MM. E. Bar chart of enrichment analysis results of BP, CC and MF in GO enrichment results of 
genes in turquoise-colored modules. F. Ring diagram of KEGG enrichment analysis of genes in turquoise-colored modules. GS: Gene significance, MM: 
Module Membership, GO: Gene Ontology, BP: Biological Process, CC: Cell Component, MF: Molecular Function, KEGG: Kyoto Encyclopedia of Genes and 
Genomes
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Construction of prognostic model
Based on gene modules, we constructed a prognostic 
model. Initially, we identified 523 prognostic genes with 
univariate Cox regression analysis (Table-2.3.2). Subse-
quently, we performed multivariate regression analysis 
to select independent prognostic genes, 476 genes were 
identified (Table-2.3.3). To further refine the model, we 
utilized lasso-cox regression to identify the most relevant 
independent prognostic genes (Fig.  6A-B, Table-2.3.1), 
retaining seven genes with non-zero coefficients (ACSL1, 
ABCB5, XG, ADH4, OPN4, NPR3, NLGN1). These genes 
were used to construct a multifactor prognostic model, 
which was expressed as follows:

	

RiskScore = 0.00482530570337132
∗ exp(ACSL1) + 0.201741659673708
∗ exp(ABCB5) + 0.169530781135497
∗ exp(XG) + 0.0499602479296823
∗ exp(ADH4) + 0.515536088167816
∗ exp(OPN4) + 0.0969600762530821
∗ exp(NPR3) + 0.190044768175265
∗ exp(NLGN1)

Based on this risk score, the samples were categorized 
into high-risk and low-risk groups with median value. 
KM analysis was performed (Fig. 6C), revealing a notable 
disparity in prognosis between the high-risk and low-risk 
groups. We utilized 98 samples from the ICGC database 
for validation, and the results also confirmed that patients 
in the high-risk group had poorer survival rates (Supple-
mentary Figure). To explore the relationship between the 
risk groups and immunotherapy, we examined the differ-
ential expression of immune checkpoints (CD274, CD47, 
HAVCR2, LAG3, IDO1, SIRPA, TNFRSF4, PDCD1, 
CTLA4, TIGIT) between the two groups (Fig. 6D). Addi-
tionally, we calculated the TIDE scores for each sample 
and conducted a comparative analysis between the high-
risk and low-risk groups (Fig.  6E). The high-risk group 
exhibited significantly higher TIDE scores than the 
low-risk group. A higher TIDE score indicates a greater 
likelihood of immune evasion, suggesting a more unfa-
vorable disease progression and prognosis. Furthermore, 
we evaluated the correlation between the TIDE and risk 
scores (Fig.  6F), revealing a positive relationship where 
an increase in the risk score corresponded to an upward 
trend in the TIDE score.

Difference analysis and enrichment analysis of high score 
risk group
To investigate the differential expression profiles 
between the high-risk and low-risk groups, differentially 
expressed genes were calculated and visualized with vol-
cano plot and heatmap (Fig. 7A-B, Table-2.4.1). The plots 

clearly demonstrate a substantial increase in the number 
of upregulated genes in the high-risk group compared 
to downregulated genes. In order to gain insight into 
the potential biological functions of these differentially 
expressed genes, we conducted GO analysis encompass-
ing BP (biological processes), MF (molecular functions), 
and CC (cellular components), as well as KEGG enrich-
ment analysis (Table-2.4.2, Table-2.4.3). The results 
revealed that the upregulated differentially expressed 
genes are predominantly enriched in GO terms such as 
GO:0045229, GO:0030198, and GO:0043062 (Fig. 7C-D). 
Moreover, KEGG analysis highlighted the involvement of 
pathways such as Viral protein interaction with cytokine 
and cytokine receptor and Tyrosine metabolism in the 
upregulated differential gene expression observed in the 
high-risk group (Fig. 7E). To provide a clearer representa-
tion of the top pathways, we visualized them using a net-
work plot (Fig. 7F).

Single cell annotation of breast cancer
The Python package scanpy was utilized to import the 
Counts matrix of the scRNA-seq dataset (GSE161529) 
for quality control analysis. The dataset comprised a total 
of 193,167 cells, but after applying strict filtering based 
on three QC covariates, we retained 187,333 cells for fur-
ther analysis.

Normalization and batch correction were performed 
on the raw data to address differences introduced by 
experimental batches. Subsequently, we conducted clus-
tering analysis on the batch-corrected data. To construct 
a graph capturing the cellular neighborhoods and com-
pute cell-cell distances and similarities, we employed 
the neighbors function. Then, we applied graph-based 
clustering and embedded the neighborhood graph using 
the UMAP algorithm with Leiden algorithm (Fig.  8A). 
To provide cell type annotations, the authors of the 
GSE161529 dataset provided marker genes. Leveraging 
these genes and their known cell type mappings, we con-
ducted ORA using the Python package decouperR. This 
analysis highlighted the most probable cell types: den-
dritic cells, endothelial cells, fibroblast cells, B cells, mac-
rophages, and T cells (Fig. 8B).

To investigate the expression patterns of the seven 
genes (ACSL1, ABCB5, XG, ADH4, OPN4, NPR3, 
NLGN1) in the scRNA-seq dataset, we visualized gene-
level expression trajectories at the cellular level. ACSL1 
exhibited high expression across almost all cells, while 
the other genes displayed specific expression distribu-
tions among different cell populations (Fig. 8C). Further-
more, we generated average expression heatmaps for the 
top five genes with the greatest differences in expres-
sion levels across distinct cellular subgroups (Fig.  8D). 
The expression values were normalized using scaling 
techniques.
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Fig. 6  Construction of the TCGA-BRCA prognostic model. A. LASSO-cox regression curve for gene features. B. The coefficient plot of LASSO-cox regres-
sion. C. Kaplan-Meier survival curves between high-risk and low-risk groups. D. The expression differences of immune checkpoints CD274, CD47, HAVCR2, 
IDO1, LAG3, SIRPA, TNFRSF4, PDCD1, CTL4A, TIGIT in high and low risk groups, and the horizontal axis is the normalized expression value. E. Differences of 
TIDE score between high and low risk groups. F. TIDE and risk score. TCGA: The Cancer Genome Atlas, BRCA: Breast Cancer, LASSO: Least Absolute Shrink-
age and Selection Operator, TIDE: Tumor Immune Dysfunction and Exclusion. (ns: P > 0.05, * * : P < 0.01, * * * : P < 0.001, * * * * : P < 0.0001)
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Fig. 7  Differential expression analysis of TCGA-BRCA high and low risk groups. A. Volcano plot of differential analysis between high and low risk groups. 
B. Heatmap of differential analysis between high and low risk groups. C. Circle diagram of enrichment analysis results of BP, CC and MF in GO enrichment 
results of up-regulated genes. D. Ring clustering dendrogram of enrichment analysis results of BP, CC and MF in GO enrichment results. E. KEGG enrich-
ment pathways. F. KEGG enrichment pathway network diagram. TCGA: The Cancer Genome Atlas, BRCA: Breast Cancer, GO: Gene Ontology, BP: Biological 
Process, CC: Cell Component, MF: Molecular Function, KEGG: Kyoto Encyclopedia of Genes and Genomes
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To investigate the differences in the expression of 
seven prognostic genes (ACSL1, ABCB5, XG, ADH4, 
OPN4, NPR3, NLGN1) among different cell subgroups, 
we employed the AUCell algorithm to calculate scores 
for each subgroup individually. The AUCell scores were 
visualized with UMAP plots (Fig. 9A) and grouped violin 
plots (Fig.  9B). Our analysis revealed that macrophages 
exhibited higher AUCell scores, indicating a significant 
correlation between macrophages and immune progno-
sis, thus classifying them as a high-risk subgroup. Addi-
tionally, we created grouped violin plots to illustrate the 
expression levels of the prognostic genes (Fig. 9C-I) and 
found that ACSL1 gene demonstrated notably elevated 
expression specifically within the macrophage subgroup.

Furthermore, we aimed to explore additional biologi-
cal functions associated with the high-risk macrophage 
subgroup. To achieve this, we identified genes that were 

differentially expressed between the macrophage sub-
group and other subgroups. Subsequently, we conducted 
GSEA utilizing fold changes of these genes (Fig.  10A). 
The GSEA results revealed significant enrichment in 
various pathways including signal transduction through 
IL1R, salvador martin pediatric TBD anti TNF therapy 
nonresponder post treatment up, reactome purinergic 
signaling in leishmaniasis infection, IL8 CXCR2 path-
way, IL12 STAT4 pathway, and dutta apoptosis via NFKB 
(Fig. 10B-H). These findings provide insights into poten-
tial biological functions associated with the high-risk 
macrophage subgroup.

Single-cell GSVA
To explore the heterogeneity of the HALLMARK gene 
set across different cell types, we conducted GSVA 
(Table-2.5.1) on all genes and generated GSVA heatmap 

Fig. 8  Annotation of single-cell Cell types. A. The UMAP map of Single-cell Leiden cluster. B. The UMAP map of over representation analysis annotation. 
C. The trajectory map of prognostic gene. D. Heatmap of differentially expressed genes in cell subsets
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(Fig.  11A). The findings reveals that the majority of the 
HALLMARK gene set exhibits higher scores in den-
dritic cells (DCs), while there is enrichment observed 
in macrophages (Macros) for pathways such as HALL-
MARK allograft rejection, HALLMARK complement, 
and STAT3. Moreover, we utilized the Python package 
Liana’s CellPhoneDB to implement the ligand-receptor 
method (Fig.  11B), followed by performing consensus 
cell communication analysis based on different methods 
using LIANA (Fig. 11C). This analysis highlights the top 
20 ligand-receptor interactions, with notable interactions 
observed predominantly such as HLA-DRA-> CD4 and 
TNFSF13B-> HLA-DPB1 are particularly significant.

The proportion of single-cell subsets in TCGA-BRCA 
samples was inferred by deconvolution
The intricate network of cellular interactions governs the 
interplay between the immune system and tumor cells. 
Understanding the composition of specific immune cells 
within solid tumors is paramount for predicting patient 
responses to immunotherapy. Leveraging subpopulation 

information from single-cell sequencing data of BRCA, 
we inferred the cellular composition and proportions 
of each sample in TCGA-BRCA (Fig.  12A). The results 
revealed that the proportion of EC (endothelial cells) in 
the high-risk subgroup was highest across all samples. 
Subsequently, we categorized TCGA-BRCA samples into 
high and low EC content groups based on the median 
proportion of EC cells in the high-risk subgroup and 
compared the survival analysis between the two groups 
(Fig.  12B). The findings indicate no significant differ-
ences in survival prognosis between patients in the high 
and low EC groups (P = 0.82). Furthermore, we analyzed 
the relationship between EC content and risk scores 
(Fig.  12C). The results demonstrate an increasing trend 
in EC content with higher risk scores (P < 0.001), suggest-
ing a certain degree of correlation between the two. Sub-
sequently, we further examined the joint impact of EC 
content and risk scores on survival analysis (Fig.  12D). 
The results reveal the worst survival prognosis for the 
group with both high risk scores and high EC content. 
It is noteworthy that although high risk scores and high 

Fig. 9  High-risk Cell subsets in single-cell data. A. The UMAP map of single-cell AUCell score, brighter colors represent higher enrichment scores. B. The 
violin plot of single-cell AUCell score. C-I. Violin plots comparing the expression of prognostic related genes in groups
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EC content individually have some impact on survival 
prognosis, there is no significant difference in survival 
between high and low EC content groups within the low-
risk score group, as well as between high and low EC con-
tent groups within the high-risk score group.

The expression of prognostic genes in breast cancer tissue
The real-time PCR results revealed substantial differ-
ences in gene expression levels between BRCA tissue 
and adjacent non-cancerous tissue. Specifically, ABCB5, 
ADH4, and NLGN1 exhibited notably reduced expression 
in BRCA tissue, implying a potential involvement of these 

genes in tumorigenesis through inactivating mutations 
(Fig. 13). We have identified significant expression dif-
ferences of these genes in BRCA tissues, indicating their 
potential for constructing a robust prognostic model. 
Further validation with an expanded sample size is neces-
sary to confirm the expression patterns of these genes in 
BRCA.

Discussion
BRCA is one of the most common malignant tumors 
detected in women worldwide, having a great adverse 
impact on their health and quality of life. In recent years, 

Fig. 10  High-risk cell subpopulation GSEA. A. GSEA mountain map of risk cell subpopulation. B-H. GSEA classic diagram of risk cell subgroup. GSEA: Gene 
Set Enrichment Analysis
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remarkable progress has been made in immunotherapy, 
CDK4/6 inhibitors and ADC (Antibody-drug Conju-
gate) drugs, which have greatly improved the prognosis 
of BRCA patients [39, 40]. However, BRCA is still one of 
the leading causes of cancer-related deaths in women [1]. 
Therefore, it is urgent to optimize diagnosis methods and 
treatment strategies of BRCA. The complexity of BRCA 

is manifested as multiple subtypes with different molecu-
lar characteristics, which make it difficult to effectively 
manage the disease [41]. Through the comprehensive 
bioinformatics analysis, this study aims to improve the 
understanding of BRCA and discover new biomarkers 
and therapeutic targets.

Fig. 11  High risk cell subpopulation GSVA, CCI. A. Heatmap of single cell GSVA, red color represents high enrichment. B. Bubble map of classical Cell-
PhoneDB cell communication analysis, the size of the dots represents the confidence level and the color from dark to light represents the stronger 
communication effect. C. The consensual-based bubble plot of cell communication analysis implemented by LIANA, the size of the dots represents 
the confidence level and the color from dark to light represents the stronger communication effect. GSVA: Gene Set Variation Analysis, CCI: Cell-Cell 
Interaction
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The application of bioinformatics methods to the study 
of BRCA phenotypes may change the therapeutic inter-
vention strategy of this disease. The Qualcomm data 
analysis enables researchers to investigate the molecular 
heterogeneity of BRCA and the clustering analysis helps 
supplement the traditional molecular subtypes. The 
analysis results guide the development of more accurate 
management methods [42]. In this study, samples were 
clustered into C1 and C2 groups based on the results 
of immune infiltration, and the difference in progno-
sis between the two groups was measured based on the 
abundance of immune cell infiltration, immune check-
points and prognosis. At the transcription level, the 
biological differences between C1 and C2 groups were 
revealed. The differentially expressed genes in C1 and 
C2 groups were analyzed by WGCNA and clustered by 
consistent immune infiltration. Then, seven differen-
tially expressed genes were selected for the single-factor 
and multi-factor regression analysis of prognosis. In 
addition, the TIDE values of immune checkpoints were 
calculated and their functions were analyzed. The asso-
ciation between single-cell sequencing data and immune 

cells was evaluated. The GSEA, GSVA and prognosis 
analyses were made to clarify the potential mechanism 
of BRCA and to identify the factors that might improve 
the prognosis of patients. The seven differentially 
expressed genes (ACSL1, ABCB5, XG, ADH4, OPN4, 
NPR3, NLGN1), which showed significant correlations 
with TIDE scores, were used to build a robust progno-
sis. The single-cell analysis highlighted the significance 
of these prognostic genes in cell subtype-specific expres-
sion patterns. The cell communication analysis was used 
to explore the ligand-receptor interaction model, and the 
signal network between different cell types was revealed, 
which promoted the understanding of the interaction 
between cells. The seven differentially expressed genes 
in clinical tumor specimens had potential value in model 
construction.

These differentially expressed genes have many func-
tions in various cancer types. First of all, ACSL1 plays a 
key enzyme role in fatty acid metabolism, and is closely 
related to the proliferation and survival of cancer cells. 
Its expression level is low in normal breast tissue, but 
it is significantly up-regulated in BRCA tissue [43]. In 

Fig. 12  Deconvolutional Inference of Cell Proportion in TCGA-BRCA Samples. A. Bar chart of the proportion of single cells in the sample in the TCGA-BRCA 
high and low risk groups. The abscissa represents the sample, and the ordinate represents the proportion of the inferred single-cell subpopulation in the 
TCGA-BRCA sample. B. The effect of the proportion of endothelial cells subsets in the sample on the survival prognosis. C. Scatter plot of the correlation 
between the proportion of endothelial cells subsets and the risk score. D. The Kaplan-Meier subgroup analysis of risk score group and the endothelial cells 
proportion. TCGA: The Cancer Genome Atlas, BRCA: Breast Cancer
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addition, in lung cancer, the combined use of ACSL1 
inhibitors and chemotherapy can reduce drug resistance. 
It demonstrates the therapeutic potential of ACSL1 in 
the treatment and management of BRCA [44]. ABCB5 
is associated with poor prognosis in many cancer types 
[45–47]. Its expression level is related to the retention 
of doxorubicin in BRCA cells, which may be involved in 
the mechanism of chemotherapy resistance [48]. OPN4 
serves as an oncogene in melanoma and affects the cell 
cycle [49]. In lung adenocarcinoma, the activation of 
OPN4 triggers the PKC/BRAF/MEK/ERK signal cascade, 
and small molecular inhibitors of OPN4 are effective 
in inhibiting the proliferation of lung cancer cells [50]. 
Although there is little research on OPN4 in BRCA, it has 
a profound impact on tumor pathobiology and prognosis 
evaluation of patients. NPR3 plays a dual role in tumori-
genesis. It induces hepatocellular carcinoma cell apop-
tosis and inhibits tumor growth by inhibiting the PI3K/
AKT pathway simultaneously [51, 52]. However, it may 
also stimulate the proliferation of colon cancer cells [53]. 
NLGN1 promotes the invasion and migration of cancer 
cells in neural networks and enhances the invasion activ-
ity of colon cancer cells [54, 55]. It is worth noting that 
research on the roles of XG and ADH4 in tumorigenesis 
is still in the primary stage, and there is no comprehen-
sive mechanism clarifying their effects. Their functions 
are mainly recorded in the framework of prognosis 
modeling.

The RT-qPCR analysis was performed to assess the 
expression levels of the seven differentially expressed 
genes in clinical BRCA specimens. The paired-sample 
comparative analysis revealed substantial disparities in 
gene expression in different cancerous tissues. This dis-
crepancy indicates potential gene mutations, possibly 
manifested as either gene inactivation or overexpression 
compared with the expression level in normal counter-
parts, in BRCA pathology.

The analysis of the differentially expressed genes 
revealed the significant correlation of the key pathways 
related to BRCA subtypes with immune infiltration char-
acteristics. In particular, the pathways related to immune 
responses, such as cytokine-receptor interactions, cAMP 
and AMPK pathways, have been proved to play a key 
role in the process of the immune system attacking can-
cer cells [56, 57]. AMPK acts as a central regulator in the 
cell metabolic pathway, and has a significant impact on 
tumor cells by regulating energy metabolism and inflam-
matory responses. The metabolic activity of tumor cells 
leads to the lack of nutrients in the surrounding immune 
cells, thus reducing the activity of immune cells. Immune 
cells need various metabolic pathways to produce effect. 
AMPK-mediated inflammatory reaction is helpful to 
the gathering of immune cells in tumor microenviron-
ments and can hinder the occurrence, development and 
metastasis of tumors. Therefore, AMPK plays a crucial 
role in connecting cell energy homeostasis, tumor biol-
ogy and anti-tumor immunity, capable of improving 

Fig. 13  The expression of prognostic genes in breast cancer tissue. A-G. RT-PCR revealed the expression of prognostic genes in breast cancer tissue. RT-
PCR: Real-time-PCR (ns: P > 0.05, * : P < 0.05, * * : P < 0.01, * * * : P < 0.001)
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the treatment and management of cancer patients [58]. 
CAMP may also inhibit the proliferation of cancer cells, 
and its effect depends on the environment and tumor 
type. Tumor-related stromal cells, such as cancer-asso-
ciated fibroblasts (CAFs) and immune cells, release 
cytokines and growth factors to stimulate or inhibit the 
production of cyclic adenosine monophosphate (cAMP) 
in tumor microenvironments [59]. The imbalance in 
these pathways may lead to the imbalance of immune 
responses, thus affecting the progress of tumors.

The integration of single-cell sequencing data in BRCA 
research provides us with profound insights into tumor 
microenvironments and tumor cellular heterogene-
ity. The clustering analysis of single-cell data showed 
the expression trajectory of all prognostic genes, high 
expression of ACSL1 in almost all cells and the cell-spe-
cific expression patterns of other genes. This specificity 
indicates that some cell populations may have a unique 
impact on tumor behavior and patient prognosis. Mac-
rophages had higher AUCell scores than other cell types, 
so they were closely related to immune prognosis and 
considered high-risk cells. This finding is consistent with 
that of a recent study, which concludes that macrophage 
polarization plays an important role in cancer and mac-
rophages are a potential therapeutic target [60].

The analysis of the role of genes in intercellular com-
munication and their impact on the immune landscape 
of BRCA may promote the development of novel thera-
peutic strategies. The analysis of macrophage cell com-
munication pinpointed that HLA-DRA-> CD4 and 
TNFSF13B-> HLA-DPB1 were particularly noteworthy. 
The HLA family of genes plays a crucial role in immune 
recognition and the presentation of antigens. Research 
has highlighted a concerning link between the abnor-
mal expression of genes like HLA-DRA and HLA-DPB1 
and poor outcomes in various cancers [61, 62]. HLA-
DRA plays a vital role in the presentation of antigens to 
CD4 + T cells, its diminished expression may precipitate 
a cascade of impaired T cell activation, thereby under-
mining the anti-tumor immune responses [63, 64]. Addi-
tionally, the increased interaction between TNFSF13B 
(also known as BAFF) and HLA-DPB1 may enhance the 
growth and survival of cancer cells, as higher levels of 
BAFF have been closely associated with several types of 
cancer, including breast cancer [65].

GSVA based on single-cell data further elucidated the 
enrichment of differentially expressed genes in high-
risk cells in immune-related pathways. The pronounced 
enrichment in macrophage subpopulations relative to 
other cells underscores the significant contributions 
of macrophages to the immune landscape of BRCA. 
It improves the understanding of immune therapy 
responses.

The deconvolution analysis unveiled a positive cor-
relation between the proportion of high-risk cells and 
risk scores in BRCA samples. The high-risk and high EC 
content groups had the poorest survival prognosis. We 
identified numerous ligand-receptor interactions that 
are intricately linked to the signaling pathways involved 
in tumor immune suppression via GSEA and GSVA 
analyses. A key finding is the abnormal activation of the 
IL1R and IL8-CXCR2 signaling pathways, which can cre-
ate a chronic inflammatory environment that promotes 
cancer cell growth and contributes to resistance against 
treatments. Similarly, the IL12-STAT4 signaling path-
way shows increased activity in high-risk patient groups, 
which may lead to unusual inflammatory responses and 
help tumors evade the immune system. Our analysis 
reveals a complex network of cellular communication, 
highlighted by ligand-receptor pairs like the HLA fam-
ily genes interacting with T cells, showcasing how vari-
ous immune evasion mechanisms work together. This 
intricate web of interactions indicates that tumor cells 
can manipulate host immune responses through multiple 
pathways, giving them a significant advantage in their 
survival.

In recent years, a multitude of articles has graced the 
immune landscape. Through meticulous dataset analysis 
and clustering methodologies, BRCA has been delineated 
into six distinct subtypes. This classification is based on 
the unique traits of each subtype and serves as a crucial 
foundation for personalized breast cancer treatment 
[66]. Charles et al. elucidated common mutation profiles 
through the lens of PAM50 classification, thereby unveil-
ing potential therapeutic targets that may enhance clini-
cal interventions for breast cancer [67]. Meanwhile, Hu et 
al. forged a prognostic model rooted in the intricacies of 
breast cancer stem cell-related genes, with a keen focus 
on informing clinical decision-making and anticipating 
immune responses [68]. In contrast, our article explores 
the subtle differences in immune infiltration by utilizing 
a model based on clustering analysis that more effectively 
captures the effects of immune dynamics. Addition-
ally, we conducted extensive multi-dimensional analyses 
using single-cell datasets to better understand the classi-
fication of immune landscapes and cellular interactions, 
with the goal of introducing new stratification factors to 
improve the clinical management of breast cancer.

There are certain constraints that may impact the inter-
pretation of the findings of this study. Firstly, there was 
a lack of wet-lab experiments to validate bioinformat-
ics predictions. Experimental validation is crucial for 
confirming the biological relevance of computational 
findings. Secondly, the sample size, although adequate 
for initial discovery, may be too small to generalize the 
results across a broader patient population. Thirdly, the 
clinical validation analysis was not conducted to test 
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the prognostic models and biomarkers identified, but 
this analysis is essential for their translation into clinical 
practice. Additionally, the use of multiple datasets might 
introduce batch effects, potentially confounding the 
results. Despite that rigorous bioinformatics approaches 
were used to minimize such effects, they could not be 
completely eliminated. Ultimately, while the efficacy of 
the model has been substantiated through consensus 
clustering and Kaplan-Meier survival analysis, the sample 
size of the validation cohort is relatively small, and fur-
ther confirmation of the generalizability and robustness 
of the findings is still needed. Given that the consensus 
clustering analysis was executed on a singular dataset, 
incorporating validation datasets will require re-cluster-
ing and additional analyses, which poses challenges given 
current research advancements and resource constraints. 
In future studies, we aim to include more independent 
validation cohorts to further evaluate the effectiveness 
and generalizability of the prognostic models, thereby 
enhancing the credibility and clinical relevance of the 
results. Concurrently, we plan to integrate new algo-
rithms and a wealth of biological experimental data to 
explore the potential mechanisms and functions related 
to our research subjects more thoroughly.

In conclusion, the comprehensive bioinformatics 
analysis of BRCA yielded significant insights into the 
molecular landscape, immune infiltration, and potential 
prognostic biomarkers of the disease. Distinct immune 
cell correlations and BRCA subtypes with different sur-
vival outcomes were analyzed. Differentially expressed 
genes associated with these subtypes were identified, and 
a prognostic model that stratified patients into differ-
ent risk categories with implications for overall survival 
was constructed. Furthermore, the single-cell analysis 
provided a detailed cellular annotation and insights into 
intercellular communication. Despite the limitations of 
the study, the results validated the targets and their ther-
apeutic potential, paving the way for future research. The 
prognostic models and biomarkers identified hold prom-
ise for improving personalized treatment strategies and 
outcomes in BRCA patients, particularly in the context of 
immunotherapy.
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